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Neural networks as computational systems

I The classic mathematical model of the
neuron is McCulloch-Pitts (1943)

[Pinker 1999]

Sumeet Agarwal Learning Representations: Machine and Human



Neural network models
Neural network basics
Recurrent neural networks
Applications

Neural networks as computational systems
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neuron is McCulloch-Pitts (1943)

I Sees neurons as switch-like, either ON (1) or
OFF (0)

[Pinker 1999]
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Neural networks as computational systems

I The classic mathematical model of the
neuron is McCulloch-Pitts (1943)

I Sees neurons as switch-like, either ON (1) or
OFF (0)

I Each neuron takes a weighted sum of inputs
and applies a threshold to it, to decide
whether to fire or not

[Pinker 1999]
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Neural networks as computational systems

I The classic mathematical model of the
neuron is McCulloch-Pitts (1943)

I Sees neurons as switch-like, either ON (1) or
OFF (0)

I Each neuron takes a weighted sum of inputs
and applies a threshold to it, to decide
whether to fire or not

I They can thus encode more abstract logical
operations

[Pinker 1999]
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Vegetable detection:
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Neural networks as computational systems

Vegetable detection: Auto-association:

[Pinker 1999]
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Cognition as pattern recognition

I A vheclie epxledod at a plocie cehckipont near the UN
haduqertares in Bagahdd on Mnoday kilinlg the bmober
and an Irqai polcie offceir [Matt Davis, MRC Cognition and

Brain Sciences Unit, Cambridge]
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Cognition as pattern recognition

I A vheclie epxledod at a plocie cehckipont near the UN
haduqertares in Bagahdd on Mnoday kilinlg the bmober
and an Irqai polcie offceir [Matt Davis, MRC Cognition and

Brain Sciences Unit, Cambridge]

I [Pinker 1999]

I Robustness to noise and missing information; inference to fill
in missing details
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Cognition as pattern recognition

I A vheclie epxledod at a plocie cehckipont near the UN
haduqertares in Bagahdd on Mnoday kilinlg the bmober
and an Irqai polcie offceir [Matt Davis, MRC Cognition and

Brain Sciences Unit, Cambridge]

I [Pinker 1999]

I Robustness to noise and missing information; inference to fill
in missing details

I Fits with computational neural network models; hard to
explain with purely rule-based models

Sumeet Agarwal Learning Representations: Machine and Human

http://www.mrc-cbu.cam.ac.uk/people/matt.davis/Cmabrigde/
http://www.mrc-cbu.cam.ac.uk/people/matt.davis/Cmabrigde/


Neural network models
Neural network basics
Recurrent neural networks
Applications

The XOR problem

Sumeet Agarwal Learning Representations: Machine and Human



Neural network models
Neural network basics
Recurrent neural networks
Applications

The XOR problem

[Pinker 1999]
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Recurrent neural networks (RNNs)

Rather than just feed-forward connections, RNNs also allow for
recurrent or feedback connections, thus allowing a ‘memory’ of
previous states to be retained. This is useful for processing
sequential or temporal data.

[http://colah.github.io/posts/2015-08-Understanding-LSTMs]

Sumeet Agarwal Learning Representations: Machine and Human

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Neural network models
Neural network basics
Recurrent neural networks
Applications

Long-range dependencies

I One key challenge in language processing is dealing with
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I One key challenge in language processing is dealing with
long-range dependencies

I Consider the sentence I looked up to see a cloudy . Here
just the context of a single preceding word predicts the next
with high confidence: can even be done by a bigram model
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Long-range dependencies

I One key challenge in language processing is dealing with
long-range dependencies

I Consider the sentence I looked up to see a cloudy . Here
just the context of a single preceding word predicts the next
with high confidence: can even be done by a bigram model

I However, consider I was born in Paris and spent my childhood
there, so I speak fluent . Here a bigram model would
predict the next word to be the name of a language; but to
predict which language, you need information from much
further back in the sentence
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Long-range dependencies

I One key challenge in language processing is dealing with
long-range dependencies

I Consider the sentence I looked up to see a cloudy . Here
just the context of a single preceding word predicts the next
with high confidence: can even be done by a bigram model

I However, consider I was born in Paris and spent my childhood
there, so I speak fluent . Here a bigram model would
predict the next word to be the name of a language; but to
predict which language, you need information from much
further back in the sentence

I RNNs can in principle learn such long-range dependencies, but
it is difficult for vanilla RNNs; a specific variety, called
LSTMs, are much more powerful at this
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Long Short-Term Memory (LSTM) models

