
EEL709: Re-Major Test

July 8, 2013

Maximum Marks: 62

Instructions: All working must be clearly shown, with no missing or assumed steps. Whenever
words like ‘obtain’, ‘derive’, or ‘compute’ occur, you should make explicit your entire process for
doing so. Your answers should be self-sufficient, not requiring reference to any other materials.

1. (a) It is sometimes said that the Bayesian view of probability is subjective, whereas the frequentist view
is objective. Assess this statement; to what extent do you agree with it? Can you give an example of a
pair of probabilistic statements to illustrate the difference in question? [4]

(b) A coin is tossed 5 times, and 5 heads are observed. Would either a frequentist or a Bayesian in-
fer that the coin has heads on both sides? Why or why not? [2]

2. Here we explore a regression model where the noise variance is a function of the input (variance increases
as a function of input). Specifically

y = wx+ ε,

where the noise ε is normally distributed with mean 0 and standard deviation σx2. The value of σ
is assumed known and the input x is restricted to the interval [1, 4]. We can write the model more
compactly as y ∼ N (wx, σ2x4).

(a) How is the ratio y/x distributed for a fixed (constant) x? [2]

(b) Suppose we now have N training points and targets {(x1, y1), (x2, y2), ..., (xN , yN )}, where each xn is
chosen at random from [1, 4] and the corresponding yn is subsequently sampled from yn ∼ N (wxn, σ

2x4n).
Obtain the maximum likelihood estimate for w as a function of the training data. [3]

(c) What are the bias (i.e., difference between expected and actual value) and variance of the estima-
tor for w just obtained, as a function of N and σ2 for fixed inputs x1, ..., xN? Can you suggest a method
for reducing the variance, even if it involves increasing the bias? [5]

(d) Now supposing I put a prior distribution on w: w ∼ N (0, α−1), for some fixed α. Obtain the
posterior distribution for w, given the same data set as above; also compute the maximum a posteriori
estimate. [3]

(e) What are the bias and variance of this estimator? What do you infer from this about the role of
α in controlling the bias-variance tradeoff? [5]

(Some potentially useful relations: if z ∼ N (µ, σ2), then az ∼ N (aµ, σ2a2) for fixed a. If z1 ∼ N (µ1, σ
2
1)

and z2 ∼ N (µ2, σ
2
2) and they are independent, then V ar(z1 + z2) = σ2

1 + σ2
2 .)

3. Here we will look at methods for selecting input features for a logistic regression model

P (y = 1|x,w) = σ(w0 + w1x1 + w2x2).

The available training examples are very simple, involving only binary valued inputs:
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Number of copies x1 x2 y
5 1 1 0
10 0 1 1
10 1 0 1
10 0 0 0

So, for example, there are 5 copies of x = (1, 1)T in the training set, all labeled y = 0. The correct label is
actually a deterministic function of the two features: y = 0 if x1 = x2 and 1 otherwise. We define greedy
selection in this context as follows: we start with no features (train only with w0) and successively try
to add new features provided that each addition strictly improves the training log-likelihood. We use no
other stopping criterion.

(a) Could greedy selection add either x1 or x2 in this case? [2]

(b) What is the classification error on the training examples that we could achieve by including both
x1 and x2 in the logistic regression model? [2]

(c) Suppose we define another possible feature to include, a function of x1 and x2. Which of the fol-
lowing features, if any, would permit us to correctly classify all the training examples when used in
combination with x1 and x2 in the logistic regression model: x1 − x2, x1x2, x22? [3]

(d) Could the greedy selection method choose this feature as the first feature to add when the avail-
able features are x1, x2 and your choice of the new feature? [2]

4. We have seen in class that a soft-margin separating hyperplane of the form wTx + b = 0 can be obtained
via optimising the following Lagrangian:

L(w, b, ξ,µ,λ) =
1

2
wTw + C

N∑
i=1

ξi +

N∑
i=1

µi[1− ξi − yi(wTxi + b)]−
N∑
i=1

λiξi,

where {(x1, y1); (x2, y2); ...; (xN , yN )} denote the observed data points, with yi ∈ {−1, 1}; ξ = {ξi, ξ2, ..., ξN}
are the slack variables, and µ = {µ1, µ2, ..., µN} and λ = {λ1, λ2, ..., λN} are the Lagrange multipliers.

