
Additional Text on the Methodology of CSHMM

Representing miRNA precursors

Like all RNA sequences, miRNA precursors are a series of the nucleotides consisting 

of adenine (A), cytosine (C), guanine (G) and uracil (U). Only three kinds of base-

pairings are  possible;  these are  A-U, C-G and G-U. The section of the secondary 

structure consisting largely of paired bases is known as the “stem”. The stem is not 

continuous;  there  are  portions  in  between  where  unpaired  nucleotides  bulge  out. 

These bulges may be either symmetric or asymmetric; in the latter case, there are one 

or more gaps on one side, denoted by dashes. At the end of the structure, there is a 

“loop”. This is essentially a large bulge, with no pairing. 

Regular  HMMs  cannot  be  used  to  generate  the  language  of  miRNA precursors: 

ignoring  the  loop,  this  language  is  that  of  palindromes  with  distant  interactions 

between nucleotides  and we need at  least  a  context-free  grammar  to  represent  it. 

However, the idea of CSHMMs has been recently proposed [1].  These are capable of 

representing such sequences. CSHMMs extend the idea of HMMs by introducing a 

memory, in the form of a stack or a queue, between certain states in the model. The 

original idea was to have a pairwise-emission state, which would put a copy of every 

symbol emitted by it into the associated memory, and a single corresponding context-

sensitive state, which would read a symbol from the memory, and based on it, would 

then decide what to emit and where to transit. To represent miRNA structures, we 

have extended this idea slightly. The CSHMM structure we propose has two context 

sensitive states which are linked to the same pairwise-emission state through a stack. 

This  is  because  we  need  separate  states  to  generate  the  stem and  the  symmetric 

bulges;  yet  both these states need information about what was emitted earlier (the 
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stem state, so that it  may emit the complementary nucleotides;  and the symmetric 

bulge state so that it may ensure the symmetry of the bulge). The structure of the 

CSHMM we propose  is  shown  in  Fig.  1.  Here  states  labeled  as  P are  pairwise-

emission states, those labeled as C are context-sensitive ones, and those labeled as S 

are regular HMM states.  The state sequence corresponding to the secondary structure 

shown is as follows:

      Start − (P1)5 (S1)(P1)21 (S2)27 (C11)16 (C12)2 (C11)8 − End

Identifying miRNA precursors

Parameter Estimation

A complete CSHMM consists not just of the structure, but also of probabilities for the 

symbols emitted and the probabilities of transition from one state to another (usually 

called  emission  and  transition  probabilities).  Given  data  of  known  stem-loop 

structures,  these  probabilities  can  be  estimated  by  keeping  count  of  the  different 

transition and emission events for all the states. With these counts, estimates of the 

emission and transition probabilities can be obtained using the following formulae [2] 

                                      Pe  ( q , σ )   =          ce ( q , σ ) (1)

                                                               Σρϵ Σ ce ( q , ρ)                       

                                      Pt  ( q , q' )  =           ct ( q, q')                             (2)

                                                              ΣsϵQ ct ( q , s )                          
                                         

Here,  Pe  is the probability of emitting symbol  σ in state  q; and Pt the probability of 

transiting from state  q to  q'  .  Q is the set of all states in the models;  Σ is the output 

alphabet, consisting in this case of A, C, G and U;  ct   and  ce   are the transition and 

emission counts obtained from the labeled data.
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For the two context-sensitive states, the symbol at the top of the stack also has to be 

taken into account. Accordingly, we modify the formulae above as follows (here  α 

represents a letter from the alphabet, i.e. A, C, G or U):

                            Pe  ( q , σ | α )  =   ce  ( q , σ | α )             (3)

                                                        Σρ  Σϵ  ce ( q , ρ | α )                       

                                Pt  ( q , q' | α ) =   ct  ( q , q' | α )                  (4)

                                                        ΣsϵQ ct (q , s | α)                          

Computational Efficiency

The main time-consuming step in the above procedure is the alignment of each RNA 

sequence to the CSHMM. The time complexity of the original CSHMM alignment 

algorithm is given by [3]:

                        O (L3 M1
2 M ) + O(L2 M1 M 2 ) + O(L2 M2

2 M ) (5)

Here L is the length of the sequence, M1 is the number of pairwise-emission/context-

sensitive states, M2 is the number of single-emission states and M is the total number 

of states. In order to derive the specific complexity for our model we can insert the 

actual values for the latter 3 variables. However, we have two context-sensitive (C) 

states linked to a single pairwise-emission (P) state, and so do not have a single value 

for M1 . We have to look at what each term represents in the original analysis [3].

