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Abstract 
 

 

The understanding of complex real world systems has significantly increased with the 

advancements in the modern science of networks. Genetic regulatory networks are one of the first 

networked, real world dynamical systems. With the availability of gene expression and protein 

interaction data, studies on these networks have increased and large scale modeling attempts were made 

by relating structure to functionality. In this project, a data-driven approach is followed to study 

different empirical networks by employing a diverse range of diagnostics. A total of over two hundred 

real world networks obtained from different domains are analyzed. More than two hundred network 

diagnostics or summary statistics are computed and examined for these empirical networks. I 

demonstrate how this data-driven approach can be used to organize the networks, as well as to classify 

protein interaction networks from other real world networks. 

 

Keywords: Networks, Dimensionality Reduction, Learning, Visualization, Classification.
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Chapter 1: Introduction 
  
 
 

Inspired by empirical studies of networked systems such as social networks, political networks 

and biological networks, researchers have in recent years developed a variety of techniques and models 

to help us understand or predict the behavior of the network systems. In this project, a data-driven 

approach to the study of complex networks is employed. I applied it to multiple domains in real world 

systems, focusing in particular on protein interaction networks. Since networks are intrinsically high 

dimensional objects, it is often hard to determine a suitable way of characterization for a given task. 

Due to dissimilarity and diversity in real world data, there is no systematic program for characterizing 

network structure. In addition, there are no particular subsets of diagnostics that are universally 

accepted. While studying a particular type of unfamiliar network, the observation that examining just 

one or a few network properties can be misleading motivated the researchers to attempt to develop a 

more holistic methodology for network investigation. They examined the network system from as many 

different perspectives as possible to get a handle on how they relate to other network types previously 

observed and studied. Here I simultaneously investigate many networks using many diagnostics in a 

data-driven fashion, and demonstrate how this approach serves to organize both networks and 

diagnostics. 

 Each network from real world data is taken as input, and network diagnostic is computed from 

the library of algorithms available. Thus design matrix is obtained, with networks as its rows and 

features as its columns. Each entry in the design matrix represents the value of one feature for one 

network. These empirical networks are modular and hierarchical, and have specific distribution of 

topological features that can be used to characterize them. Since our design matrix is hard dimension 

reduction problem, classification decision can't be guessed ahead of time. For classification, the goal is 

to map the input data into feature space in which the members from different classes are clearly 

separated. To visualize this classification, the high dimensional input data is mapped into a (2-3d) space 

that preserves the intrinsic structure as much as possible. Reduction of dimensionality helps in showing 

the clustered structure of network as well as in estimating a function of several features from the 

network-feature design matrix. The representation of network ensembles in a low dimensional space 

provides a tractable way of estimating the range of structural variants, or the region of structure space 

captured by a given network model with the given parameter settings. 

 I consider learning which actually refers to some form of algorithm for reducing error on the 

design matrix. In unsupervised learning, the system forms clusters of the input patterns. Different 

clustering algorithms lead to different clusters. Principal component analysis (PCA) is an unsupervised 

approach to finding the right features from the data. I seek to represent the high-dimensional data in a 

lower dimensional space of 2-3 dimensions. This will reduce degrees of freedom, the space and time 

complexities. PCA guarantees maximal retention of the variance when projecting data into a lower 

dimension. It finds a linear subspace and thus cannot deal properly with the real world data lying on the 

non linear manifolds. To overcome this problem, Isomap technique is employed. Compared with PCA, 

Isomap is characterized by two parts: it is manifold based and it has non linearity. Isomapping involves 

constructing neighbourhood graph, computing geodesic distances and constructing low-dimensional 

embedding. In brief, Isomap is a low-dimensional, neighbourhood-preserving embeddings of high-

dimensional inputs. The most complex problem of Isomap is to explain the physical meaning of the 
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axes extracted. I have made attempts to determine what these axes can be. The resulting pattern of 

Isomap is affected by the scale of original dimensions and the definition of the neighbourhood. 

