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Abstract

A critical challenge in biology is to uncover the relation between the structure and biological function of an
organism’s protein-protein interaction network (the interactome). By studying the structure of this network,
we hope to derive insights into the way proteins are organised. It has been proposed that proteins with a large
number of interactions, called hubs, fall into two classes — ‘date’ and ‘party’ — that play important roles in the
modular organisation of the interactome. This binary classification of hubs was based on the extent to which
hubs are co-expressed with their interaction partners and subsequently used to attribute specific biological roles
to them. However, despite being widely appreciated, the existence of a date–party hub dichotomy has proven to
be quite controversial, thus we revisit this idea and examine possible alternative approaches for role assignment in
the interactome.

Through an examination of previous results on date and party hubs, we demonstrate that the alleged bi-
modality of hub co-expression distributions is not robust to data heterogeneity. A noted property of date hubs
is that they have a role in connecting disparate parts of the network; we use a betweenness centrality measure
to show that this is not a generic property of date hubs but instead only a small subset of all date hubs are
truly central. We also partition the networks into cohesive groups known as communities and use the (purely
topological) node measures of within-community degree and participation coefficient to examine the extent to
which hubs actually fall into a date/party grouping. We find no evidence for such a dichotomy based on these
metrics. We then examine an alternative approach to studying topological roles by employing a betweenness
centrality metric on links rather than nodes. We find that such link betweenness also does not correlate with
co-expression, but it appears to have a significant correlation with protein colocalisation.

Our results suggest that there is currently little evidence for a clear date/party distinction. Instead, hubs
in protein interaction networks seem to perform a variety of roles that fall along a continuum, and there is
no strong correlation between these roles and co-expression. Our results also indicate that a link betweenness
measure for interactions in such networks is related to similarity in both protein function and cellular location.
We thus suggest that a distinction between local and global interactions might be relevant to understanding the
organisation of the interactome.

Note: An extended version of this report is to be submitted for publication shortly to PLoS Biology.
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Introduction

Advances in molecular biology in recent years have al-
lowed us to acquire a vast store of information about
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proteins. We now know much about their makeup, their
structural forms, the levels at which they are expressed
in various situations, and their bindings and interac-
tions. However, there remains a major disconnect be-
tween this new knowledge and the traditional study of
biology, where living organisms are analysed by breaking
them down into organs and organ systems and studying
their respective functions. The challenge which has been
receiving much attention in the last few years is that of
going from the biochemistry of tens of thousands of pro-
teins to the physiology of a relatively small number of
high-level functions and processes [1, 2]. A key step in
making this connection is to understand how groups of
proteins combine to carry out various tasks. Thus, there
has been a lot of interest in the study of the interactome,
i.e., the set of all physical protein-protein interactions.
The interactome can tell us how proteins convey signals
to each other, and how coordination amongst them comes
about. Given that even a relatively simple organism like
baker’s yeast (Saccharomyces cerevisiae) is thought to
have nearly 18,000 protein-protein interactions [3], it is
clear that a very complex system underlies the high-level
biological functionality which we observe.

From a mathematical perspective, the interactome is
a graph or network, where nodes represent proteins and
links between them represent binary interactions. A
study of the structure and organisation of this network
may provide insightful abstractions. However, experi-
mentally determined protein interaction networks do not
capture the fact that the actual interactions that occur in
vivo depend on prevailing physiological conditions. For
instance, the actively expressed proteins vary among the
tissues in an organism’s body and also change over time.
Thus, the specific parts of the interactome that are ac-
tive, as well as their organisational form, may depend
a great deal on where and when one examines the net-
work [4, 5]. One way to incorporate such information is
to use protein expression data from microarray experi-
ments. This is challenging, but Han et al. [4] obtained
an exciting result when they used such expression data
to examine the extent to which hubs in the yeast inter-
actome are co-expressed with their interaction partners,
hubs being defined as proteins with degree 5 or more (the
number of links emanating from a node in a network is
referred to as the node’s degree). Based on the aver-
aged Pearson correlation coefficient (avPCC) of expres-
sion over all partners, they concluded that hubs fall into
two distinct classes: those with a low avPCC (which they
called date hubs) and those with a high avPCC (so-called
party hubs). They inferred that these two types of hubs
play different roles in the network: Party hubs coordinate
single functions performed by a group of proteins that

are all expressed at the same time, whereas date hubs
are higher-level connectors between groups that perform
varying functions and are active at different times or un-
der different conditions.

