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Neural networks as computational systems

I The classic mathematical model of the
neuron is McCulloch-Pitts (1943)

[Pinker 1999]
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neuron is McCulloch-Pitts (1943)

I Sees neurons as switch-like, either ON (1) or
OFF (0)

[Pinker 1999]
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Neural networks as computational systems

I The classic mathematical model of the
neuron is McCulloch-Pitts (1943)

I Sees neurons as switch-like, either ON (1) or
OFF (0)

I Each neuron takes a weighted sum of inputs
and applies a threshold to it, to decide
whether to fire or not

[Pinker 1999]
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Neural networks as computational systems

I The classic mathematical model of the
neuron is McCulloch-Pitts (1943)

I Sees neurons as switch-like, either ON (1) or
OFF (0)

I Each neuron takes a weighted sum of inputs
and applies a threshold to it, to decide
whether to fire or not

I They can thus encode more abstract logical
operations

[Pinker 1999]
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Neural networks as computational systems

Vegetable detection:
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Neural networks as computational systems

Vegetable detection: Auto-association:

[Pinker 1999]
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Cognition as pattern recognition

I A vheclie epxledod at a plocie cehckipont near the UN
haduqertares in Bagahdd on Mnoday kilinlg the bmober
and an Irqai polcie offceir [Matt Davis, MRC Cognition and

Brain Sciences Unit, Cambridge]
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Cognition as pattern recognition

I A vheclie epxledod at a plocie cehckipont near the UN
haduqertares in Bagahdd on Mnoday kilinlg the bmober
and an Irqai polcie offceir [Matt Davis, MRC Cognition and

Brain Sciences Unit, Cambridge]

I [Pinker 1999]

I Robustness to noise and missing information; inference to fill
in missing details
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Cognition as pattern recognition

I A vheclie epxledod at a plocie cehckipont near the UN
haduqertares in Bagahdd on Mnoday kilinlg the bmober
and an Irqai polcie offceir [Matt Davis, MRC Cognition and

Brain Sciences Unit, Cambridge]

I [Pinker 1999]

I Robustness to noise and missing information; inference to fill
in missing details

I Fits with computational neural network models; hard to
explain with purely rule-based models
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The XOR problem

[Pinker 1999]
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Recurrent neural networks (RNNs)

Rather than just feed-forward connections, RNNs also allow for
recurrent or feedback connections, thus allowing a ‘memory’ of
previous states to be retained. This is useful for processing
sequential or temporal data.

[http://colah.github.io/posts/2015-08-Understanding-LSTMs]
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I One key challenge in language processing is dealing with
long-range dependencies

I Consider the sentence I looked up to see a cloudy . Here
just the context of a single preceding word predicts the next
with high confidence: can even be done by a bigram model
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Long-range dependencies

I One key challenge in language processing is dealing with
long-range dependencies

I Consider the sentence I looked up to see a cloudy . Here
just the context of a single preceding word predicts the next
with high confidence: can even be done by a bigram model

I However, consider I was born in Paris and spent my childhood
there, so I speak fluent . Here a bigram model would
predict the next word to be the name of a language; but to
predict which language, you need information from much
further back in the sentence
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Long-range dependencies

I One key challenge in language processing is dealing with
long-range dependencies

I Consider the sentence I looked up to see a cloudy . Here
just the context of a single preceding word predicts the next
with high confidence: can even be done by a bigram model

I However, consider I was born in Paris and spent my childhood
there, so I speak fluent . Here a bigram model would
predict the next word to be the name of a language; but to
predict which language, you need information from much
further back in the sentence

I RNNs can in principle learn such long-range dependencies, but
it is difficult for vanilla RNNs; a specific variety, called
LSTMs, are much more powerful at this
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Long Short-Term Memory (LSTM) models

These have a much more sophisticated, multi-layered repeating
module:

[http://colah.github.io/posts/2015-08-Understanding-LSTMs]
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Long Short-Term Memory (LSTM) models

Very crudely, these essentially work via the repeating module
largely passing on information (the ‘cell state’) from the previous
time step as is (the horizontal line along the top). But necessary
changes/updates to this state can be made via carefully regulated
‘gates’.
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RNN applications

I RNNs (mainly LSTMs) have been extremely successful for a
range of linguistic tasks (The Unreasonable Effectiveness of
Recurrent Neural Networks), and the ability to model the
maintenance of long-range dependencies in short-term or
working memory seems key to this success
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RNN applications

I RNNs (mainly LSTMs) have been extremely successful for a
range of linguistic tasks (The Unreasonable Effectiveness of
Recurrent Neural Networks), and the ability to model the
maintenance of long-range dependencies in short-term or
working memory seems key to this success

I Hence these models are clearly of interest from a
psycholinguistic perspective, even though so far they have
been more prominent in the NLP literature
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What is the key challenge in vision?

● Arguably, extracting meaningful features from 
images

● How do we construct increasingly 
complex/abstract representations, starting with 
raw pixels?

● These representations can be handcoded; but 
can they also be learnt automatically from 
data?