These have a much more sophisticated, multi-layered repeating
module:

[http://colah.github.io/posts/2015-08-Understanding-LSTMs]
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Long Short-Term Memory (LSTM) models

Very crudely, these essentially work via the repeating module
largely passing on information (the ‘cell state’) from the previous
time step as is (the horizontal line along the top). But necessary
changes/updates to this state can be made via carefully regulated
‘gates’.
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RNN applications

I RNNs (mainly LSTMs) have been extremely successful for a
range of linguistic tasks (The Unreasonable Effectiveness of
Recurrent Neural Networks), and the ability to model the
maintenance of long-range dependencies in short-term or
working memory seems key to this success
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RNN applications

I RNNs (mainly LSTMs) have been extremely successful for a
range of linguistic tasks (The Unreasonable Effectiveness of
Recurrent Neural Networks), and the ability to model the
maintenance of long-range dependencies in short-term or
working memory seems key to this success

I Hence these models are clearly of interest from a
psycholinguistic perspective, even though so far they have
been more prominent in the NLP literature

Sumeet Agarwal Learning Representations: Machine and Human

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


  

Neural Network and Deep Learning 
Approaches to Computer Vision

Sumeet Agarwal
Department of Electrical Engineering

IIT Delhi



  

What is the key challenge in vision?

● Arguably, extracting meaningful features from 
images

● How do we construct increasingly 
complex/abstract representations, starting with 
raw pixels?

● These representations can be handcoded; but 
can they also be learnt automatically from 
data?

● Does the learning of such representations have 
to be guided/supervised, or can it also be 
achieved in an unsupervised fashion?



Computer vision features

SIFT Spin image

HoG RIFT

Textons GLOH
[Andrew Ng]



  

Human vision

Neuronal networks build up a hierarchy of increasingly complex 
representations.

[Bachatene et al., 2012]



  

Learning models: The Perceptron
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A non-linear transformation in the form of a step function 
is applied to the weighted sum of the input features. This 
is inspired by the way neurons appear to function, 
mimicking the action potential. 



  

Neural Networks: Multilayer 
Perceptrons

Usually, the non-linear activation function used is a logistic 
sigmoid: y = f(wTΦ(x)) = σ(wTΦ(x)), where σ(a) = 1/(1+e-a). This 
makes y a differentiable function of the input x; each unit/neuron 
can now be thought of as simply a logistic regression classifier.

[Wikipedia]



Learning feature hierarchies

Input image (pixels)

“Sparse coding”
(edges; cf. V1) 

Higher layer
(Combinations of edges; 
  cf. V2)

[Lee, Ranganath & Ng, 2007]

x1 x2 x3 x4

a3a2a1

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]



  

Supervised learning with neural nets

● Target values for the output(s) can be provided 
as categorical or continuous values, 
corresponding to classification and regression 
settings

● An appropriate error function is defined and 
minimised with respect to the network weights 

● Typically done using gradient descent; the 
gradient of the error function can be computed 
via backpropagation 



  

'Deep' learning

● Is just a fashionable term for the use of neural 
networks with many hidden layers

● The aim is for hidden neurons to be able to 
capture a hierarchy of representations, similar 
to the visual cortex

● Labelled training data may be limited; can 
useful representations also be learnt in an 
unsupervised fashion?



  

Sparse autoencoders

● A neural net with as 
many outputs as inputs

● The idea is to reproduce 
the input as closely as 
possible (minimise 
reconstruction error)

● How can this be done 
whilst retaining a 
relatively small number 
of features in the hidden 
layers, i.e., enforcing 
sparsity?

● Represents a form of 
dimensionality reduction

[Andrew Ng]



  

Large-scale deep learning

● Made possible by massive computing power 
and parallelisation

● Google Brain: A deep neural network with 9 
layers and ~109 connections

● Still only one-millionth the size of a 3-year-old 
human brain!