Moreover, Isomap can visualize the data well when the input data are well sampled and have little 

noise. Since real world data is noisy, Isomap often fails to nicely visualize them. In this situation, the 

class labels of the data, if known, can be used to retrieve the negative effect of noise. It is well known 

that points belonging to same class are often close to each other than those belonging to different 

classes. 

 In supervised learning, a category label is explicitly provided for the networks in the design 

matrix, and sum of the distances for the patterns is reduced. Supervised Isomap(S-Isomap), the 

improvised version of Isomap, utilizes the class information to guide the procedure of non linear 

dimensionality reduction. In S-Isomap, the neighbourhood graph of the input data is constructed 

according to a certain kind of dissimilarity between data points, which is specially designed to integrate 

class information. Hence, S-Isomap can be used to recover the true manifold of the noisy data.
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Chapter 2: Related Work 
 

 

 

192 real world networks (Appendix B) obtained from Onnela et. al. are analyzed. They include 

empirical networks drawn from different domains like biological (brain connectivity, protein 

interaction & metabolic growth), social networks, political networks (political voting, political 

cosponsorship, political committee) and others (financial correlation, word adjacency, fungal growth) 

[14]. These networks are modular and hierarchical, and have specific distribution of topological 

features that can be used to characterize them [12]. 70 network diagnostics that are taken from literature 

are used (Appendix A). These network algorithms include many a kind of structural properties like 

measures of degree freedom, clustering of links, different notions of node centralities, frequencies of 

small motifs, mesoscopic structure via partitioning into communities, spectral properties of adjacency 

matrix etc... Each of them takes network as input and computes some property of it. Some diagnostics 

return number and some return multiple features. A suite of 253 network metrics are used so as to 

comprehensively compare all 192 networks simultaneously, allowing for in depth evaluation of 

simultaneous models. Different metrics are put on a common scale to obtain meaningful comparison. 

Hence the design matrix, with the networks as its rows and metrics as its columns, is normalized. The 

normalization includes standardizing all the networks to have zero mean and unit standard deviation. 

These values are then mapped to unit standard interval via the logistic function f(z) = (1+ exp(-z))[7]. 
 Apart from computational constraints like time limit, some diagnostics are also undefined for 

certain networks, for instance those which are not connected. Hence, design matrix includes missing 

features for some networks. These missing values are handled either by removing the columns that are 

less than 80% full or by replacing missing values in a column with the average mean of the other 

entries in the respective column [7]. 

 The presence of large number of features obstructs the interpretations of the useful patterns of 

the data. Many features are correlated with each other through linear combination or other functional 

dependence. Redundancy must be removed [7, 15]. Feature Selection aims to build a new feature space 

of reduced dimensionality, producing a compact representation of the network data that may be 

distributed across several of the original features. Using Feature Selection, we try to decide on a feature 

subset, discarding features that do not contribute towards predicting the response [16]. The high-

dimensional feature-space network representation is mapped to a low-dimensional space and thus, I 

tried to find a few (2-4) particular dimensions that capture the bulk of variation between commonly 

studied network types. Feature Selection is not easily interpretable because the physical meaning of the 

response features can’t be directly retrieved. Principal Component Analysis (PCA), a Linear 

Dimensionality Reduction Technique is employed to identify the feature subset which associates 

strongly with various network characteristics to a surprisingly high degree. Thus Dimensionality 

Reduction determines a representation of that manifold that will allow the projection of data points on 

it. As shown in the figure 1, each data point on the scattered plot represents the network's position along 

the given two dimensions. Different symbols are used for different domains from which networks are 

taken. Design matrix is clustered to see the similarities [7].   
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Figure 1: Network Clustering via PCA dimensionality reduction - I 

 

The results reveal that some networks like financial correlation, fungal growth, and metabolic 

growth are highly cohesive and form tight clusters. Political voting, political cosponsorship are next to 

the above three, and are cohesive enough. Protein interaction and political committee networks are 

confined to a restricted space, but are less clear cut. This implies they include networks from wider 

range of sources, and are not well-defined. The first five dimensions captured 80% of variance with 

first two dimensions alone capturing 58% of it. PCA guarantees maximum retention of the variance 

when projecting data into a lower dimension. 

