Hierarchies in representations Latent structure discovery and Dimensionality reduction

Amitabha Mukerjee
IIT Kanpur, India

Tacit

Knowing
(Thinking fast)
\rightarrow

Latent
Relations

T HVNKING, FAST $\mathrm{T}_{\text {avo }}$ SLOW

D A N I EL
KAHNEMAN

WINNER OF THI NOBEL PRIZE IN ECONOMICS

Latent Representation

Manifolds in language

- grounded syntax:

[Nayak and Mukerjee AAAI-12]

Visuo-Motor expertise

in darkened room, works hard to position arm in a narrow beam of light

Newborns (10-24 days) Small weights tied to wrists

Will resist weights to move the arm they can see

Will let it droop if they can't see it

Simulation

Robot self-discovery
 discover the world?

Camera Motion and Shape via Factorization

Homogeneous Coordinates

- 2-D point (x, y) represented as $\left(x_{1}, x_{2}, x_{3}\right)$ in homogeneous system

$$
x=x_{1} / x_{3} \quad y=x_{2} / x_{3}
$$

- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ same as $\left(\mathrm{kx}_{1}, \mathrm{kx}_{2}, \mathrm{kx}_{3}\right)$ same as $\left(\mathrm{x}_{1} / \mathrm{x}_{3}, \mathrm{x}_{2} / \mathrm{x}_{3}, 1\right)$
- Similarly for 3-D point - $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)$

Camera Models

- Orthographic
- Weak perspective/Scaled orthographic
- Para-perspective
- Perspective
- Affine
- Projective

Camera Models

- $x=(u, v, 1)^{\top}$ or $\left(x_{1}, x_{2}, x_{3}\right)^{\top}=>$ homogeneous image coordinates
- $X=(x, y, z, 1)^{\top}$ or $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=>$ homogeneous 3D coordinates

$$
X_{(3 \times 1)}=T_{(3 \times 4)} X_{(4 \times 1)}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{llll}
T_{11} & T_{12} & T_{13} & T_{14} \\
T_{21} & T_{22} & T_{23} & T_{24} \\
T_{31} & T_{32} & T_{33} & T_{34}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]
$$

Orthographic Camera Model

$$
u=x \quad v=y
$$

Orthographic Camera Model

$$
\begin{gathered}
\mathbf{T}_{\text {orth }}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]}
\end{gathered}
$$

Perspective Camera Model

Perspective Camera Model

$$
\begin{gathered}
\mathbf{T}_{p}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right] \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]}
\end{gathered}
$$

Weak Perspective or Scaled Orthographic

$$
\begin{aligned}
& \mathbf{T}_{w p}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{\text {ave }} / f
\end{array}\right] \\
& {\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{\text {ave }} / f
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right] }
\end{aligned}
$$

Affine Camera Model

$$
\begin{aligned}
\mathbf{T} & =\left[\begin{array}{cccc}
T_{11} & T_{12} & T_{13} & T_{14} \\
T_{21} & T_{22} & T_{23} & T_{24} \\
0 & 0 & 0 & T_{34}
\end{array}\right] \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{cccc}
T_{11} & T_{12} & T_{13} & T_{14} \\
T_{21} & T_{22} & T_{23} & T_{24} \\
0 & 0 & 0 & T_{34}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]
\end{aligned}
$$

Projective Camera

$$
\begin{aligned}
& \mathbf{T}=\left[\begin{array}{llll}
T_{11} & T_{12} & T_{13} & T_{14} \\
T_{21} & T_{22} & T_{23} & T_{24} \\
T_{31} & T_{32} & T_{33} & T_{34}
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{llll}
T_{11} & T_{12} & T_{13} & T_{14} \\
T_{21} & T_{22} & T_{23} & T_{24} \\
T_{31} & T_{32} & T_{33} & T_{34}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right] }
\end{aligned}
$$

Structure from Motion by Factorization

 streams under orthography: a factorization method.
Factorization Method

- Given: Image stream, where P points have been tracked over F frames
- Image coordinates of p-th point in f-th frame $=u_{f p}, v_{f p}$
- $\mathbf{W}=2 \mathrm{~F} \times \mathrm{P}$ Measurement Matrix
- Column => observation for point Row => observation for frame

$$
W=\left[\begin{array}{ccc}
u_{11} & \ldots & u_{1 P} \\
\ldots & \ldots & \cdots \\
u_{F 1} & \ldots & u_{F P} \\
V_{11} & \ldots & v_{1 P} \\
\cdots & \ldots & \cdots \\
v_{F 1} & \cdots & V_{F P}
\end{array}\right]
$$