● Important for demonstrating that complex 
concepts like faces can be discovered in an 
entirely unsupervised fashion



  

Visual input network architectures

[Le et al. 2012]



  

Conclusions

● Classical neural networks provide a 
biologically-inspired approach to the problem 
of learning appropriate visual representations

● Recent advances in technology have made it 
possible to train 'deep' networks, with millions 
or billions of connections

● Unsupervised learning by minimising 
reconstruction error whilst enforcing sparsity 
can be a powerful tool for feature/concept 
discovery
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Building high-level features 
using large scale  

unsupervised learning 
Quoc	  V.	  Le	  

Stanford	  University	  and	  Google	  

Joint	  work	  with:	  Marc’Aurelio	  Ranzato,	  Rajat	  Monga,	  MaEhieu	  Devin,	  Kai	  Chen,	  	  
Greg	  Corrado,	  Jeff	  Dean,	  Andrew	  Y.	  Ng	  



pixels	  

edges	  

Face	  parts	  
(combinaRon	  	  
of	  edges)	  

Face	  detectors	  

Lee	  et	  al,	  2009.	  Sparse	  DBNs.	  

Hierarchy	  of	  feature	  representaRons	  



Faces	   Random	  images	  from	  the	  Internet	  
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Face	  detector	   Human	  body	  detector	   Cat	  detector	  

Key	  results	  



Algorithm	  

Each	  RICA	  layer	  =	  1	  filtering	  layer	  +	  pooling	  layer	  +	  local	  contrast	  
normalizaRon	  layer	  
	  
See	  Le	  et	  al,	  NIPS	  11	  and	  Le	  et	  al,	  CVPR	  11	  for	  applicaRons	  on	  acRon	  
recogniRon,	  object	  recogniRon,	  biomedical	  imaging	  
	  
Very	  large	  model	  -‐>	  Cannot	  fit	  in	  a	  single	  machine	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐>	  Model	  parallelism,	  Data	  parallelism	  
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of maps = 8 
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Input to another layer above  
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Image	  

Sparse	  
autoencoder	  

Quoc	  V.	  Le	  

Sparse	  
autoencoder	  

Sparse	  
autoencoder	  



Local	  recepRve	  field	  networks	  

Machine	  #1	   Machine	  #2	   Machine	  #3	   Machine	  #4	  

Le,	  et	  al.,	  Tiled	  Convolu,onal	  Neural	  Networks.	  NIPS	  2010	  

Features	  

Image	  

Quoc	  V.	  Le	  



Asynchronous	  Parallel	  SGDs	  

Parameter	  server	  

Quoc	  V.	  Le	  



Asynchronous	  Parallel	  SGDs	  

Parameter	  server	  

Quoc	  V.	  Le	  



Training	  

Dataset:	  10	  million	  200x200	  unlabeled	  images	  	  from	  YouTube/Web	  
	  
Train	  on	  1000	  machines	  (16000	  cores)	  for	  1	  week	  
	  
1.15	  billion	  parameters	  
-‐  100x	  larger	  than	  previously	  reported	  	  
-‐  Small	  compared	  to	  visual	  cortex	  
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Top	  sRmuli	  from	  the	  test	  set	  
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Face	  detector	  

OpRmal	  sRmulus	  via	  opRmizaRon	  



Quoc	  V.	  Le	  

Face	  detector	   Human	  body	  detector	   Cat	  detector	  



Feature	  value	  

Random	  distractors	  

Faces	  

Frequency	  

Quoc	  V.	  Le	  
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ImageNet	  classificaRon	  

20,000	  categories,	  16,000,000	  images	  
	  
Hand-‐engineered	  features	  (SIFT,	  HOG,	  LBP),	  	  SpaRal	  pyramid,	  	  
SparseCoding/Compression,	  Kernel	  SVMs	  
	  

Quoc	  V.	  Le	  



20,000	  is	  a	  lot	  of	  categories…	  	  
…	  
smoothhound,	  smoothhound	  shark,	  Mustelus	  mustelus	  
American	  smooth	  dogfish,	  Mustelus	  canis	  
Florida	  smoothhound,	  Mustelus	  norrisi	  
whiteRp	  shark,	  reef	  whiteRp	  shark,	  Triaenodon	  obseus	  
AtlanRc	  spiny	  dogfish,	  Squalus	  acanthias	  
Pacific	  spiny	  dogfish,	  Squalus	  suckleyi	  
hammerhead,	  hammerhead	  shark	  
smooth	  hammerhead,	  Sphyrna	  zygaena	  
smalleye	  hammerhead,	  Sphyrna	  tudes	  
shovelhead,	  bonnethead,	  bonnet	  shark,	  Sphyrna	  Rburo	  
angel	  shark,	  angelfish,	  SquaRna	  squaRna,	  monkfish	  
electric	  ray,	  crampfish,	  numbfish,	  torpedo	  
smalltooth	  sawfish,	  PrisRs	  pecRnatus	  
guitarfish	  
roughtail	  sRngray,	  DasyaRs	  centroura	  
buEerfly	  ray	  
eagle	  ray	  
spoEed	  eagle	  ray,	  spoEed	  ray,	  Aetobatus	  narinari	  
cownose	  ray,	  cow-‐nosed	  ray,	  Rhinoptera	  bonasus	  
manta,	  manta	  ray,	  devilfish	  
AtlanRc	  manta,	  Manta	  birostris	  
devil	  ray,	  Mobula	  hypostoma	  
grey	  skate,	  gray	  skate,	  Raja	  baRs	  
liEle	  skate,	  Raja	  erinacea	  
…	  