 
Figure 2: Network Clustering via Isomap Dimensionality Reduction – I 
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To examine in greater detail, non linear dimensionality reduction is carried out using Isomap. 

Isomap is an unsupervised learning algorithm that computes low-dimensional, neighbourhood-

preserving embeddings of high-dimensional inputs. In contrast to previous algorithms, Isomap 

efficiently computes a globally optimal solution, and for an important class of data manifolds, it is 

guaranteed to converge asymptotically to the true structure. Each data point is connected to 22 nearest 

neighbours to obtain single largest connected component, thus having K = 22. Figure 2 shows the two 

dimensional embeddings of the network structure. It is observed from the computations that the first 

four dimensions alone capture 99% of total variance with first one alone accounting for over 96% of it. 

It is also observed that the two basic measures of network density and size are sufficient to capture the 

variability between different network types [7]. Since the overlaps between samples are not 

considerably high between different classes, these 253 network features can be used to classify the real 

world data. 
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Chapter 3: Organization of Protein 

Interaction Networks 
 

 

 

The above data-driven approach to organizing and using many different network diagnostics 

serves as a general purpose tool for further network investigation. I included the biogrid (Biological 

Genetic Repository for Interaction Database) data [6] and checked the classification. The data includes 

a curated biological database of protein-protein and genetic interactions for all major model organism 

species. Protein Interaction Network is a representation of proteins with directed edges joining them if a 

mechanistic physical interaction exists between the proteins. These Protein Interaction Networks are 

included to the dataset of 192 real world networks collected. 

 

The protein interaction data is obtained using a C program to extract network ids from source 

file and map each unique id to an index. An adjacency matrix file is created in MATLAB that has a 

sparse matrix with 1's along the interaction cells and 0's at the rest. These files are loaded to SQL 

database which already consists of 192 real world networks, there by summing up to 234 networks. The 

previous network diagnostics are applied and 253 network features are computed for 234 networks. The 

network-metric matrix is normalized. There are more than 15% missing values, and they are handled by 

deleting the column if it less than 80% full or by replacing the missing values with average mean of the 

remaining values if the column is more than 80% full. After updating the missing values, the design 

matrix obtained was made up of 211 features for 234 networks. 
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Chapter 4: Results 
 

 

 

The Linear Dimensionality Reduction is done through PCA as shown in the figure 3. From the 

figure, it is observed that first two dimensions contributed for 53.2% of variance. Large energy loss is 

observed with reduction to low dimensionality by PCA and samples from various classes are mixed up 

in projection space. From figures 4 and 5, we can say that the misclassification occurs in the real world 

data with increase in the principal component number. PCA is only able to find a linear subspace and 

thus cannot deal properly with the data lying on non-linear manifolds.   

 
i . First two reduced dimensions 

Figure 3: Network Clustering via PCA dimensionality Reduction - II 
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 ii. Third and fourth reduced dimensions 

Figure 4: Network Clustering via PCA dimensionality Reduction - II 

 

 

 
 iii. Fifth and sixth reduced dimensions 

Figure 5: Network Clustering via PCA dimensionality Reduction – II 
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Isomap is used to reveal the structure of this dataset. The nearest neighbourhood factor K = 11 

provides the largest connected component. Figure 7 shows curve of residual variance as the number of 

Isomap dimensions is increased. Intrinsic dimensionality can be as low as 4 to get variance of 99%.  

 
Figure 6: Two-dimensional Isomap embedding (with neighbourhood graph) 

 

 
Figure 7: Residual variance as the number of Isomap dimensions is increased 

From figure 8, we observe that the biogrid samples formed compact clusters considerably, 

which indicates that those 211 features can be used to distinguish biogrid networks from other networks 

successfully. The shape of projection of social, political cosponsorship and political voting domains is 
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almost a straight line. This implies that the network data corresponds to a one dimensional manifold in 

high dimensional space. 