Factorization Method : Orthography

- $\mathbf{W}=\mathbf{M}_{(2 F \times 3)} \mathbf{S}_{(3 \times P)}+\mathbf{t}_{(2 \times x 1)}[1 \ldots 1]_{(1 \times P)}$ translation vector \mathbf{t} : element $f=$ mean of $\operatorname{row} f$ in \mathbf{W}
- registered measurement matrix W^{*}

$$
\mathbf{W}^{*}=\mathbf{W}-\mathbf{t}[1 \ldots 1]=\mathbf{M} \mathbf{S} \quad(\operatorname{rank} 3)
$$

$\mathbf{M}_{(2 F \times 3)}$: row $f=$ camera horiz/ vert axes in frame f $\mathbf{S}_{(3 \mathrm{xP})}$: column $p=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ of tracked point p

OBJECTIVE : obtain \mathbf{M} and \mathbf{S} from W^{*} via SVD

Hotel Stream Data

frame 1

Hotel Stream Data

frame 50

Hotel Stream Data

frame 100

Tracked Features

Tracking

Factorizataion Method : Orthography

- Creation of measurement matrix W
- Obtaining registered measurement matrix \mathbf{W}^{*}
- Performing SVD to obtain

$$
\mathbf{W}^{*}=\mathbf{U E V}^{\top}=\mathbf{M S}
$$

- $\mathrm{M}=\mathrm{UE}^{0.5} \quad \mathrm{~S}=\mathrm{E}^{0.5} \mathrm{~V}^{\top}$...not unique solution
- MS or $\left(\mathrm{M}_{2} \mathrm{~A}\right)\left(\mathrm{A}^{-1} \mathrm{~S}_{2}\right)$...both are solutions
- Constraints to obtain unique A
- Directions can be aligned to camera directions in first frame

SVD

Camera Motion Estimation [M]

camera yaw (degrees)

Camera Motion Estimation [M]

 camera pitch (degrees)
error < 0.35 degrees

3D Shape Estimation [S]

Multi-body Factorization Method

- Multiple objects in a video sequence moving independently
- Earlier approach => from object frame (as if object stationary and camera moving)
- Common representation required for all objects in multiobject scenario
- Why not look from camera frame!!!
- (Moving camera+static object) equivalent to (static camera +moving object)
- unique for all objects for a frame

Multi-body Factorization Method

- Points from all objects collectively taken
- Expected Rank <= 4*number of objects
- Shape Interaction Matrix

$$
\mathbf{Q}=\mathbf{V} \mathbf{V}^{\top}
$$

- Q independent of camera orientation, coordinate transformation
- Permuting columns of V does not change values of Q matrix(only row/column number changed in same way as V permutation)
- Only the interaction values of points from same object get non-zero value.
- Block-diagonalization to obtain the points corresponding to same object

Multi-body Factorization Method

Aspects of Factorization

- All images treated uniformly
- Alternate approaches are initialization based and may do poorly if improper.
- Convergence guaranteed by numerical approach
- In multi-object factorization, can determine number of objects and point clusters

Unsupervised Action Learning and Anomaly Detection

3.2. Topic Modelling

- Given: Document and Vocabulary
* Document is histogram over vocabulary
- Goal: Identify topics in a given set of Documents

Idea: Topics are latent variables

Alternate view :

- Clustering in topic space
- Dimensionality reduction

3.3. Models in practice

- LSA

Non-parametric clustering into topics using SVD.

- pLSA:

Learns probability distribution over fixed number of topics; Graphical model based approach.

- LDA :

Extension of pLSA with dirichlet prior for topic distribution. Fully generative model.

4. Vision to NLP : Notations

Text Analysis	Video Analysis
Vocabulary of words	Vocabulary of visual words
Text documents	Video clips
Topics	Actions/Events

5.1. Video Clips

- 45 minute video footage of traffic available
- 25 frames per second
- 4 kinds of anomaly
- Divided into clips of fixed size of say $4-6$ seconds

5.2. Visual Words

- Each frame is 288×360
- Frame is divided into 15×18 parts, each part containing 400 pixels
- Features
- Optical flow
- Object size
- Background subtraction is performed on each frame to obtain the objects in foreground. Features are computed only for these objects
- Foreground objects consist of vehicles, pedestrians and cyclists

5.2. Visual Words (contd..)

- Foreground pixels then divided into "big" and "small" blobs (connected components)
- Optical flow computed on foreground
- Flow vector quantised into 5 values :
- Static
- Dynamic- up, down, left and right
- $15 \times 28 \times 5 \times 2$ different "words" obtained

