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Approaches to classification

● Discriminant function: Directly assigns each 
data point x to a particular class Ci

● Model the conditional class distribution p(C i|x): 
allows separation of inference and decision

● Generative approach: model class likelihoods, 
p(x|Ci), and priors, p(Ci); use Bayes' theorem to 
get posteriors:

p(Ci|x) ~ p(x|Ci)p(Ci)



  

Linear discriminant functions

y(x) = wTx + w
0



  

Multiple Classes
Problem of ambiguous regions



  

Multiple Classes

Consider a single K-class discriminant, with K linear functions:
y

k
(x) = w

k

Tx + w
k0

And assign x to class C
k
 if y

k
(x) > y

j
(x) for all j ≠ k

Implies singly connected and convex decision regions:



  

Least squares for classification
Too sensitive to outliers:



  

Least squares for classification

Problematic due to evidently non-Gaussian distribution of target 
values:



  

Fisher's linear discriminant

Linear classification model is like 1-D projection of data: y = wTx.
Thus we need to find a decision threshold along this 1-D 
projection (line). Simplest measure is separation of the class 
means: m
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covariances, then a better idea is to use the Fisher criterion:
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2

 
denotes the variance of class 1 in the 1-D projection.

Maximising J() attempts to give a large separation between 
projected class means, but also a small variance within each 

class.



  

Fisher's linear discriminant

Line joining class means Fisher discriminant 



  

The Perceptron
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A non-linear transformation in the form of a step function 
is applied to the weighted sum of the input features. This 
is inspired by the way neurons appear to function, 
mimicking the action potential. 



  

The perceptron criterion

● We'd like a weight vector w such that wTΦ(xi) > 0 for xi  C∈ 1 

(say, ti=1) and wTΦ(xi) < 0 for xi  C∈ 2 (ti=-1)

● Thus, we want wTΦ(xi)ti > 0  i; those data points for which ∀
this is not true will be misclassified

● The perceptron criterion tries to minimise the 'magnitude' of 
misclassification, i.e., it tries to minimise -wTΦ(xi)ti for all 
misclassified points (the set of which is denoted by M):

EP(w) = -∑i∈M wTΦ(xi)ti

● Why not just count the number of misclassified points? 
Because this is a piecewise constant function of w, and thus 
the gradient is zero at most places, making optimisation hard 



  

Learning by gradient descent

w(τ+1) = w(τ) – η E∇ P(w)

= w(τ) + ηΦ(xi)ti

(if xi is misclassified)

We can show that after this update, the error due to xi will be 
reduced:

-w(τ+1)TΦ(xi)ti = -w(τ)TΦ(xi)ti – (Φ(xi)ti)TΦ(xi)ti 

< -w(τ)TΦ(xi)ti

(having set η=1, which can be done without loss of generality)



  

Perceptron convergence

Perceptron 
convergence 
theorem 
guarantees 
exact solution in 
finite steps for 
linearly 
separable data; 
but no 
convergence for 
nonseparable 
data



  

Gaussian Discriminant Analysis

● Generative approach, with class-conditional densities 
(likelihoods) modelled as Gaussians

For the case of two classes, we have:

 Logistic sigmoid



  

Gaussian Discriminant Analysis

● In the Gaussian case, we get

The assumption 
of equal 

covariance 
matrices leads 

to linear 
decision 

boundaries



  

Gaussian Discriminant Analysis

Allowing for unequal covariance matrices for different 
classes leads to quadratic decision boundaries



  

Parameter estimation for GDA

Maximum Likelihood Estimators

Likelihood:
(assuming equal covariance matrices)



  

Logistic Regression

● An example of a probabilistic discriminative model

● Rather than learning P(x|Ci) and P(Ci), attempts to directly 
learn P(Ci|x)

● Advantages: fewer parameters, better if assumptions in 
class-conditional density formulation are inaccurate

● We have seen how the class posterior for a two-class setting 
can be written as a logistic sigmoid acting on a linear function 
of the feature vector Φ:

● This model is called logistic regression, even though it is

a model for classification, not regression!



  

Parameter learning

● If we let

then the likelihood function is

and we can define a corresponding error, known as 
cross-entropy: 



  

Parameter learning
● The derivative of the sigmoid function is given by:

● Using this, we can obtain the gradient of the error function 
with respect to w:

● Thus the contribution to the gradient from point n is given by 
the 'error' between model prediction and actual class label (yn 
– tn) times the basis function vector for that point, Φn

● Could use this for sequential learning by gradient descent, 
exactly as for least-squares linear regression



  

Nonlinear basis functions
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