 

 
i. First two reduced Dimensions 

Figure 8: Network Clustering via Isomap dimensionality Reduction - II 

 

 

 
ii. Third and fourth reduced dimensions 

Figure 9: Network Clustering via Isomap dimensionality Reduction - II 
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iii. Fifth and sixth reduced dimensions 

Figure 10: Network Clustering via Isomap dimensionality Reduction – II 

The correlation coefficients are computed for reduced dimensions with the feature-space design 

matrix to find the network-feature that the reduced dimension is capturing. The first and second 

maximally correlated values (r1, r2 respectively) are given in the table 1. 

 

Dime

nsion 

r1 Feature-1 r2 Feature-2 

1 -0.9266 degreeCentrality_harmmean -0.9144 degreeCentrality_Geomean 

2 0.7354 fraction2core_snowball100 0.7246 numNodes_snowball100 

3 0.7604 evectorCentrality_fit_lognormal 0.7601 evectorCentrality_fit_wbl 

4 0.6121 assortativeCoefficient_snowball100 0.5624 assortativeCoefficient 

5 0.5025 clusteringCoeff_var 0.4973 clusteringCoeff_iqr 

Table 1: Maximally correlated features for each reduced dimension in Isomap 

The first dimension was found to have a very high correlation with the measurement of 

variability in node centrality. The second dimension is maximally correlated with the fraction of the 

network's nodes covered by the 2-core, and also with number of the nodes in the sampled network. 

Thus the two basic measures of network size and node centrality spread capture most of the variability 

in the network domains. The third dimension is found to have a maximum correlation with the model 

into which centrality fits, and the fourth dimension is correlated with the complexity of the network. 

The fifth dimension is highly correlated with the dispersion of clustering coefficient. This dimension 

gives a rough idea about how denser the network cluster is. 
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To obtain the proper classification of the protein interaction data from the real world database, 

supervised learning method is employed. A category label is explicitly provided for the networks in the 

design matrix, and the sum of the distances for these patterns is reduced. All the protein interaction and 

biogrid datasets that come under protein-protein interaction data are labeled as 'bio' and all the other 

domains are labeled as 'non bio'. The s-Isomap is computed. K=15 provides the largest connected 

component. 

 

 

 
Figure 11: Two-dimensional S-Isomap embedding (with neighbourhood graph) 

 

 
Figure 12: Residual variance as the number of S-Isomap dimensions is increased 
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The first two dimensions alone capture 98% of the variance. Residuality in the variance is seen 

to be improved to a little extent with third dimension, and the further increment in the dimensions has 

shown no considerable increase in the variance. 

 

 
i. First two reduced dimensions 

Figure 13: Network Clustering via S-Isomap dimensionality reduction 

 

 
ii. Third and fourth reduced dimensions 

Figure 14: Network Clustering via S-Isomap dimensionality reduction 
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iii. Fifth and sixth reduced dimensions 

Figure 15: Network Clustering via S-Isomap dimensionality reduction 

 

The correlation coefficients are computed as in isomap. Table 2 shows the first and second 

maximally correlated coefficients and the respective feature values. 

 

Dime

nsion 

r1 Feature-1 r2 Feature-2 

1 -0.9230 ClusteringCoeff_min -0.8928 ClusteringCoeff_max 

2 0.7515 fraction2core -0.7302 eVectorCentrality_posrms 

3 -0.5030 betweenCentrality_range -0.5030 betweenCentrality_max 

4 -0.5725 eVectorCentrality_trimean10 -0.5588 eVectorCentrality_mean 

5 -0.4150 AssortativeCoefficient_snowball100 -0.4084 CyclomaticNumber 

Table 2: Maximally correlated features for each reduced dimension in S-Isomap 

The first reduced dimension is strongly correlated with the dispersion of the clustering 

coefficient. The second dimension is correlated with the fraction of networks nodes covered by the 2-

core. Thus the first two dimensions indicate density of loops in the network and node degree 

respectively. The third dimension is highly correlated with the dispersion of the node centrality, and the 

fourth dimension is correlated with the importance of the node in the network. The above two 

dimensions give a measure of variability in the node centrality. The fifth dimension is correlated with 

the complexity measure of the network, and is also substantially correlated with the connectivity of the 

graph.  
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Chapter 5: Discussion 
 

 

The visualization provides relative positions of different categories in the space, which increases 

our understanding of the intrinsic structure and distribution of real world data in different categories. 