The validity of the date/party hub distinction has
since been debated in a sequence of papers [6–9], and
there appears to be no consensus on the issue. How-
ever, the idea has been widely adopted in the literature
(e.g., [3, 5, 10, 11]) and has been one of the more influen-
tial concepts in the study of protein interaction networks
in recent years. Here we revisit the initial data and sug-
gest possible problems with the statistical methodology
that was employed. In particular, we show that the dif-
fering behaviour observed on the deletion of date and
party hubs [4], which seemed to suggest that date hubs
were more essential to global connectivity, was largely
due to a just very small number of key date hubs. More
generally, our results indicate that there is little corre-
lation between co-expression and the structural roles of
hubs in the network. A recent study by Taylor et al. [5]
claimed to demonstrate the existence of ‘intermodular’
and ‘intramodular’ hubs — a categorisation along the
same lines as date and party hubs — in the human in-
teractome. However, we show that their observation of
bimodality is susceptible to methodological changes.

Many real-world networks display some sort of mod-
ular organisation, as they can be partitioned into cohe-
sive groups of nodes that have a relatively high ratio
of internal to external connection densities. Such sub-
networks, known as communities, often correspond to
distinct functional units [12–14]. Several studies in re-
cent years have considered the existence of community
structure in protein-protein interaction networks [15–23].
Additionally, myriad algorithms have been developed for
detecting communities in networks [13, 14]. We use the
idea of community structure to take a new approach to
the problem of hub classification by attempting to assign
roles to hubs purely on the basis of network topology
rather than on the basis of expression data. Our ratio-
nale is that the biological roles of date and party hubs
are essentially topological in nature and should thus be
identifiable from the network alone. Once we have parti-
tioned the network into a set of meaningful communities,
it is possible to compute statistics to measure the connec-
tivity of each hub both within its own community and to
other communities. One method for assigning relevant
roles to nodes in a metabolic network was described by
Guimerà and Amaral [24], and we follow an analogous
procedure for the hubs in our protein interaction net-
works. We then examine the extent to which these roles
match up with the date/party hypothesis, finding little
evidence to support it.
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An alternative way to think about topological roles in
networks is to define measures on links rather than on
nodes. We use a measure of link significance known as
betweenness centrality [12,25] and examine its relation to
phenomena such as protein co-expression and functional
overlap. Here as well we find little evidence of a sig-
nificant correlation with co-expression. However, there
seems to be a stronger relation between link betweenness
and functional similarity of the interacting proteins, so
that link-centric role definitions might have some utility.

In summary, we have examined the proposed divi-
sion of hubs in the protein interaction network into the
date and party categories from several different angles,
demonstrating that prior results in favor of a date/party
dichotomy appear to be susceptible to various kinds of
changes in the data and methods used. Observed dif-
ferences in network vulnerability to attacks on the two
hub types seem to arise from only a small number of
particularly important hubs. Furthermore, a more de-
tailed analysis of network structure and the roles of hubs
within it suggests that the picture is more complicated
than a simple dichotomy, as proteins in the interactome
show a variety of topological characteristics, and these
are not correlated with the co-expression of the proteins’
interaction partners. On the other hand, investigating
link betweenness centralities reveals an interesting re-
lation to the functional linkage of proteins, suggesting
that a framework incorporating a more nuanced notion
of roles for both nodes and links might provide a bet-
ter framework for understanding the organisation of the
interactome.

