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A general perspective on network science

The study of graphs and networks goes back at
least to Euler. People from a wide range of
disciplines have contributed: Mathematicians,
Computer Scientists, Electrical Engineers,
Sociologists, Physicists, Statisticians...

This has led to a fragmented literature, with
inconsistent terminology and frequent reinvention
of concepts and methodologies

Courtesy: Wikipedia
Our aim is to utilise the power of computing and
machine learning techniques to construct a
comprehensive database of networks and network
algorithms, and use this to systematically
iInvestigate patterns of relationships between
different kinds of networks and metrics/features

This kind of data-driven approach may allow us to
choose the most relevant features for a given
task, motivate appropriate network models, and in
general answer the question: What are the best
ways of thinking about networks?




Comparative network analysis

An attempt to study network properties at a rather abstract level, using computing

power to automate many different analytic procedures across many different
networks

This gives us a matrix of networks versus metrics/features, which can be mined to
identify features and networks of interest, cluster them into ‘families’, learn
predictive models for system phenotype etc.

It is a way of organising and systematising the diverse range of network analysis
techniqgues to give us a better sense of the current state of the field

Data matrix: Correlation matrix: Correlation matrix:
networks vs. metrics networks vs. networks metrics vs. metrics



 _». of networks do we study?

ve been used to study a wide variety of data:
ailways, telephone lines, internet)

W, cell phones, e-mail)

| inship, Facebook, Twitter)

~ Biological networks:

- Ecological

~ Neural
© Subcellular (metabolic, protein-protein, gene regulation)

*  We attempt to gather as many data sets as we can from different sources, and
also construct synthetic data sets for comparative purposes



What kinds of metrics do we study?

GEMINT

Community
structure: partition
entropy, modularity,
coarse-grained
networks
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Network Families: Single linkage clustering
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Network Families: Principal Component Analysis

Principal component analysis
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Courtesy: Wikipedia

Example: Phylogenetic Comparative Methods

We can use features of
biological networks in
conjunction with independent
evolutionary phylogenies to
search for 'phylogenetic signals',
l.e., properties that are most
conserved in closely related
species

The idea is to assume a
statistical process governing the
evolution of any given trait (e.g.,
Brownian motion), and compute
the likelihood of seeing the
observed distribution of trait
values at the leaves of the tree



We attempted to fit a
Brownian motion model
of evolution (V = Bt + €)
to 272 real-valued
network metrics
computed on 450
metabolic networks
from 158 different
genuses, using a
phylogeny taken from
the Tree of Life

(Emilia P. Martins,

Am. Nat. 1994)
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Deviance

A realistic phylogeny gives significant feature correlations

An unbalanced version of the tree (with no branch weights) was compared
with a weighted version (based on actual estimates of evolution times)

We used deviance (sum of sqaures of the residuals, €) as a measure of the
goodness-of-fit of the model for each metric/feature

Unbalanced (unweighted) phylogeny Weighted phylogeny

*  Simulated
*  Actual features
Shuffled features
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How do networks features vary across the phylogeny?

—aerobe bacteria

—facultative bacteria
unicellular eukarya
multicellular eukarya

— unclassified

Such approaches can be thought of as one way of resolving a debate over the
nature of biological taxonomy: pheneticism (Linnaeus) vs. cladism (Darwin)




Feature correlations: pointers to 'simplicity’ in nature?

For restricted classes of networks, many generically different ways of thinking
about or characterising networks appear to become degenerate

Perhaps functional network classes sit on low-dimensional manifolds in the
high-dimensional structure space

One way to think of this is that real-world network categories have relatively
low entropy, because they have evolved under entropy-lowering constraints.
Can we use such observations to actually recover the underlying generative
constraints or mechanisms?



An ‘empirical’ measure for network entropy?

\We can think of a model or ensemble of networks as specifying a probability
distribution over all possible networks; and thus we can define the entropy of
this distribution in the standard way. For simple models this can be computed
analytically. E.g., for the ensemble G(N,L) (networks with N nodes and L
links), the entropy is given by

H=-%p log p = log "*"*C

Using our method we can also generate a sample from a given ensemble,
embed it in a feature space and compute its empirical entropy that way. How
do these two measures of entropy match up?