From the figure 3, it is observed that biogrid and protein interaction samples overlap which is expected 

since both of them belong to same class. The principal components 3 and 4 also form a compact cluster 

of biogrid and protein interaction data, but misclassification may occur if classification is based on 

these features as political cosponsorship and political voting samples also overlap the protein data 

beyond a tolerable limit. As dimensionality is further increased, samples get mixed up in the space. 

From figure 8, it is seen that distance between biogrid and protein interaction samples considerably 

decreased by including non-linearity through Isomapping. As opposed to the previous work, the second 

dimension is found to be the spread of the centrality, rather than network density. Further increase in 

dimension in the non-linear manifolds misclassified the networks. When supervised learning is 

employed, the projection of samples from each category form their compact clusters. It means that 

differences in feature values correspond with the protein-protein interaction database. With increase in 

the dimensionality, residual variance increased indicating that the second dimension is the bottle neck 

for classification. 
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Chapter 6: Conclusion 
 

 

I applied a wide-ranging set of diagnostics to protein interaction networks, and studied the most 

identified group of network metrics that leads to interesting aspects of network structure. The resulting 

functional outcome directs our attention to identify the signatures of complex network architecture. One 

limitation is that it scales poorly with the network size (for larger genomes like humans). Using 

sampling methods like snowball sampling helps in this regard. The comprehensive ‘look-up’ elucidated 

with the present set of protein-protein interaction networks may serve as a basis for further 

development in gene regulatory networks which is the main goal of this project.
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Appendix A: List of Network Features 
 

Here all of the diagnostics and summary statistics that were utilized in this report are listed. For 

each diagnostic, the short name given is that generally used to refer to it in the main text. For summary 

statistics, short names use a subscript to denote the summary (e.g., the maximum of the degree 

distribution is degreemax); shorthand summary names used in such subscripts (where applicable) are 

given in parentheses. The code to evaluate all these network diagnostics is obtained from Dr. Sumeet 

Agarwal, who has used it for his D. Phil thesis. 
 

Short name Full name 

Connectivity 

degree 

avgNearestNeighbourDegree 

asortativeCoefficient 

density 

fractionArticulation 

erosionTime 

dilationTime 

fraction2core 

fraction3core 

fraction4core 

richClub 

richClubNormalised 

 

Degree distribution 

Average of degrees of adjacent nodes 

Assortative coefficient 

Density 

Fraction of articulation nodes 

Erosion Time 

Dilation Time 

Fraction of vertices comprising 2-core 

Fraction of vertices comprising 3-core 

Fraction of vertices comprising 4-core 

Rich-club index 

Normalised rich-club index 

Centrality 

degreeCentrality 

degreeCentralityGroup 

betweenCentrality 

betweenCentralityGroup 

closeness 

closenessGroup 

evectorCentrality 

subgraphCentrality 

subgraphCentralisation 

bipartivity 

infoCentrality 

infoCentraliltyGroup 

vulnerability 

 

Degree centrality 

Group degree centrality 

Betweenness centrality 

Group betweenness centrality 

Closeness 

Group closeness 

Eigenvector centrality 

Subgraph centrality 

Subgraph centralization 

Estrada’s measure of bipartivity 

Information centrality 

Group information centrality 

Vulnerability 

Community 

modularity 

modularityFast 

greedyPartitionEntropy 

spectral 

greedyComm 

 

Spectrally optimized modularity 

Louvain optimized modularity 

Entropy of Louvain partition 

Newman’s spectral community detection 

Louvain community detection 
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Short name Full name 

pottsModel 

infomap 

Potts model community detection 

Infomap community detection 

Clustering 

transitivity 

clusteringCoeff 

clustSofferGlobalMean 

clustSofferLocalMean 

 

Transitivity 

Clustering coefficient 

Global mean Soffer clustering coefficient 

Local mean Soffer clustering coefficient 

Distance 

diameter 

radius 

szegedIndex 

cyclicCoefficient 

geodesicDistanceMean 

geodesicDistanceVar 

harmonicMeanGeoDist 

 

