

Linear Models for Classification

Sumeet Agarwal, EEL709

(Most figures from Bishop, PRML)

Approaches to classification

● Discriminant function: Directly assigns each
data point x to a particular class Ci

● Model the conditional class distribution p(C i|x):
allows separation of inference and decision

● Generative approach: model class likelihoods,
p(x|Ci), and priors, p(Ci); use Bayes' theorem to
get posteriors:

p(Ci|x) ~ p(x|Ci)p(Ci)

Linear discriminant functions

y(x) = wTx + w
0

Multiple Classes
Problem of ambiguous regions

Multiple Classes

Consider a single K-class discriminant, with K linear functions:
y

k
(x) = w

k

Tx + w
k0

And assign x to class C
k
 if y

k
(x) > y

j
(x) for all j ≠ k

Implies singly connected and convex decision regions:

Least squares for classification
Too sensitive to outliers:

Least squares for classification

Problematic due to evidently non-Gaussian distribution of target
values:

Fisher's linear discriminant

Linear classification model is like 1-D projection of data: y = wTx.
Thus we need to find a decision threshold along this 1-D
projection (line). Simplest measure is separation of the class
means: m

2
 – m

1
 = wT(m

2
 – m

1
). If classes have nondiagonal

covariances, then a better idea is to use the Fisher criterion:

J(w) = (m
2
 – m

1
)2 / (s

1

2 + s
2

2)

Where s
1

2

denotes the variance of class 1 in the 1-D projection.

Maximising J() attempts to give a large separation between
projected class means, but also a small variance within each

class.

Fisher's linear discriminant

Line joining class means Fisher discriminant

The Perceptron

Φ
1
(x)

Φ
2
(x)

Φ
3
(x)

Φ
4
(x)

w
1

w
2

w
3

w
4

f()
Activation
function

wTΦ(x)0

-1

1

f(wTΦ(x))

A non-linear transformation in the form of a step function
is applied to the weighted sum of the input features. This
is inspired by the way neurons appear to function,
mimicking the action potential.

The perceptron criterion

● We'd like a weight vector w such that wTΦ(xi) > 0 for xi C∈ 1

(say, ti=1) and wTΦ(xi) < 0 for xi C∈ 2 (ti=-1)

● Thus, we want wTΦ(xi)ti > 0 i; those data points for which ∀
this is not true will be misclassified

● The perceptron criterion tries to minimise the 'magnitude' of
misclassification, i.e., it tries to minimise -wTΦ(xi)ti for all
misclassified points (the set of which is denoted by M):

EP(w) = -∑i∈M wTΦ(xi)ti

● Why not just count the number of misclassified points?
Because this is a piecewise constant function of w, and thus
the gradient is zero at most places, making optimisation hard

Learning by gradient descent

w(τ+1) = w(τ) – η E∇ P(w)

= w(τ) + ηΦ(xi)ti

(if xi is misclassified)

We can show that after this update, the error due to xi will be
reduced:

-w(τ+1)TΦ(xi)ti = -w(τ)TΦ(xi)ti – (Φ(xi)ti)TΦ(xi)ti

< -w(τ)TΦ(xi)ti

(having set η=1, which can be done without loss of generality)

Perceptron convergence

Perceptron
convergence
theorem
guarantees
exact solution in
finite steps for
linearly
separable data;
but no
convergence for
nonseparable
data

Gaussian Discriminant Analysis

● Generative approach, with class-conditional densities
(likelihoods) modelled as Gaussians

For the case of two classes, we have:

 Logistic sigmoid

Gaussian Discriminant Analysis

● In the Gaussian case, we get

The assumption
of equal

covariance
matrices leads

to linear
decision

boundaries

Gaussian Discriminant Analysis

Allowing for unequal covariance matrices for different
classes leads to quadratic decision boundaries

Parameter estimation for GDA

Maximum Likelihood Estimators

Likelihood:
(assuming equal covariance matrices)

Logistic Regression

● An example of a probabilistic discriminative model

● Rather than learning P(x|Ci) and P(Ci), attempts to directly
learn P(Ci|x)

● Advantages: fewer parameters, better if assumptions in
class-conditional density formulation are inaccurate

● We have seen how the class posterior for a two-class setting
can be written as a logistic sigmoid acting on a linear function
of the feature vector Φ:

● This model is called logistic regression, even though it is

a model for classification, not regression!

Parameter learning

● If we let

then the likelihood function is

and we can define a corresponding error, known as
cross-entropy:

Parameter learning
● The derivative of the sigmoid function is given by:

● Using this, we can obtain the gradient of the error function
with respect to w:

● Thus the contribution to the gradient from point n is given by
the 'error' between model prediction and actual class label (yn
– tn) times the basis function vector for that point, Φn

● Could use this for sequential learning by gradient descent,
exactly as for least-squares linear regression

Nonlinear basis functions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

