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Cells as cognitive systems?

● Cells appear to have very sophisticated control mechanisms, 
mediated by the intracellular systems/networks of gene 
regulation, protein interaction, signal transduction, and 
metabolic pathways

● A cell can also be thought of as a decision-making system 
which is sensing its environment and responding/adapting in a 
multitude of ways

● There seem to be close analogies with the notions of memory 
and learning in cognitive systems

● How can we understand and model the cellular mechanisms 
responsible for these phenomena? Could ideas from AI / 
Machine Learning be relevant? 



  

The circuitry of cells

● Biological cells are essentially bags of 
interacting genes/proteins, which 
combine to carry out the various 
processes of life

● Given experimental data about how the 
concentration levels of proteins 
respond to various kinds of stimuli, can 
we try to recover the relationships of 
regulation and control between 
different genes/proteins?

● This can be thought of as learning the 
structure of a dynamical system, given 
some input/output characteristics

● We are looking at a range of 
approaches for mathematically 
modelling and learning these regulatory 
networks, such as Petri Nets, ODEs, 
and Markov Nets

[http://genomics.energy.gov]



  

Role of non-coding RNA ('junk DNA')

● Apart from transcription factors, we are now discovering that 
non-coding RNA (ncRNA) also appear to play a major role in 
regulating gene expression (e.g., gene sliencing by microRNA)

● “The majority of mammalian genomic transcripts do not directly 
code for proteins and it is currently believed that most of these 
are not under evolutionary constraint.” [Deutsch 2016]

● Via inter-RNA binding (ncRNA to mRNA), and given the wide 
variety and abundance of ncRNA, they are potentially regulating 
gene expression (post-transcriptionally) in a highly distributed 
fashion

● This is reminiscent of artificial neural networks
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3In plant cells , the microRNA is  
usually perfectly complementary  
to its  target mRNA molecule . 
The microRNA will bond with it,  
and cause the mRNA to  
break down. 

[By Kelvinsong - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=23311105]



  

Associative memory neural networks

● Traditional memory involves a mapping from address to content 
(e.g., RAM)

● But for cognitive systems, associative memory seems more 
relevant: where the full content/pattern is recoverable from the 
presentation of just a part of it (content addressable memory)

● To be or not to be, that is _____

● I came, I saw, _____

● Think also of associative memories triggered by specific 
sights/sounds/smells

[Wikipedia, Steven Pinker: How the Mind Works]



  

Neural networks: A very brief history

● McCulloch-Pitts model of a neuron (1943)

● Neurons: switch-like, either ON (1) or OFF (0)

● Take a weighted sum of inputs and apply a threshold to it, to 
decide whether to fire or not

● Can thus encode more abstract logical operations and 
concepts/categories

[Steven Pinker: How the Mind Works]



  

Neural networks: A very brief history

● Rosenblatt's Perceptron (1958): Learning the weights from 
labeled examples

● Runs into XOR problem (non-linearity of input-output mapping)

● Solution: have an internal representation or hidden layer

● Gave rise to multilayer perceptrons or neural networks

[Steven Pinker: How the Mind Works]



  

Auto-associative neural networks

● Connect input units amongst themselves as 
well

● Can learn associations between 
features/properties: e.g., greenness 
predicts leafiness, leafiness predicts 
crunchiness...

● Can fill in missing information via such 
associations learnt from frequently 
occurring patterns

● Also allows for some robustness to noisy 
inputs (relevant to thinking about ncRNA)  

[Steven Pinker: How the Mind Works]



  

An associative memory model for ncRNA 
regulation [Deutsch 2016]

● N species of ncRNA: S1, S2,...,SN

● Total concentrations: C1, C2,..., CN

● Unbound concentrations: ρ1, ρ2,...,ρN

● Binding reactions and equilibrium constants:

Si + Sj  ⇌ SiSj

Ki,j = ρij/(ρiρj)

● This leads to the following relation between unbound and total 
concentrations at equilibrium:

ρi = Ci/(1+ΣjρjKi,j)



  

Dynamics

● Simple first-order kinetics:

τρ dρi/dt = -ρi + Ci/(1+ΣjρjKi,j)

● Regulation: production and degradation of ncRNA (transcription 
rate depends on all the unbound concentrations)

τC dCi/dt = -Ci + f(Ci,ρ1,...,ρN)

● Specific form of f() which leads to an associative biochemical 
memory:

f(Ci,ρ1,...,ρN) = Ci/ρi S(4Ci/ρi - 2Σj(Ki,j + ρj) - 3N)

● Here S() is a sigmoid function, such as a logistic or tanh

[Deutsch 2016]



  

Numerical results

Patterns stored (steady-state solutions): {[ρ
1
 ρ

2
 ... ρ

N
]} 

(corresponding to a particular setting of all K
i,j
 values)

Left: initial pattern changed; Right: K
i,j
 values changed

[Deutsch 2016]



  

Observations/Conclusions

● The model is pretty robust to mutations in the equilibrium 
constants (which can be thought of as caused by mutations in the 
ncRNA themselves)

● Given a 'noisy' pattern with upto 20–30% altered inputs, the 
system tends to converge to the correct pattern

● Multiple patterns can be stored, so the network can respond 
appropriately to different environmental conditions

● Distributed network computation allows for robustness to 
mutations: so can have much higher mutation rates and hence 
potentially faster evolution, even though these ncRNA are in fact 
under evolutionary constraint

● Where is the learning happening? Setting of Ki,j values by 
evolution: evolution as cross-generational learning? [Valiant 2009]



  

Observations/Conclusions

● The model presented has no intermediate representations; but 
what if we have a hierarchy of interactions, rather than a fully 
connected network?

● Neural networks with many intermediate representations or hidden 
layers have seen tremendous success in recent years ('deep 
learning'): could cells be doing something similar?

● Evolution and deep learning are currently two of the most powerful 
mechanisms we know for the emergence of sophisticated, 
adaptive, cognitive systems: could they have something in 
common?

“There is grandeur in this view of life, with its several powers, 
having been originally breathed into a few forms or into one; and 
that, whilst this planet has gone cycling on according to the fixed 
law of gravity, from so simple a beginning endless forms most 
beautiful and most wonderful have been, and are being, evolved.”
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