(a) By deriving and substituting in the values of the hyperplane parameters and the slack variables that
minimise L, obtain the dual of this Lagrangian, as a function of just the multipliers µ. [5]

(b) Also obtain the constraints on µ for the dual. How do they differ from the hard-margin case? [2]

(c) Let f : RD 7→ R be a real-valued function, where D is the dimensionality of the xi. Is the func-
tion K(x1,x2) = f(x1)2 + f(x2)2 guaranteed to be a valid kernel? Prove either way. [2]

5. Consider a simple example, where a burglar alarm at my house (A) can be set off by a burglary (B), or
an earthquake (E), or a hurricane (H). I have two neighbours, John (J) and Mary (M), either of whom
could call me in case the alarm goes off.

(a) Draw a Bayesian network to represent the causal relationships between these six binary random vari-
ables. [2]

(b) Write down the factorisation of the full joint distribution represented by your network. Also specify
at least three of the conditional independencies implied by this factorisation. [2]

(c) Give an instance in this network of the explaining away property, i.e., when a particular variable
is observed then another pair of variables which were previously independent, become conditionally de-
pendent. [1]

(d) Show that if our model is such that the alarm always (deterministically) goes off whenever there
is an earthquake:

P (A = 1|B = 1, E = 1, H = 1) = P (A = 1|B = 0, E = 1, H = 1)

= P (A = 1|B = 1, E = 1, H = 0) = P (A = 1|B = 0, E = 1, H = 0) = 1,
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then P (B = 1|A = 1, E = 1) = P (B = 1) and P (H = 1|A = 1, E = 1) = P (H = 1), i.e., observing an
earthquake provides a full explanation for the alarm. [3]

6. Consider a setting where, over 3 successive days, when I get back home in the evening I observe the grass
on my lawn to be either wet or dry. Because I work far away from home, I could not observe what the
daytime weather was like on those 3 days, but I know that each day it was either sunny or rainy. Suppose
also that I know the following: if the weather was rainy, the probability of the grass being wet in the
evening is 0.9; if it was sunny, this probability is 0.2 (there is a sprinkler which the gardener switches on
sometimes); if it is rainy one day, then the probability of rain the next day is 0.3; if it is sunny, then the
probability of rain the next day is 0.1; and finally, the probability of it being rainy to start with is 0.1.

(a) Draw an appropriate Hidden Markov Model to represent this situation. Specify clearly your notation
for random variables, and the corresponding initialisation, emission, and transition probabilities. [2]

(b) Suppose my actual observations over the 3 days are {wet, dry, wet}. Based on this and my spec-
ified model, I wish to estimate the probability that the weather on the 3rd day was sunny. Use the
forward-backward algorithm to compute this. Referring to the notation used in class, which α value(s) do
you need to evaluate for this purpose? Show the steps of the recursion involved in doing so. [4]

7. Suppose we have a data set {(x1, t1); (x2, t2); ...; (xN , tN )}, where the xi ∈ Rn are n-dimensional feature
vectors, and the ti ∈ {C1, C2} are categorical class labels. Further suppose that we adopt the following
model for the class priors and the class-conditional likelihoods:

p(C1) = θ,

p(C2) = 1− θ,

p(x|Ck) =
1

(2π)n/2
1

|Σk|1/2
exp

{
−1

2
(x− µk)TΣ−1

k (x− µk)

}
. (k ∈ {1, 2})

Obtain an expression for the posterior distribution of the class label for a given data point x. What
kind of separation boundary does this specify between the classes? Under what conditions does this
boundary become linear? [6]
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