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1. The images below depict the first two principal components obtained from running PCA on
a set of 100×100 pixel images of a handwritten character from the Devanagari script. White
pixels denote positive weights, black pixels denote negative weights, and gray pixels denote
zero weights.

(a) λ1 = 5.43× 106 (b) λ2 = 4.66× 106

(a) The first component appears to show sharper horizontal white lines, whilst the second
has sharper vertical or near-vertical white lines. What does this tell you about the respective
kinds of variation they’re capturing? [1]

(b) The corresponding eigenvalues are also given to you. The sum of all 10,000 eigenval-
ues from the data covariance matrix S was 3.04× 107. What is the percentage variance not
captured by the two depicted components? [1]

(c) Given the kinds of variation that the first two principal components appear to repre-
sent, do you think they’re fully capturing that variability? Why or why not? What kind of
method would you suggest to gauge the intrinsic dimensionality of the data? [2]

2. Consider the following generative model. I have K unbalanced 6-sided dice, where the prob-
ability of getting the number i with the kth die is µki. Also, I have an associated prior
probability for each die, πk, such that πk > 0 and

K∑
k=1

πk = 1.

Now, a data point x ∈ {1, 2, 3, 4, 5, 6} is generated by picking a die at random from the prior
distribution, tossing it, and setting x to the value turned up.
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(a) What is the probability distribution for x? What kind of model is this? [2]

(b) Obtain expressions for the mean and variance of x, in terms of the given parameters.[2]

(c) Now introduce an appropriate latent variable for this model (please make sure to clearly
specify your use of notation). What is the joint distribution over the latent and observed
variables? [1]

(d) Suppose you have observed a data set X = {x1, x2..., xN}. Write down the complete-data
log likelihood, including your assumed latent variable. [1]

(e) Work out the E and M steps for the EM algorithm to estimate the values of the model
parameters, {µki} and {πk}, that maximise the expected complete-data log likelihood. You
should clearly show what updates are to be done in the two steps, and derive each of these.
How would you interpret your results in words? [5]

3. We have seen in class that a soft-margin separating hyperplane of the form wTx+ b = 0 can
be obtained via optimising the following Lagrangian:

L(w, b, ξ,µ,λ) =
1

2
wTw + C

N∑
i=1

ξi +

N∑
i=1

µi[1− ξi − yi(wTxi + b)]−
N∑
i=1

λiξi,

where {(x1, y1); (x2, y2); ...; (xN , yN )} denote the observed data points, with yi ∈ {−1, 1};
ξ = {ξi, ξ2, ..., ξN} are the slack variables, and µ = {µ1, µ2, ..., µN} and λ = {λ1, λ2, ..., λN}
are the Lagrange multipliers.

(a) By deriving and substituting in the values of the hyperplane parameters and the slack
variables that minimise L, obtain the dual of this Lagrangian, as a function of just the mul-
tipliers µ. [3]

(b) Also obtain the constraints on µ for this dual. How do these differ from the hard-
margin case? [1]

(c) Let f : RD 7→ R be a real-valued function, where D is the dimensionality of the xi.
Is the function K(x1,x2) = f(x1)2 + f(x2)2 guaranteed to be a valid kernel? Prove either
way. [2]

4. Suppose I am using a neural network for regression; so a given data point x is to be mapped
to a target value t ∈ R. I have a single output,

y =

M∑
j=1

w
(2)
j zj ,

where z1, z2, ..., zM denote the outputs of the hidden units, which are functions of x:

zj = h

(
D∑
i=1

w
(1)
ji xi

)
.

Here h() is a non-linear mapping, w
(1)
ji is the weight of the link from the ith input to the jth

hidden unit, and w
(2)
j is the weight of the link from the jth hidden unit to the output y. Let

the interpretation of y be that p(t|x) ∼ N (y, β−1), where we are assuming Gaussian noise
with precision β. Write down the network error function (negative log likelihood) for a single
data point (x, t). Calculate δ, the gradient of the error function with respect to y. Interpret
this in words. Show (by deriving the corresponding expressions) how this quantity is used in
the computation of the error gradient with respect to both the layers of weights. [4]
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