● Does the learning of such representations have 
to be guided/supervised, or can it also be 
achieved in an unsupervised fashion?



Computer vision features

SIFT Spin image

HoG RIFT

Textons GLOH
[Andrew Ng]



  

Human vision

Neuronal networks build up a hierarchy of increasingly complex 
representations.

[Bachatene et al., 2012]



  

Learning models: The Perceptron
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A non-linear transformation in the form of a step function 
is applied to the weighted sum of the input features. This 
is inspired by the way neurons appear to function, 
mimicking the action potential. 



  

Neural Networks: Multilayer 
Perceptrons

Usually, the non-linear activation function used is a logistic 
sigmoid: y = f(wTΦ(x)) = σ(wTΦ(x)), where σ(a) = 1/(1+e-a). This 
makes y a differentiable function of the input x; each unit/neuron 
can now be thought of as simply a logistic regression classifier.

[Wikipedia]



Learning feature hierarchies

Input image (pixels)

“Sparse coding”
(edges; cf. V1) 

Higher layer
(Combinations of edges; 
  cf. V2)

[Lee, Ranganath & Ng, 2007]

x1 x2 x3 x4

a3a2a1

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]



  

Supervised learning with neural nets

● Target values for the output(s) can be provided 
as categorical or continuous values, 
corresponding to classification and regression 
settings

● An appropriate error function is defined and 
minimised with respect to the network weights 

● Typically done using gradient descent; the 
gradient of the error function can be computed 
via backpropagation 



  

'Deep' learning

● Is just a fashionable term for the use of neural 
networks with many hidden layers

● The aim is for hidden neurons to be able to 
capture a hierarchy of representations, similar 
to the visual cortex

● Labelled training data may be limited; can 
useful representations also be learnt in an 
unsupervised fashion?



  

Sparse autoencoders

● A neural net with as 
many outputs as inputs

● The idea is to reproduce 
the input as closely as 
possible (minimise 
reconstruction error)

● How can this be done 
whilst retaining a 
relatively small number 
of features in the hidden 
layers, i.e., enforcing 
sparsity?

● Represents a form of 
dimensionality reduction

[Andrew Ng]



  

Large-scale deep learning

● Made possible by massive computing power 
and parallelisation

● Google Brain: A deep neural network with 9 
layers and ~109 connections

● Still only one-millionth the size of a 3-year-old 
human brain!

● Important for demonstrating that complex 
concepts like faces can be discovered in an 
entirely unsupervised fashion



  

Visual input network architectures

[Le et al. 2012]



  

Conclusions

● Classical neural networks provide a 
biologically-inspired approach to the problem 
of learning appropriate visual representations

● Recent advances in technology have made it 
possible to train 'deep' networks, with millions 
or billions of connections

● Unsupervised learning by minimising 
reconstruction error whilst enforcing sparsity 
can be a powerful tool for feature/concept 
discovery
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Deep Neural Networks Rival the Representation 
of Primate IT Cortex for Core Visual Object 

Recognition

[Cadieu et al., PLoS Computational Biology 2014]

Higher-Order Perception

(Slides by Sumeet Agarwal)



  

Left Cerebral Cortex of a Macaque

[Scholarpedia]



  

Visual Object Recognition

● How do we recognise objects despite variation 
in position, pose, scale, and background?

● Key problem in higher-order visual perception
● Need to create a representation (found in IT 

cortex for primates) that is selective for object 
identity and robust to variations

● Can computational models like neural networks 
learn such representations?



  

Data

7 categories X 7 exemplars X 40 instances 
(varying position, scale, rotation/pose, and 
background) = 1960 images



  

Approach

● Objective is to compare deep neural net 
representations with actual neural 
representations

● For actual representations, images shown to 
macaque monkeys and multi-unit and single-
unit recordings (in IT cortex and V4 cortex) 
taken via a multi-electrode array

● Kernel analysis used to compare the 
performance of different representations for the 
object classification task (after equalising for 
noise and subsampling)



  

Kernel analysis curves of model representations



  

Kernel analysis comparison of model and neural 
representations



  

Sampling effects



  

SVM classification performance



  

Predictability of IT cortex representations



  

Object-level representational similarity analysis



  



  

Our evaluations show that, unlike previous bio-
inspired models, the latest DNNs rival the 

representational performance of IT cortex on this 
visual object recognition task. Furthermore, we 

show that models that perform well on measures of 
representational performance also perform well on 

measures of representational similarity to IT, and on 
measures of predicting individual IT multi-unit 

responses. Whether these DNNs rely on 
computational mechanisms similar to the primate 

visual system is yet to be determined, but, unlike all 
previous bioinspired models, that possibility cannot 

be ruled out merely on representational 
performance grounds.



  

Questions, thoughts, ideas, project positions in cognitive science 
(incl. PhD and post-doctoral fellowships):

● Sumeet Agarwal, EE IIT Delhi (sumeet@iitd.ac.in)
● Rajakrishnan Rajkumar, HSS IISER Bhopal (rajak@iiserb.ac.in)
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