Graph diameter 

Graph radius 

Szeged index 

Cyclic coefficient 

Mean geodesic distance 

Variance of geodesic distance 

Harmonic mean geodesic distance 

Complexity 

cyclomaticNumber 

edgeFraction 

connectivity 

logNumSpanningTrees 

graphIndexComplexity 

mediumArticulation 

efficiency 

efficiencyComplexity 

offDiagonalComplexity 

chromaticNumber 

tspl 

tsplga 

tsplsa 

 

Cyclomatic number 

Edge fraction 

Connectivity 

log(number of spanning trees) 

Graph index complexity 

Medium articulation 

Efficiency 

Efficiency complexity 

Off-diagonal complexity 

Chromatic number 

TSP length from cross-entropy algorithm 

TSP length from genetic algorithm 

TSP length from simulated annealing 

Spectral 

largestEigenvalue 

spectralScalingDeviations 

algebraicConnectivity 

algebraicConnectivityVector 

fiedlerValue 

 

Largest eigenvalue 

Deviations from ‘perfect spectral scaling’ 

Algebraic connectivity 

Algebrain connectivity vector 

Fiedler value 

Statistical physics 

energy 

entropy 

 

energy 

entropy 

Motif 

fraction3motifs 

fraction4motifs 

 

Fraction of 3-motifs 

Fraction of 4-motifs 

Size 

numNodes 

numEdges 

totStrength 

 

Number of nodes 

Number of edges 

Sum of all link weights 

Model  
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Short name Full name 

ergm_edges 

fitPowerLawAlpha 

fitPowerLawP 

Exponential random graph model for edges 

Fitted power law exponent for degrees 

p-value of power law fit to degrees 

Table 3: List of network diagnostics 

 

Central tendency Dispersion Shape Model fit log-

likelihoods 

Mean 

Geometric mean (geomean) 

Harmonic mean (harmmean) 

Mean excluding 10% 

outliers(trimmean10) 

RMS of positive values 

(posrms) 

RMS of negative values 

(negrms) 

Minimum (min) 

Maximum (max) 

Variance (var) 

Range 

Inter-quartile range (iqr) 

Mean absolute deviation 

(meanad) 

Median absolute deviation 

(medad) 

Kurtosis 

Skewness 

Normal 

Log-normal 

Exponential 

Extreme value 

Gamma 

Weibull (wbl) 

Table 4: List of distribution summary statistics 
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Appendix B: Set of 192-Real World Networks 
 

The set of 192 real world networks used in this project was obtained from Dr. Sumeet Agarwal, 

who has used it for his D. Phil thesis. 

Name Category 

Human brain cortex: participant A1  

Human brain cortex: participant A2  

Human brain cortex: participant B  

Human brain cortex: participant D  

Human brain cortex: participant E  

Human brain cortex: participant C  

Cat brain: cortical  

Cat brain: cortical/thalmic  

Macaque brain: cortical  

Macaque brain: visual/sensory cortex Brain  

Macaque brain: visual cortex 1  

Macaque brain: visual cortex 2 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Co-authorship: astrophysics  