SRngray	  

Mantaray	  

Quoc	  V.	  Le	  



0.005%	  
Random	  guess	  

9.5%	   ?	  
Feature	  learning	  	  
From	  raw	  pixels	  

State-‐of-‐the-‐art	  
(Weston,	  Bengio	  ‘11)	  

Quoc	  V.	  Le	  



ImageNet	  2009	  (10k	  categories):	  Best	  published	  result:	  17%	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (Sanchez	  &	  Perronnin	  ‘11	  ),	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Our	  method:	  19%	  
	  
Using	  only	  1000	  categories,	  our	  method	  >	  50%	  
	  

0.005%	  
Random	  guess	  

9.5%	  
State-‐of-‐the-‐art	  

(Weston,	  Bengio	  ‘11)	  

15.8%	  
Feature	  learning	  	  
From	  raw	  pixels	  

Quoc	  V.	  Le	  
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Feature	  2	  

Feature	  3	  

Feature	  4	  

Feature	  5	  
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•  RICA	  learns	  invariant	  features	  
•  Face	  neuron	  with	  totally	  unlabeled	  data	  	  
	  	  	  	  	  	  	  	  with	  enough	  training	  and	  data	  
•  State-‐of-‐the-‐art	  performances	  on	  	  

–  AcRon	  RecogniRon	  
–  Cancer	  image	  classificaRon	  
–  ImageNet	  

Conclusions	  

Cancer	  classificaRon	   AcRon	  recogniRon	  

Feature	  visualizaRon	   Face	  neuron	  

0.005%	   9.5%	   15.8%	  
Random	  guess	   Best	  published	  result	   Our	  method	  

ImageNet	  
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Deep Neural Networks Rival the Representation 
of Primate IT Cortex for Core Visual Object 

Recognition

[Cadieu et al., PLoS Computational Biology 2014]

Higher-Order Perception

(Slides by Sumeet Agarwal)



  

Left Cerebral Cortex of a Macaque

[Scholarpedia]



  

Visual Object Recognition

● How do we recognise objects despite variation 
in position, pose, scale, and background?

● Key problem in higher-order visual perception
● Need to create a representation (found in IT 

cortex for primates) that is selective for object 
identity and robust to variations

● Can computational models like neural networks 
learn such representations?



  

Data

7 categories X 7 exemplars X 40 instances 
(varying position, scale, rotation/pose, and 
background) = 1960 images



  

Approach

● Objective is to compare deep neural net 
representations with actual neural 
representations

● For actual representations, images shown to 
macaque monkeys and multi-unit and single-
unit recordings (in IT cortex and V4 cortex) 
taken via a multi-electrode array

● Kernel analysis used to compare the 
performance of different representations for the 
object classification task (after equalising for 
noise and subsampling)



  

Kernel analysis curves of model representations



  

Kernel analysis comparison of model and neural 
representations



  

Sampling effects



  

SVM classification performance



  

Predictability of IT cortex representations



  

Object-level representational similarity analysis



  



  

Our evaluations show that, unlike previous bio-
inspired models, the latest DNNs rival the 

representational performance of IT cortex on this 
visual object recognition task. Furthermore, we 

show that models that perform well on measures of 
representational performance also perform well on 

measures of representational similarity to IT, and on 
measures of predicting individual IT multi-unit 

responses. Whether these DNNs rely on 
computational mechanisms similar to the primate 

visual system is yet to be determined, but, unlike all 
previous bioinspired models, that possibility cannot 

be ruled out merely on representational 
performance grounds.



  

Questions, thoughts, ideas, project positions in cognitive science 
(incl. PhD and post-doctoral fellowships):

● Sumeet Agarwal, EE IIT Delhi (sumeet@iitd.ac.in)
● Rajakrishnan Rajkumar, HSS IISER Bhopal (rajak@iiserb.ac.in)

mailto:sumeet@iitd.ac.in
mailto:rajak@iiserb.ac.in
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