
HSL622: Assignment 2

Sumeet Agarwal

April 6, 2024

1 Problem statement

This assignment is about familiarising ourselves with the basic ideas that un-
derlie the working of connectionist or neural network models in AI. We first
implement a simple network with one intermediate or hidden layer between in-
put and output and fixed (hardcoded) weights, and then experiment with a
simple form of weight learning for just a single artificial neuron with two inputs.

2 What to do

2.1 An XNOR network

[5 marks] In class you have seen the XOR network as the canonical example of
a connectionist model which needs an intermediate layer between inputs and
output. Now consider the logical complement of XOR, i.e., XNOR:

x1 x2 x1 XNOR x2
0 0 1
0 1 0
1 0 0
1 1 1

Design a connectionist network to compute this function, using the same
kinds of artificial neurons as seen in class, which have weights on the incoming
connections/synapses and an activation threshold as their parameters. First
you should draw the network visually, depicting all the nodes and links and
parameters (this diagram will go in your report). Then write a simple piece
of code in your chosen programming language, which implements the network.
The code should be clearly structured and commented so that the processing
corresponding to each individual neuron in the network is apparent. It should
take the two input values (x1 and x2) from the user, and print out the output
value from the final neuron. Check that your code correctly outputs x1 XNOR
x2, for all 4 possible input configurations as in the above truth table.

1



2.2 A simple form of weight learning

[10 marks] Now, we would like to play with a basic random process for how the
weights in such connectionist networks can be learnt from experience (which is
what gives these models much of their power). No claims are made as to the
biological plausibility or efficiency of the process to be implemented here, but
it is just meant to provide a quick feel for how such a process might work in
practice.

For this part, just implement a single artificial neuron with two Boolean
inputs, called x1 and x2. However, you now have to allow for the corresponding
weight values w1 and w2 to be variable parameters which we will code up a
search procedure over, so that we can find settings for them such that the
neuron computes the function x1 AND x2. The activation threshold θ can be
kept fixed at 0.5, you need not vary that. For w1 and w2, initialise them both
to some random number1 between 0 and 1. Then, implement the following kind
of search process (as a loop which will run until the termination condition is
reached):

1. First, check the output of the current network for all 4 possible input
configurations, and compare them to the desired outputs for the AND
function. In case all 4 outputs match the desired ones, then you are done,
and you can exit the loop.

2. Otherwise, we need to check if the mismatches are in the positive or neg-
ative direction. For simplicity, randomly take just any one of the input
configurations for which the network output did not match the desired
output (note that the {0,0} input will never give an error, as its output
is always 0 irrespective of the weights). If the network output was 1 and
the desired output is 0, we call this a positive error. If vice versa, it’s a
negative error.

3. Now, the ‘learning’ part: we will try to adjust the weights so as to move
in the direction of fixing the error (we can think of this as a kind of error
signal or feedback driving the learning). If you got a positive error in
the previous step, it means some weights are too high and need to be
lowered. But note that for a given input configuration, only the weights
corresponding to inputs which were 1 are relevant; for inputs which are 0,
the weight just gets multiplied by 0 and hence its value doesn’t matter.
So generate a random number between 0 and 0.12 and subtract it from the
weights corresponding to those inputs which were 1 in the chosen input
configuration3 Similarly, if you got a negative error, generate a random

1Using a random number generator, which will be needed at multiple places in this program.
All programming languages provide this functionality; in case of any difficulty with figuring
out how to use it, feel free to ask the instructor or TA for help.

2This magnitude of how much we change the weights by in a single iteration is sometimes
known as the learning rate; while a fixed range has been provided to you here, you may want
to try varying it for further exploration and seeing how that affects the time taken to converge.

3To spell it out: If the chosen input configuration with an error is {1,0} you would only
modify w1. If it is {0,1}, only w2. If it is {1,1}, both w1 and w2.

2



number between 0 and 0.1 and add it to the weights corresponding to the
inputs which were 1.

4. Now with the weights updated, go back to step 1 and repeat the loop until
the exit condition is reached.

Finally, when you exit the loop, your program should print out the final
learnt weights, and also the number of iterations for which you had to run the
loop in order to reach them.

Run your program 5 times and report the above outputs for each run in the
form of a table.

3 What to submit

• Your code, which should just be a single code file for each of the two
parts. These should be in a programming language of your choice, with
clear structuring and commenting as mentioned. The program inputs and
outputs for each part should be as mentioned (for the second part, there
are no inputs to be taken).

• A short report (common for both parts), where you document in text/diagram
form the things you have been asked to for each part above. If you wish
you can use scans/photos of hand-drawn diagrams/tables.

These files will need to be uploaded on Moodle; the opening of the submis-
sions will be announced in due course. Please aim to complete this assignment
by the end of Saturday 27th April.

3


	Problem statement
	What to do
	An XNOR network
	A simple form of weight learning

	What to submit