5.3. Foreground Extraction

5.4. Optical Flow: Heat Map

6. Modelling pLSA

- Training Dataset: no or very less "anomaly"
- Test Dataset: usual + anomalous events

Procedure

- Learn $P(w \mid z)$ and $P(z \mid d)$ from training data
- Keeping $P(w \mid z)$, estimate $P(z \mid d)$ on test data
- Threshold on likelihood estimate of individual test video clips

7. Results Demo

- 3 clips
- 3 different types of anomalies

8. Results (ROC plot)

8. Results (PR curve)

Motion Planning

Motion planning

Given start / goal image, map to manifold using local interpolation

Use k-nn connectivity in manifold as "roadmap" for motion planning

Obstacle modeling by node deletion

If obstacle intersects robot in image space \rightarrow delete corresponding nodes from "visual roadmap"

Path planning as obstacle moves

Mobile robots

Residual error : disk robot

Robot Motion Planning

Destination

Source

Path Planning Interface

Real robots

SCARA arm

SCARA arm : degrees of freedom

Background Subtraction : Robot

 image
foreground (moving part)

learned background

Background Subtraction : Obstacle

$$
114
$$

Visual Configuration Space

Application to Graphics

Head Motion

[M. S. Ramaiah, Ankit Viiay, Geetika Sharma, Amitabha Mukeriee IEEE VR-13]

Minimal Commitment Language Acquisition

Previous Work: Unsupervised Semantics

- single word or phrase learning [no grammar]
- Hand-coded propositional (T/F) semantics
- [plunkett etal 92]
- [regier 96] (prepositions)
- [steels 03] [roy/reiter 05] [caza/knott 12]
- Supervised Learning of semantics
- [kate/mooney 06] : set of predicates are known
- [yu/ballard 07] : semantics = scene-region
- Unsupervised Semantic Acquisition :
"right" granularity for concepts; dynamic predicates

What is a Symbol?

- grounded lexicon:

Lexicon

- grounded lexicon:

- semantic pole : perceptual patterns (image schemas) \rightarrow probabilistic predicate + arguments

Grammar

- grounded syntax:

Minimal Commitment

- minimize prior knowledge in agent:
- preference: minimize description lengths
\rightarrow inventory of machine learning algorithms
- no knowledge of grammar - no POS tags, no syntactic structure
- no knowledge of domain
- bootstrapping stage:
- semantic schemas come first
- language regularities later

POS categories are discovered

$\left[\begin{array}{c}\text { ball } \\ \text { block } \\ \text { box } \\ \text { circle } \\ \text { square }\end{array}\right]\left[\begin{array}{c}\text { in } \\ \text { inside } \\ \text { into }\end{array}\right]\left[\begin{array}{c}\text { chases } \\ \text { pushes } \\ \text { corners } \\ \text { the }\end{array}\right]\left[\begin{array}{c}\text { big } \\ \text { large } \\ \text { little } \\ \text { the }\end{array}\right]$

Acquisition Domains

Previous Work: Unsupervised Semantics

- single word or phrase learning [no grammar]
- Hand-coded propositional (T/F) semantics
- [plunkett etal 92]
- [regier 96] (prepositions)
- [steels 03] [roy/reiter 05] [caza/knott 12]
- Supervised Learning of semantics
- [kate/mooney 06] : set of predicates are known
- [yu/ballard 07] : semantics = scene-region
- Unsupervised Semantic Acquisition :
"right" granularity for concepts; dynamic predicates

Previous Work: Grammar

- Grammar learning:
- Grammatical categories:
- [redington etal 98] (RNN)
- [wang / mintz 07] (frequent frame)
- Grammar induction : Structure is known
- No semantics:
- [marino etal 07] [solan edelman 05]
- Propositional semantics
- [kwiatkowski zettlemoyer 10] (SVM)
- [kim/moonev 12] (altered visual input)

Language Acquisition : Domain 1

- Perceptual input

- Discovery Targets:
- semantics: objects, 2-agent actions, relations
- lexicon : nominal, transitive verbs, preposition
- lexical categories: N VT P Adj
- constructions: PP VP S
- sense extension (metaphor) [nayak/mukerjee (AAAI-12)]

Language Acquisition : Domain 2

- Perceptual input

- Discovery Targets:
- semantics: object categories, motion categories

Language Acquisition : Domain 2

- object categories

- Discovery Targets:
- semantics: object categories, motion categories
- lexicon : word boundaries, nominals, intransitive verbs
- construction intransitive V/P