Methodology and Results

Revisiting Date and Party Hubs

The definition of date and party hubs is based on the
expression correlation of hubs in the protein interaction
network with their interactors. Specifically, the avPCC
was computed for each hub and its distribution was ob-
served to be bimodal. A date/party threshold value of
avPCC (for a given expression data set) was defined so
as to best separate the two modes [4].

Recent support for the idea of date and party hubs
appeared in a paper which considered data relating to
the human interactome; the authors found bimodal dis-
tributions of avPCC values [5]. We used an interaction
data set provided by the authors of Ref. [5] as an up-
dated version of the one used in their paper (sourced
from the Online Predicted Human Interaction Database
[26]), and found that the bimodal distribution of hub

co-expression observed by them is not robust to method-
ological changes. For instance, raw intensity data from
microarray probes has to be processed and normalised
in order to obtain comparable expression values for each
gene [27]. The expression data used in Ref. [5] (taken
from the human GeneAtlas [28]) was normalised using
the MAS5 algorithm; when we repeated the analysis us-
ing the same data normalised with the gcRMA algo-
rithm instead, we obtained significantly different results.
This is shown in Figure 1, which depicts avPCC dis-
tributions for hubs (defined, as per Ref. [5], as the top
15% of nodes by degree) in the two cases. Density plots
have been obtained for varying smoothing kernel widths.
The gcRMA-processed data does not appear to lead to
a substantially bimodal distribution at any kernel width,
whereas the MAS5-processed data appears to give bi-
modality for only a relatively narrow range of widths,
and could just as easily be regarded as trimodal.

We also find variability across different interaction
data sets: For instance, we analysed the recent protein-
fragment complementation assay (PCA) data set [29]
and found no clear evidence of a bimodal distribution
of hubs along date/party lines (data not shown). Even
in cases where bimodality is seen, it might be arising
as an artefact of combining different types of interac-
tion data; there are beleived to be significant and sys-
tematic biases in which types of interactions each data-
gathering method is able to obtain [3, 23, 29]. For in-
stance, analysing avPCC values for hubs in networks
obtained from Y2H or AP/MS alone [3], we find that
100% (259/259) are date hubs in the former but that
only about 30% (56/186) are date hubs in the latter.

One of the key pieces of evidence used to argue that
date and party hubs have distinct topological properties
was the apparent observation of different effects upon
their deletion from the network. Removing date hubs
seemed to lead to very rapid disintegration into multiple
components, whereas removal of party hubs had much
less effect on global connectivity [4, 7]. However, it has
been observed that removing just the top 2% of hubs by
degree from the comparison of deletion effects obviates
this difference, suggesting that the observation is actually
due to just a few extreme date hubs [8]. In order to study
this in greater detail, we used node betweenness central-
ity [25], which is a way of quantifying the importance of
individual nodes or links to the connectivity of a network.
The (geodesic) betweenness centrality of a node/link is
defined as the number of pairwise shortest paths in the
network that pass through that object [12, 25].

We found that in the original ‘filtered yeast interac-
tome’ (FYI) data set [4], date hubs have on average some-
what higher betweenness centralities (1.79 × 104 for 91
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Figure 1: Probability density plots of the distribution of hub avPCC values for human interaction data from
OPHID (provided by Taylor et al. [5]). Gene expression data from GeneAtlas [28], normalised using (a) MAS5 and
(b) gcRMA [27]. Curves obtained using a normal smoothing kernel function at varying window widths.

date hubs versus 1.07×104 for 108 party hubs). However,
there happens to be one date hub (SPC24, a highly con-
nected protein involved in chromosome segregation [30])
which has an exceptionally high betweenness in this net-
work, and when the set of date hubs minus this one hub
is attacked, we find the observed difference between date
and party hubs is greatly reduced (Figure 2(a)).