Co-authorship: comp. geometry  

Co-authorship: condensed matter  

Co-authorship: Erdos  

Co-authorship: high energy theory  

Co-authorship: network science  

Hollywood film music  

Jazz collaboration 

Collaboration 

Collaboration 

Collaboration 

Collaboration 

Collaboration 

Collaboration 

Collaboration 

Collaboration 

Facebook: Caltech  

Facebook: Cornell 

Facebook: Dartmouth 

Facebook: Georgetown 

Facebook: Harvard 

Facebook: Indiana  

Facebook: MIT  

Facebook: NYU 

Facebook: Oklahoma 

Facebook: Texas80  

Facebook: Trinity 

Facebook: UCSD  

Facebook: UNC 

Facebook: USF 

Facebook: Wesleyan 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

Facebook 

NYSE: 1980-1999 

NYSE: 1980-1983  

Financial 

Financial 
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Name Category 

NYSE: 1984-1987 

NYSE: 1988-1991  

NYSE: 1992-1995 

NYSE: 1996-1999 

Financial 

Financial 

Financial 

Financial 

Phanerochaete velutina control11-2  

Phanerochaete velutina control11-5  

Phanerochaete velutina control11-8  

Phanerochaete velutina control11-11 

Phanerochaete velutina control17-2  

Phanerochaete velutina control17-5  

Phanerochaete velutina control17-8  

Phanerochaete velutina control17-11 

Phanerochaete velutina control4-2  

Phanerochaete velutina control4-5 

Phanerochaete velutina control4-8 

Phanerochaete velutina control4-11 

Fungal 

Fungal 

Fungal 

Fungal 

Fungal 

Fungal 

Fungal 

Fungal 

Fungal 

Fungal 

Fungal 

Fungal 

Online Dictionary of Computing 

Online Dictionary Of Information Science 

Reuters 9/11 news  

Roget's thesaurus 

Word adjacency: English 

Word adjacency: French 

Word adjacency: Japanese 

Word adjacency: Spanish 

Language 

Language 

Language 

Language 

Language 

Language 

Language 

Language 

Metabolic: CE  

Metabolic: CL  

Metabolic: CQ 

Metabolic: CT 

Metabolic: DR  

Metabolic: HI 

Metabolic: NM  

Metabolic: OS  

Metabolic: PA  

Metabolic: PG  

Metabolic: PH  

Metabolic: PN 

Metabolic: SC 

Metabolic: ST  

Metabolic: TP 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Metabolic 

Bill cosponsorship: U.S. House 96  

Bill cosponsorship: U.S. House 97  

Bill cosponsorship: U.S. House 98  

Bill cosponsorship: U.S. House 99  

Bill cosponsorship: U.S. House 100 

Bill cosponsorship: U.S. House 101 

Bill cosponsorship: U.S. House 102 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 
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Name Category 

Bill cosponsorship: U.S. House 103 

Bill cosponsorship: U.S. House 104 

Bill cosponsorship: U.S. House 105 

Bill cosponsorship: U.S. House 106 

Bill cosponsorship: U.S. House 107  

Bill cosponsorship: U.S. House 108 

Bill cosponsorship: U.S. Senate 96  

Bill cosponsorship: U.S. Senate 97 

Bill cosponsorship: U.S. Senate 98 

Bill cosponsorship: U.S. Senate 99 

Bill cosponsorship: U.S. Senate 100  

Bill cosponsorship: U.S. Senate 101 

Bill cosponsorship: U.S. Senate 102  

Bill cosponsorship: U.S. Senate 103  

Bill cosponsorship: U.S. Senate 104 

Bill cosponsorship: U.S. Senate 105 

Bill cosponsorship: U.S. Senate 106 

Bill cosponsorship: U.S. Senate 107  

Bill cosponsorship: U.S. Senate 108 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Political: cosponsorship 

Committees: U.S. House 101, comms. 

Committees: U.S. House 102, comms. 

Committees: U.S. House 103, comms. 

Committees: U.S. House 104, comms. 

Committees: U.S. House 105, comms.  

Committees: U.S. House 106, comms. 

Committees: U.S. House 107, comms. 

Committees: U.S. House 108, comms.  

Committees: U.S. House 101, Reps. 

Committees: U.S. House 102, Reps. 

Committees: U.S. House 103, Reps.  

Committees: U.S. House 104, Reps. 

Committees: U.S. House 105, Reps. 

Committees: U.S. House 106, Reps. 

Committees: U.S. House 107, Reps. 