Video Fragment

Discovering Language

- Perceptual structure discovery:
- Given perceptual space W discover set of structures Γ that partition it into patterns relevant to agents goals.
- Elements $\gamma \in \Gamma$ constitute a hierarchy; structures learned earlier are used for more complex patterns
- Linguistic Structure Discovery
- Given set of sentences formed from words w $\in L$, discover set of subsequences Λ that result in a more compact description of the structure
- Elements $\lambda \in \Lambda$ constitute a hierarchy, leaf nodes (POS) are subsets of L

Semantics First: Objects / Nominals

Language Grounding: Entity/Object

- object = coherent salient region in perceptual space
o object view schema [white maruti 800 from camera 1]
- object schema [white maruti 800]
- object category schema [car]
o bottom-up dynamic attention

Language - Meaning Associaction

- Relative Association (bayesian)

$$
P\left(\gamma_{j} \mid \lambda_{i}\right)=\frac{P\left(\lambda_{i} \mid \gamma_{j}\right) P\left(\gamma_{j}\right)}{P\left(\lambda_{i}\right)} \propto \frac{P\left(\lambda_{i} \mid \gamma_{j}\right)}{P\left(\lambda_{i}\right)}
$$

- Mutual association (contribution to M.I.)

$$
\begin{gathered}
P\left(\lambda_{i}, \gamma_{j}\right) \log \frac{P\left(\lambda_{i}, \gamma_{j}\right)}{P\left(\lambda_{i}\right) P\left(\gamma_{j}\right)} \\
I(\Gamma, \Lambda)=\sum_{i} \sum_{j} P\left(\lambda_{i}, \gamma_{j}\right) \log \frac{P\left(\lambda_{i}, \gamma_{j}\right)}{P\left(\lambda_{i}\right) P\left(\gamma_{j}\right)}
\end{gathered}
$$

Language Grounding: Nominals

[BS]			[SS]			[C]		
word(s)	$A_{i j}^{\text {rel }}$	$A_{i j}^{\text {mut }}$	word(s)	$A_{i j}^{\text {rel }}$	$A_{i j}^{\text {mut }}$	word(s)	$A_{i j}^{\text {rel }}$	$A_{i j}^{\text {mut }}$
square	0.70	1.41	little	0.66	0.79	circle	0.79	2.11
big	0.89	1.11	small	0.72	0.63	square	0.41	1.54
box	0.69	0.78	square	0.46	1.12	little	0.68	1.22
the big	0.87	0.71	small square	0.93	0.53	the little	0.71	0.81
big square	0.94	0.75	little square	0.89	0.46	little circle	0.91	0.60
large square	0.86	0.15	the little	0.70	0.54	the big	0.48	0.61

Perceptual Discovery :
 Actions: Verbs

Perceptual Discovery: 2-agent actions

- Consider every pair of objects A, B A : attended to object (tr)
B : other object (landmark, Im).
- 2 features suffice:
relative-velocity and relative position

$$
\text { pos•velDiff: }\left(\vec{x}_{B}-\vec{x}_{A}\right) \cdot\left(\vec{v}_{B}-\vec{v}_{A}\right)
$$

relative pose and the sum of the velocities

$$
\text { pos.velSum : }\left(\vec{x}_{B}-\vec{x}_{A}\right) \cdot\left(\vec{v}_{B}+\vec{v}_{A}\right)
$$

Perceptual Discovery: 2-agent actions

- Static time-shots of feature space trajectories

Switching the in-Focus agent

\square Human Labels (CC, MA, Chase) \rightarrow Ground Truth \square Label Vs Cluster assigned

Number of Clusters from MNG $=4$ when Edge Aging $=30$ (0.9 prob)
CC: Come-Closer (C1), MA: Move Away (C2), $\mathrm{C}_{3} \& \mathrm{C}_{4}$: Chase
Chase sub-categories:
Chase_RO-chases-LO: $\mathrm{C}_{3} \rightarrow$
Chase_LO-chases-RO: $\mathrm{C}_{4} \rightarrow$

Hierarchy in Concept Space

\square More clusters \rightarrow Reveals category hierarchy:

Come-Closer-RO-static Come-Closer-LO-static
Come-Closer-both-moving
\square Similarly: Move-Away : 3 subclasses
Number of Clusters from MNG = 8 when Edge Aging $=16$

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
CC	201	3	9	20	189	21	1	0
MA	8	126	4	45	9	1	181	6
Chase	1	9	142	151	13	9	32	26

$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{6}$: sub-classes of Come-Closer; $\mathrm{C}_{2}, \mathrm{C}_{7}, \mathrm{C}_{8}$:of Move-Away