It was subsequently shown that the FYI network was
particularly sparse, and as more data became available
the updated ‘filtered high-confidence’ (FHC) data set
was used to perform the same analysis [7]; in this case the
network did not break down on attacking date hubs, but
nevertheless displayed a substantially greater increase in
characteristic path length than seen for party hub dele-
tion. For FHC too, date hubs have on average higher
betweenness values (3.7 × 104 for 306 date hubs versus
2.15 × 104 for 240 party hubs). However, the larger av-
erage is due almost entirely to a small number of hubs
with unusually high betweenness, as removing the top 10
date hubs by betweenness (which all had values higher
than any party hub) nearly equalised the averages. Fur-
thermore, the removal of just these 10 hubs from the set
of attacked date hubs is sufficient to virtually obviate
the difference with party hubs, as shown in Figure 2(b).
Notably, the set of 10 high-betweenness hubs includes
prominent proteins such as Actin (ACT1), Calmodulin

(CMD1), and the TATA binding protein (SPT15), which
are known to be central to important cellular processes.
Thus, we can account for the critical nodes for network
connectivity using just a few major hubs, and most of the
proteins that are classified as date hubs appear to be no
more critical than the party hubs. It is also evident that
the 10 key hubs in the FHC network show a wide range of
avPCC values (Figure 2(c)), further weakening the claim
that there is an inverse relation between a hub’s avPCC
and its central role in the network.

Communities in the Interactome

Many real-world networks can be divided naturally into
close-knit subnetworks called communities. The inves-
tigation of algorithms for detecting communities in net-
works has received considerable attention in recent years
[13, 14].

From an intuitive standpoint, communities should con-
sist of groups of nodes, such that there are many links
between nodes in the same group but few links between
nodes in different groups. To detect communities algo-
rithmically, this notion must be formalised. One of the
most popular ways of doing this is to optimise the quality
function known as graph ‘modularity’ [32,33]. Supposing
that an unweighted network with n nodes and m links
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Protein Degree AvPCC Functions

SMT3 42 0.08 Not known; suppressor of MIF2 mutations
PAB1 25 0.28 Important mediator of the roles of the poly(A) tail

in mRNA biogenesis, stability and translation
HSP82 37 0.19 Maturation, maintenance and regulation of proteins

involved in cell cycle control and signal transduction
GLC7 35 -0.01 Glycogen metabolism, meiosis, translation, chromosome

segregation, cell polarity, cell cycle progression
ACT1 35 0.13 Cell motility
CDC28 202 0.06 Essential for the completion of the start, the

controlling event, in the cell cycle
PSE1 24 0.28 Nuclear import of ribosomal proteins; protein secretion
SPT15 50 0.12 Regulation of gene expression by RNA polymerase II
CMD1 46 0.05 Mediates the control of a large number of enzymes and other proteins
RPO21 58 0.05 DNA-directed RNA polymerase

(c)

Figure 2: (a) Effects of hub deletion on network connectivity. ‘Date (− SPC24)’ refers to the set of date hubs minus
the protein SPC24. In each case, we used the complete FYI network [4] consisting of 1379 nodes as the starting point
and then deleted all hubs in the given set from the network in order of decreasing degree. The characteristic path
length is the mean of the lengths of all finite paths between two nodes in the network. (b) Effects of hub deletion
on network connectivity for the FHC network [7]. ‘Date (− high BC)’ refers to the set of date hubs minus the 10
hubs with the highest betweenness centrality (BC) values. We used the upper bound on the BC for party hubs as
a threshold to define these 10 ‘high BC’ date hubs. (c) List of the 10 high-betweenness FHC hubs, with degrees,
avPCC values (as computed using the ’Compendium’ expression data set [4, 31]), and functional annotations from
UniProt [30].
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is divided into N communities (C1, C2, · · · , CN ). Let ki

denote the degree (number of links) of node i and let A
be the n×n adjacency matrix, so that A(i, j) is 1 if nodes
i and j have a link between them and 0 if they do not.
The modularity Q is then given by [33]