« Nn50MB00 (entropy, 3.4106; entropy, 26.5455; entropy,,_ 828)
n50M100 (entropy,, 0.78048; entropy,, 19.0982; entropy,,  346)

1000

-1000 N




Recovering network models

The fact that our low-dimensional network embedding allows us to estimate
entropy suggests that we could use this for fitting appropriate models to real
networks, using the related approach of Approximate Bayesian Computation:

P(M|D) ~ P(D|M).P(M)

We have tried generating synthetic networks using a model proposed for
the evolution of protein-protein interaction networks, to see how well we can
recover the model and its parameters




Recovering models with parameters
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Conclusions

Our approach is an attempt at systematically comparing and categorising a
variety ways of measuring network structure and properties, and also looking
at robustness and scaling properties of different metrics

A data-driven approach to examining large numbers of networks and metrics
IS useful for feature selection in classification tasks, identifying redundant
metrics and matching real-world networks to appropriate generative models

Quantifying the significance of biological network features in the context of
evolutionary phylogenies provides one approach towards the problem of
establishing relationships between network structure and function

We have demonstrated several different applications of the framework,
corresponding to different ways of relating network structure to
behaviour/complexity; ultimately it provides a tool which can give meaningful
results only in the context of an appropriately framed scientific question



Dynamics and Inference on Biological
Networks

@ Fe transport,
heme-aerotaxis
@ DNA repair and mixed
nucleotide metabolism
O Potassium transport
@ Pyrimidine biosynthesis
@ Phototrophy and
DMSO metabolism
@ Cell motility
Unknown / Mixed
O Phosphate uptake
@ Amino acid uptake
@ Cobalamine biosynthesis
@ Phosphate consumption
Cation / Zinc transport
Ribosome
Fe-S clusters, Heavy metal
transport, molybdenum
cofactor biosynthesis




Network Dynamics

What do We mean by dynamlcs ?
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Network Dynamics
Why study dynamics?

* Most networks/systems in the real world do change over time

* Studying dynamics tells us about certain properties of the system: both
global (steady states, attractors) and local (causality)

* A model of dynamics can be used to make predictions about the future, and
_ also about how the system responds to perturbation
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Network Dynamics

Mathematical Representation

* The most preferred method, if feasible, is ordinary differential equations
(ODESs), but for most large-scale systems we have to use appropriate
simplifications for tractability

Exp 1 Exp 2 Exp J
e A T T T
e B 1443 114 T
o C ] 1524 bl

Gene Expression Matrix

(+ other biclogicial information)

Graph
i Representation

System of Equations

Exemplary Model
(system of equations);

A[t+1]-A[f]=0
B[t+1]-B[f]=-0.3"A[f]
Clt+1]-C[t]=+0.2°A[{]+0.4°B[t]

Boolean Network

Exemplary Model

{Boolean functions);
A[t+1]=A][1]
Blt+1]==A[1]
Clt+1]=A[{]vBI1)

Bayesian Network
Exemplary Model

(conditional probabilities):

P(A=0)=0.4
P(B=0 | A=0)=0.3

P(B=0 | A=1)=0.9

P(C=0 | A=0, B=0)=0.8
P(C=0 | A=0, B=1)=0.3
P(C=0 | A=1, B=0)=0.4
P(C=0 | A=1, B=1)=0.1

Information Theory Model

Exemplary Model
(correlation coefficlents):

A~B=-06
A~C=06
B~C=-1.0




Network Dynamics

Link with time series

tirne
Mt

©

The behaviour at each node can be described by a time series tracking an
appropriate quantity (body weight, gene expression,...)

In practice, raw observations are often in the form of time series data,

which can be used (possibly combined with other information) to construct
a plausible network

Statistical techniques for time series are widely used for this purpose



Intermission

How to do Inference in Two Easy Steps

Gene 1 Gene 2 Cross-Correlograms
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What can you infer about the relation between the two genes in each case?