Two agent action ontology

Learning verbs

| CLUSTER 1 |
| :---: | :---: | :---: | :---: |
| (Come-Close) |\quad| CLUSTER 2 |
| :---: |
| (Move-Away) |\quad| CLUSTER 3 |
| :---: |
| (Chase) |\quad| CLUSTER 4 |
| :---: |
| (Chase) |

ONE WORD LONG LINGUISTIC LABELS(MONOGRAMS)

corner	0.077	$\\|$	away	0.069	$\\|$	chase	0.671		chase	0.429	\square
move	0.055	$\\|$	move	0.055	$\\|$	other	0.185	\square	after	0.112	\square
attack	0.042	$\\|$	chase	0.049	$\\|$	around	0.183	\square	out	0.033	

TWO WORD LONG LINGUISTIC LABELS(BIGRAMS)

each other	0.086	\square	move away	0.111	\square	chase around	0.306		chase after	0.218	\square
move toward	0.065	\square	go into	0.035		each other	0.227	\square	just chase	0.060	\square
toward each	0.065	\square	into with	0.035		chase each	0.198	\square	chase out	0.058	\square

THREE WORD LONG LINGUISTIC LABELS(TRIGRAMS)

move toward each	0.182	\square	go into with	0.099		chase each other	0.558		just chase out	0.142
toward each other	0.182	\square	run away out	0.051		start run away	0.132	\square	run away out	0.047
move close together	0.114	\square	scare in corner	0.032		begin to move	0.127	\square	to go after	0.031

Discovering Containment Relations :
 Prepositions

Clustering spatial relations

Feature Commitment:
Visual angle subtended at trajector by landmark

Histogram of visual subtended angle for the 3 shapes

Clustering spatial relations

IN cluster (emergent)

0

VisAngle (Im at tr)

Words for motions ending in / out

IN	$A_{i j}^{\text {rel }}$	$A_{i j}^{\text {mut }}$	INTO	$A_{i j}^{\text {rel }}$	$A_{i j}^{\text {mut }}$	OUT OF	$A_{i j}^{\text {rel }}$	$A_{i j}^{\text {mut }}$
inside	0.79	11.78	into	0.82	6.98	out	0.65	5.71
into	0.90	9.43	inside	0.53	1.03	leaves	1.00	4.16
in	0.61	4.16	enters	1.00	4.85	exits	1.00	3.46

Syntax discovery and Semantic Association

Syntax Discovery

- Syntactic discovery:
- Given input text, attempt to find graph that results in minimizing the description length
- Relational Graph RDS: patterns as nodes; edges as transitions
- Attempt to edit RDS to detect significant patterns
- Equivalence classes
 emerge at the nodes

Computing the Image Schema

Our reflective baby has discovered:
"in" = label corresponding to this image schema
Hence: symbol for [IN] is
(note: this is an early, very basic, low-confidence characterization

Language Structures : Verbs

1. $\left[\begin{array}{c}\text { the } \rightarrow\left[\begin{array}{c}\text { big } \\ \text { large } \\ \text { the } \rightarrow \text { square }\end{array}\right] \rightarrow \text { square }\end{array}\right] \rightarrow\left[\begin{array}{c}\text { scares } \\ \text { approaches } \\ \text { chases }\end{array}\right] \rightarrow\left[\right.$ the $\left.\rightarrow\left[\begin{array}{l}\text { small } \\ \text { little }\end{array}\right]\right]$
2. $\left[\begin{array}{c}\text { the } \rightarrow\left[\begin{array}{c}\text { ball } \\ \text { box } \\ \text { door } \\ \text { square }\end{array}\right] \\ \text { circle } \\ \text { it }\end{array}\right] \rightarrow\left[\begin{array}{c}\text { moved } \\ \text { moves } \\ \text { runs }\end{array}\right]$

ADIOS [solan / edelman 05]

Hindi Acquisition: Word learning

[BS]		[SS]			[C]			[IN]		
word(s)	$A_{i j}^{r e l}$	$A_{i j}^{m}$	word(s)	$A_{i j}^{r e l}$	$A_{i j}^{m}$	word(s)	$A_{i j}^{\text {rel }}$	$A_{i j}^{m}$	word(s)	$A_{i j}^{r e l}$

Incipient Syntax

Scaling up?

- Domain-specific grammar
- After learning several such grammars for different domains, how to merge?

Conclusion

The power of Latent Discovery

- Data is not randomly drawn
- Discovering implicit strucgture in data \rightarrow
- Tacit Knowledge
- Much work remains in scaling up
- How to merge diverse domains?
-Learning to plan motions
- Learn low-dimensional representations of motion
- Learning Language / Vision

Humans and Robots