Q =
1

2m

N
∑

l=1

∑

i,j∈Cl

(

Aij −
kikj

2m

)

, (1)

where kikj/(2m) is the expected number of links between
nodes i and j in a network with the same expected degree
distribution but with links placed at random. Graph
modularity thus captures how many more links there are
within the specified communities than one would expect
to see by chance in a network with no modular structure.
Note, however, that (1) assumes a particular null model
that explicitly preserves the expected degree distribution
in the random setting. It is possible to employ other null
models [14], though this one is employed most commonly.

Using this framework, we can detect communities
by maximising graph modularity over all possible net-
work partitions. Because this problem is known to be
NP-complete [34], reliably finding the global maximum
is computational intractable even for small networks.
Thankfully, there exist a number of good computational
heuristics that can be used to obtain good local max-
ima [13,14,35]. The approach we employed uses the phys-
ical interpretation of this problem as finding the ground
state of a Potts spin glass [36]. The nodes can be treated
spins, with links representing ferromagnetic interactions
and lack of links corresponding to antiferromagnetic in-
teractions. Under a natural choice of parameters, find-
ing the ground state is then equal to finding the maxi-
mum modularity partitioning (with each spin state cor-
responding to a community). Thus, we can recast modu-
larity maximisation as an energy minimisation problem,
and then apply an appropriate optimisation algorithm.
Here we have used a spectral bisection algorithm [37].

In principle, one should be able to view a categori-
sation of hubs according to the date/party dichotomy
directly in the network structure, as the two kinds of
hubs are posited to have different neighbourhood topolo-
gies. In order to identify the community structure of the
various interaction networks that we examined, we em-
ploy the method described above. In Figure 3, we show
the network partition (with nodes coloured according to
community) that results from applying such an optimisa-
tion to the largest connected component of the FYI data
set [4].

In order to assess how well the obtained topological
communities reflect functional organisation, we used an-
notations from the GO database [39] to define their In-

formation Content (IC). GO provides a controlled vo-
cabulary for describing genes and gene products such
as proteins using a limited set of annotation terms. It
consists of three separate ontologies — one each for bio-
logical process, cellular component, and molecular func-
tion. For each community, we computed the p-value of
the most-enriched GO annotation term; the frequency
of this term within its community is highest relative to
its background frequency in the entire network. To do
this, we used the hypergeometric distribution, which cor-
responds to random sampling without replacement. The
extent of enrichment can then be gauged using IC [40],
which is defined as

IC = − log10(p) , (2)

where p denotes the p-value.

In Table 1, we summarise the results of calculating the
IC measure for communities detected on two of the yeast
interaction data sets. For comparison, we also examine
a random partition of FYI into communities with the
same size distribution as the actual ones. It is clear that
there is on average very significant functional enrichment
within the detected communities. In particular, it is far
greater than could be expected by chance. This is in
accordance with previous studies on communities in pro-
tein interaction networks [18,20–23]. Thus, the topology
of the interaction network provides a great deal of infor-
mation about functional organisation.

Topological Properties and Node Roles

Given that one can find functionally meaningful com-
munities based on interaction data alone, it is natural
to ask whether something like the date/party distinction
can also be observed based only on interaction data. We
thus leave gene expression data to one side for the mo-
ment and focus on what can be inferred about node roles
purely from network topology. Guimerà and Amaral [24]
have proposed a scheme for classifying nodes into topo-
logical roles in a modular network according to their pat-
tern of intramodule and intermodule connections. Their
classification uses two statistics for each node — within-
community degree and participation coefficient — and
divides the plane that they define into seven role boxes.

The within-community degree refers to the number of
connections a node has within its own community. It is
normalized here to a z-score, which for the ith node is
given by the formula

zi =
κi − κ̄si

σκsi

, (3)
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Figure 3: Community structure in the largest connected component of the FYI network; the different colours
correspond to different communities (25 in all). The graph modularity value for this partition is -0.8784. We
generated this visualisation using the Kamada-Kawai algorithm [38].