Network Inference

Causality in networks

Is a somewhat vexed philosophical notion; the classic 'correlation vs.
causation' conundrum

For our purposes, it just means we're trying to understand, at some given
level (say proteins in a cell) whether changes in one entity lead to changes
in another

We can represent causal relationships in a network, and model them more
precisely mathematically
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System of Equations Boolean Network Bayesian Network Information Theory Model
Exemplary Model Exemplary Model Exemplary Model Exemplary Model
(system of equations): {Boolean functions): (conditional probabilities): (correlation coefficlents):
Afts11-Alf=0 Alt+1]=A[t] PA=0)=0.4 A~B=-0.6
B[t+1]-B[f]=-0.3"A[f] Blt+1]=-A[l] FB=0 | A=0)=0.3 A~C=06
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P(C=0 | A=0, B=0)=0.8
P(C=0 | A=0, B=1)=0.3
P(C=0 | A=1, B=0)=0.4
P(C=0 | A=1, B=1)=0.1




Network Inference

Inference techniques

We've already seen a simple example of how one might do this

Two parts: inferring the network structure, and inferring the parameters or
weights (which depend on the type of model used)

Large number of techniques, but essential idea of all of them is to do
statistical analysis of large quantities of experimental data

Often involve iteration: infer a particular network, see how well it can
reproduce your data, then attempt to adjust structure/parameters to improve
this; stir and repeat until desired consistency is reached
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Qualitative Modelling

® \We can define gualitative relations between

variables and attempt to learn a model based on
these

B The variables themselves become gualitative:
e.g., iInstead of tracking the actual expression
level of a gene, we just represent it by a certain
number of discrete states, say ON and OFF

B Relational learning techniques like Inductive Logic

Programming can be used to infer such models
from data



Example

B Suppose we have a gene whose expression level
Y Is regulated by an activator (level X1) and a
repressor (level X2)

® Then a qualitative model for it might be:
DERIV(Y, DY) // DY Is the derivative
MPLUS(X1, ProdY) // Production is incr. fn.
MMINUS(X2, ProdY) /I Decreasing fn. of X2
MPLUS(Y, DegY) // Degradation rate
ADD(DY, DegY, IncrY) // Net change is sum




Advantages and Challenges

® Qualitative models are one way of dealing with

highly noisy expression data sets, by abstracting
away the precise measurements

® Have to come up with an appropriate
discretisation of variables

® This approach has worked well for small-scale
models, but will it scale to thousands of genes?
Do we have enough data?



Probabilistic Models

® Another approach is to attempt to model joint
probabillity distributions over gene expression
levels

B Since the full joint distribution over thousands of
genes will be not be learnable from
realistically-sized datasets, we need to partition it
INn some way

® One way of doing this is to use a Markov Random
Field (MRF) model



MRFsS

® \We define a graph of linkages/correlations
between different genes, based on domain
knowledge

® The graph is partitioned into “components”, and a
distribution function is learnt independently for

each component @ oL x

X2 X4
b(X2,X3,X4)



FEEDBACK/HYPOTHESES VERIFICATION

Network Inference

Example: gene regulatory network for H.salinarum
(Bonneau et al. 2007)

For a novel, largely uncharacterised organism, using a large number of
microarray experiments combined with homology and other information, a
remarkably successful attempt at creating a network that explains the data

[Genome Sequence |

| Genome Sequence I *
EXPERIMENTATION Genetic/Environmental
A4 AND COMPUTATION manipulations
Genome Function *
Analysis Annotation Putative i
le ¥ o g ngh-:l';r:ughput
genomics! Sequences ays
GEnome ‘*’
i | architecture) Pratein
i Meta-Data
i functions (Record expt
e Regulatory [
mm ; Metwork
PEEAE TFs/ Inference
Lgssodiation; equlators) Data
[mRMNA]L [protein],
P-P/P-Drinteractions )
1 I T I
Y A 4 A 4 Y _Y
==Tal | B2 m 3
EME] R
L3 o - " -
L - . }rﬁ " - -
w2 P
B Inspection DATA VISUALIZATION
i Y AND ANALYSES
STATISTRCAL AMALYSIS TOOLS 'WEB RESOURCES
A statistical analysis package KEGG; BioCye; STRING
ThieV etc. MicrobesCOnline, MCBI etc.

>
w

Ave bicluster mRNA Ratio
2 -2 -1 01 2 3
Pl R i w

i
|=— Predicted

() 24 genes predicted to be under influence of Q,
gene 38 genes predicted to be under influence of TFBf
24 genes in beGs

— Operon

== Protein-DNA interaction (frem ChiP-chip)

100 200 300
Conditions

mRNA Iog1g ratios

-



Predictive Systems Biology

A Correlation over training B cCorrelation over new conditions
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An important reality check for any
model is: can it make accurate
predictions of how the system will
behave in novel circumstances? This
can be regarded as a major goal of
“systems biology”, and network-based
models have a key role

C  Correlation over 300 biclusters

Counts

# || (Bonneau et al. 2007)
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