Committees: U.S. House 108, Reps. 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Political: committee 

Roll call: U.S. House 101  

Roll call: U.S. House 102  

Roll call: U.S. House 103  

Roll call: U.S. House 104  

Roll call: U.S. House 105 

Roll call: U.S. House 106  

Roll call: U.S. House 107  

Roll call: U.S. House 108  

Roll call: U.S. Senate 101  

Roll call: U.S. Senate 102 

Roll call: U.S. Senate 103 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 
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Name Category 

Roll call: U.S. Senate 104 

Roll call: U.S. Senate 105  

Roll call: U.S. Senate 106  

Roll call: U.S. Senate 107  

Roll call: U.S. Senate 108  

U.K. House of Commons voting: 1992-1997  

U.K. House of Commons voting: 1997-2001 

U.K. House of Commons voting: 2001-2005  

U.N. resolutions 59  

U.N. resolutions 60 

U.N. resolutions 61  

U.N. resolutions 62 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Political: voting 

Biogrid: A. thaliana 

Biogrid: C. elegans 

Biogrid: D. melanogaster 

Biogrid: H. sapiens 

Biogrid: M. musculus  

Biogrid: R. norvegicus 

Biogrid: S. cerevisiae  

Biogrid: S. pombe 

DIP: H. pylori  

DIP: H. sapiens  

DIP: M. musculus 

DIP: C. elegans  

Human: CCSB 

Human: OPHID  

Protein: serine protease inhibitor (1EAW)  

Protein: immunoglobulin (1A4J)  

Protein: oxidoreductase (1AOR)  

STRING: C. elegans  

STRING: S. cerevisiae  

Yeast: Oxford Statistics  

Yeast: DIP 

Yeast: DIPC 

Yeast: FHC 

Yeast: FYI 

Yeast: PCA 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Corporate directors in Scotland (1904-1905) 

Corporate ownership (EVA) 

Dolphins 

Family planning in Korea 

Unionization in a hi-tech firm 

Communication within a sawmill on strike 

Leadership course 

Les Miserables 

Marvel comics  

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 
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Name Category 

Mexican political elite 

Pretty-good-privacy algorithm users 

Prisoners 

Bernard and Killworth fraternity: observed 

Bernard and Killworth fraternity: recalled 

Bernard and Killworth HAM radio: observed  

Bernard and Killworth HAM radio: recalled 

Bernard and Killworth office: observed  

Bernard and Killworth office: recalled  

Bernard and Killworth technical: observed 

Bernard and Killworth technical: recalled 

Kapferer tailor shop: instrumental (t1) 

Kapferer tailor shop: instrumental (t2) 

Kapferer tailor shop: associational (t1) 

Kapferer tailor shop: associational (t2) 

University Rovira i Virgili (Tarragona) e-mail 

Zachary karate club 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Social 

Table 5: List of 192-real world networks 

 



34 
 

Appendix C: Set of 42-Biogrid Networks 
 

The set of 42 protein interaction networks used in this project was obtained from open source [6]. 

Name Category 

Anopheles_gambiae 

Arabidopsis_thaliana 

Aspergillus_nidulans 

Bacillus_subtilis 

Bos_taurus 

Caenorhabditis_elegans 

Candida_albicans_SC5314 

Canis_familiaris 

Cavia_porcellus 

Chlamydomonas_reinhardtii 

Cricetulus_griseus 

Danio_rerio 

Dictyostelium_discoideum_AX4 

Drosophila_melanogaster 

Equus_caballus 

Escherichia_coli 

Gallus_gallus 

Hepatitus_C_Virus 

Homo_sapiens 

Human_Herpesvirus_1 

Human_Herpesvirus_2 

Human_Herpesvirus_3 

Human_Herpesvirus_4 

Human_Herpesvirus_5 

Human_Herpesvirus_6 

Human_Herpesvirus_8 

Human_Immunodeficiency_Virus_1 

Human_Immunodeficiency_Virus_2 

Leishmania_major 

Macaca_mulatta 

Mus_musculus 

Neurospora_crassa 

Oryctolagus_cuniculus 

Oryza_sativa 

Pan_troglodytes 

Plasmodium_falciparum_3D7 

Rattus_norvegicus 

Ricinus_communis 

Saccharomyces_cerevisiae 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 
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Name Category 

Schizosaccharomyces_pombe 

Simian-Human_Immunodeficiency_Virus 

Sus_scrofa 

Ustilago_maydis 

Xenopus_laevis 

Zea_mays 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Protein interaction 

Table 6: List of 42-biogrid networks 