Data Commu- MF IC CC IC BP IC Best IC

set nities Min Max Avg Min Max Avg Min Max Avg Min Max Avg
FYI 25 2.05 43.09 14.36 4.28 51.60 17.18 2.99 35.74 15.72 4.81 51.60 20.15
FYI 25 (random) 1.28 2.78 1.88 1.25 3.00 2.07 1.46 3.04 2.13 1.46 3.04 2.36
FHC 63 1.47 51.37 11.22 0.11 68.18 16.40 1.73 98.51 17.08 1.97 98.51 20.08

Table 1: Information Content (IC) of the most enriched term for each of the three GO ontologies (MF – Molecular
Function; CC – Cellular Component; BP – Biological Process) and over all three ontologies combined (‘Best IC’).
We give the minimum, maximum, and average IC over all of the communities that we detected in a given data set.
We generated the random communities for FYI using the same size distribution as the actual ones, i.e., the actual
community labels of all proteins were removed and then randomly re-assigned, one label per protein.
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where si denotes the community label of node i, κi is
the number of links of node i to other nodes in the same
community si, the quantity κ̄si

is the average of κ for all
nodes in community si, and σκsi

is the standard devia-
tion of κ in community si. The participation coefficient

of node i measures how its links are distributed amongst
different communities. It is defined as [24]

Pi = 1 −

N
∑

s=1

(

κis

ki

)2

, (4)

where N is the number of communities, κis is the num-
ber of links of node i to nodes in community s, and ki

is the total degree of node i. The participation coeffi-
cient approaches 1 if the links of node i are uniformly
distributed amongst all communities (including its own)
and is 0 if they are all within its own community.

We plot all nodes in the network in a two-
dimensional space using coordinates determined by
within-community degree and participation coefficient,
and we divide the space into regions that correspond to
7 different node roles, as per Ref. [24]. We depict these
7 roles as demarcated regions in the plots in Figure 4,
which shows the node roles for yeast and human data
sets, computed based on the communities we detected
by optimising modularity.

Some of the topological roles defined by this method
would appear to correspond to those ascribed to
date/party hubs. For instance, party hubs ought to
be ‘provincial hubs’, which have many links within
their community but few or none outside. Date hubs
might be construed as ‘non-hub connectors’ or ‘connec-
tor hubs’, both of which have links to several differ-
ent modules; they could also fall into the ‘kinless’ roles.
We thus sought to examine the relationship between the
date/party classification and this topological role clas-
sification. In Figure 4, we colour proteins according to
their avPCC. In Figure 5, we present the same data in a
more compact form, as we only show the hubs (defined
in Ref. [7] as the top 20% of nodes ranked by degree) in
the two interaction networks, plotting them according to
node role and avPCC. The horizontal lines correspond to
an avPCC of 0.5, which was the threshold used to distin-
guish date and party hubs in the yeast interactome [7].

One immediate observation from these results is that
the avPCC threshold clearly does not carry over to the
human data. In fact, all of the hubs in the latter have an
avPCC of well below 0.5. Even if we utilize a different
threshold in the human network, we find that there is lit-
tle difference in the avPCC distribution across the topo-
logical roles, suggesting that no meaningful date/party
categorisation can be made (at least for this data set).

This might be the case because the human data set likely
represents only a small fraction of the actual interactome.
Additionally, it is derived from only one technique (Y2H)
and is thus not multiply-verified like the yeast data set.

For yeast, we see that hubs below the threshold line
(the supposed date hubs) include not only most of those
that fall into the ‘connector’ roles but also many of the
‘provincial hubs’. On the other hand, those that lie above
the line (the supposed party hubs) include mainly the
provincial hub and peripheral categories. Although one
can discern a difference in role distributions above and
below the threshold, it is not very clear-cut and the so-
called date hubs fall into all 7 roles. It would thus appear
that even for yeast, the distribution of hubs is not bi-
modal, and the properties attributed to date and party
hubs [4] do not seem to correspond very well with the
actual topological roles that we estimate here. Indeed,
these roles are more diverse than what can be explained
using a simple dichotomy.

The Roles of Interactions

Most research on interactome properties has focused on
node-centric metrics, which draws on the perspective of
individual proteins. Here we try an alternative approach
that instead uses link-centric metrics in order to exam-
ine how the topological properties of interactions in the
network relate to their function. In order to quantify the
importance of a given link to global network connectivity,
we use link betweenness centrality [12, 25]. We investi-
gate the relationship between link betweenness and the
expression correlation for a given interaction. If date and
party hubs genuinely exist, one might expect a similar
sort of dichotomy for interactions, with more central in-
teractions having lower expression correlations and vice
versa. In Figure 6, we depict all of the interactions in two
yeast data sets, which we position on a plane based on the
values of their link betweenness and interactor expres-
sion PCC. Additionally, we colour each point according
to the level of functional similarity between the interact-
ing proteins, as determined by overlap in GO (Cellular
Component) annotations. In order to compute this func-
tional similarity, we first define the set information con-
tent (SIC) [40] of each term in our ontology for a given
data set. Suppose the complete set of proteins is denoted
by S, and the subset annotated by term i is denoted by
Si. The SIC of the term i is then defined as

SIC(i) = − log10

(

|Si|

|S|

)

. (5)

Now suppose that we have two interacting proteins called
A and B. Let SA and SB, respectively, denote their com-
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Figure 4: Topological node role assignments for (a) yeast (FHC; 2,233 nodes, 63 communities) and (b) human
(CCSB-HI1; 1,307 nodes, 38 communities) interaction data sets. Following Guimerà and Amaral [24], we designate
the roles as follows: R1 – Ultra-peripheral; R2 – Peripheral; R3 – Non-hub connector; R4 – Non-hub kinless; R5
– Provincial hub; R6 – Connector hub; and R7 – Kinless hub. We colour proteins according to the avPCC of
expression with their interaction partners. We computed expression avPCC using the stress response data set [41]
(this being by far the largest of the expression data sets used in the original study [4]) for FHC and COXPRESdb [42]
for CCSB-HI1. We assigned an avPCC of 0 to proteins for which no partner co-expression data was available.

Figure 5: Node role versus average expression correlation with partners for hubs in yeast (FHC; 553 hubs with a
minimum degree of 7) and human (CCSB-HI1; 326 hubs with a minimum degree of 4) networks. Larger circles
represent means over all nodes in a given role. Note that ‘hub’ as used in the role names refers only to within-
community hubs, but all of the depicted nodes are hubs in the sense that they have high degree. In each case,
we determined the degree threshold so that approximately the top 20% highest-degree nodes are considered to be
hubs. We also fixed the date/party avPCC threshold at 0.5, in accordance with Bertin et al. [7].
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plete sets of annotations (consisting of not only their leaf
terms but also all of their ancestors) from the ontology.
Then the functional similarity of the proteins is given by

f(A, B) =

∑

i∈(SA∩SB)

SIC(i)

∑

j∈(SA∪SB)

SIC(j)
. (6)

For the FHC data set, we find that there is no signifi-
cant relation between expression PCC and link between-
ness. For the FYI data set, we observe a dense cluster of
interactions in the top left of the plot, but most of these
are interactions within ribosomal complexes. If one re-
moves such interactions from the data set, then here too
one finds little relation between expression PCC and link
betweenness. (Note that ribosomal proteins were already
removed from FHC [7].) On the other hand, we find a
fairly strong correlation between the logarithm of link
betweenness and similarity in cellular component anno-
tations, which can be used as a measure of colocalisation.
In particular, there appears to be a natural threshold at
the modal value of betweenness. This is somewhat rem-
iniscent of the weak/strong tie distinction in social net-
works [43, 44], as the ‘weak’ (high betweenness) interac-
tions serve to connect and transmit information between
distinct spatial modules, which are composed predomi-
nantly of ‘strong’ (low betweenness) interactions. Figure
7 depicts the distribution of interactions involving a pro-
tein annotated with the GO term ‘signal transduction’,
for both the FYI and FHC datasets. This further demon-
strates the high-betweenness nature of such interactions.

Discussion

In this report we have analysed modular organisation and
the roles of hubs in protein interaction networks. We re-
visited the possibility of a date/party hub dichotomy and
found significant points of concern. In particular, claims
of bimodality in hub avPCC distributions do not appear
to be robust across available interaction and expression
data sets, and tests for the differences observed on dele-
tion of the two hub types did not consider important
outlier effects. Moreover, there is considerable evidence
to suggest that the observed date/party distinction is at
least partly an artefact of the different properties of the
Y2H and AP/MS data sets.

In order to study the topological properties of hub
nodes in greater detail, we partitioned protein interac-
tion networks into communities and examined the statis-
tics of the distributions of hub links. Our results show

that hubs can exhibit an entire spectrum of structural
roles and that there is little evidence to suggest a defini-
tive date/party classification. We find, moreover, that
co-expression of a hub with its partners is not a strong
predictor of its topological role, and the overall extent
of such co-expression varies considerably across the data
sets that we examined.

As an alternative way of defining roles in the interac-
tome, we have also investigated a link-centric approach,
in which we study the topological properties of links as
opposed to nodes. In particular, we examined between-
ness centrality as an indicator of a link’s importance to
network connectivity. We found that this too does not
correlate significantly with co-expression of the interact-
ing proteins. For certain data sets, however, it does ap-
pear to correlate quite strongly with the functional simi-
larity of the proteins. Additionally, there appears to be a
threshold value of betweenness centrality beyond which
one observes a sudden drop in functional similarity. We
also found that the high-betweenness interactions are en-
riched for interactions involved in signalling. This sug-
gests that a concept of intramodular versus intermodular
interactions, somewhat analogous to the weak/strong tie
dichotomy in social networks, might be useful. This sort
of link-based role definition may also be applicable to
other types of real-world networks, and an interesting
general question in network science may be to examine
how node- and link-based role definitions relate to each
other for different kinds of networks.

Future Work

In the coming year, we hope to build on this work by
attempting to integrate information from other kinds of
biological networks, such as genetic interaction and reg-
ulatory networks and metabolic networks. Each of these
represent different levels of biological organisation, but in
principle they form a single network since there is con-
stant interaction and flow of information between the
different levels. By looking at the structural properties
of the different levels and comparing them, we may be
able to come up with more useful notions of things such
as the role played by a given gene/protein/metabolite.

We would also like to use different kinds of network
data to attempt to construct predictive models of biolog-
ical dynamics, which allow us to track the network state
through time. Some success has already been achieved
in this direction [45], via learning of ordinary differential
equation (ODE) models of gene expression dynamics. We
will attempt to look at alternative ways of modeling these
systems, in particular possible coarse-graining into qual-
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Figure 6: Link betweenness centralities and expression correlations, with points coloured according to average
similarity of interactors’ GO (Cellular Component) annotations, for two protein interaction data sets: FYI (778
nodes, 1,798 links) and FHC (2,233 nodes, 5,750 links).

Figure 7: Link betweenness centralities and expression correlations, with points coloured according to whether the
interaction involves a protein annotated with the GO term ‘signal transduction’, for two protein interaction data
sets: FYI (778 nodes, 1,798 links) and FHC (2,233 nodes, 5,750 links).
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itative dynamics [46] (such as just representing a gene
as on/off, in the simplest case), as it is widely believed
that biological systems tend to exist in a relatively small
number of discrete states.
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