The first term in (5) arises from considering pairs of unlinked P and C states (i.e., 

pairs that do not share the same memory store). Since our model contains no such 

pairs, this term vanishes altogether. The second term is from looking at pairs of linked 

P and C states: as can be seen from Fig. 1, we have two such pairs, (P 1, C11) and (P 
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1, C12). So M1  = 2 here. Also, M2  = 3 and M = 8. Thus, the time complexity T for 

aligning a RNA sequence of length L to our model is:

                   T (L) = O(L2  ⨯ 2 ⨯ 64) + O(L2 ⨯ 9 ⨯ 8) = O(L2 ) (6)

This compares favourably to the alignment complexity for any given SCFG or CM, 

which would be O( L3). For a covariance model, the multiplying factor would just be 

the number of states M , which might be considerably less than our factor of 2 ⨯ 64 

⨯ 9 ⨯ 8 = 200: but even if it had just 6 states (which is the number of different types 

of  typical  CM  states),  the  time  complexity  of  our  model  would  be  less  for  all 

sequences of 

length greater than 200/6 ≈ 33. As mentioned earlier, the miRNA precursors we are 

modelling here are between 60 and 120 nucleotides long in humans.

Discrimination

Given a complete CSHMM (structure and probabilities), and any input sequence, an 

optimal alignment algorithm for computing the most likely sequence of states using 

the CSHMM is known  [4]. We cannot, however, use this algorithm to discriminate 

between  miRNA precursors  and  other  kinds  of  RNA sequences.  For  each  such 

sequence, the algorithm simply gives us two things: the most likely state sequence 

(and hence, secondary structure) and the likelihood of obtaining that state sequence. 

Neverthless, if the parameters have been estimated using miRNA precursors, we can 

expect  relatively  high  likelihoods for  such sequences.  In  addition,  we would also 

expect to see a much closer match between the true secondary structure of miRNA 

sequences and the structure predicted by the alignment algorithm.

In this paper, we investigate a very simple discriminatory function that uses the results 

from the alignment algorithm. For our model, discrimination is a function only of the 

likelihood  returned  by  the  alignment  algorithm.  The  form  of  the  discriminatory 

4



function is thus just  a  single-node classification tree  [5],   which corresponds to  a 

threshold  on  the  likelihood  score.  The  value  of  this  threshold  is  estimated  from 

sequences of miRNA precursors and non-precursors. Each sequence is provided to the 

alignment algorithm, which uses the CSHMM from Stage 1 to return a likelihood 

value. A classification tree is then constructed to discriminate between the two sets of 

sequences,  using  just  one  feature:  the  likelihood  value.  The  utility  of  using  this 

threshold on  the  CSHMM’s likelihood score  for  identifying miRNA precursors  is 

assessed empirically in the next section.

Baseline

In order to get a measure of the utility of using a CSHMM to model pre-miRNA 

secondary structure, we compared its performance in discriminating between miRNA 

precursors and non-precursors with the current best known program used. The fact 

that the model proposed by us has two context-sensitive states linked with a single 

pairwise  emission  state  requires  a  slight  modification  to  this  algorithm. 

Discrimination would be easy if we had two CSHMMs: one for miRNA precursors 

and one for non precursors. For any input sequence, we could then simply classify it 

as one or the other based on the likelihood from each model. However, it is not clear 

how such a “non-precursor” model could be built, as these sequences do not have any 

definite structural properties for classifying pre-miRNAs. miPred [6] uses a set of 29 

features,  consisting  of  global  and  intrinsic  RNA folding  measures,  to  construct  a 

Support Vector Machine (SVM) classifier to distinguish between precursors and non-

precursors. Several of the features are derived from RNAfold [7, 8]. Other features are 

based simply on the sequence composition, e.g. dinucleotide frequencies.
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Algorithms 

The implementation of the algorithms for parameter estimation and optimal alignment 

was  done  by  us  following described  methods.  The  parameter  estimation  program 

accepts  a  sequence  of  bases  and  the  associated  secondary  structure  and  returns 

estimates  of  emission and transition  probabilities.  The  optimal  alignment  program 

accepts a sequence of bases and returns the most likely secondary structure and its 

likelihood. The machine learning toolkit WEKA [9,  10] was used to  construct the 

single-node classification tree for discriminating amongst miRNA precursors and non 

precursors.  The  tree is  constructed using the  J48 classification tree  model  builder 

provided in WEKA with default settings for the two principal parameters (C = 0.25,M 

= 2). The miPred results are taken directly from the paper by Ng and Mishra [6]. It 

was ensured that our training and test sequences are the same as those used by the 

authors, so that the results are comparable.

Cross-validation

The following k-fold cross-validation design to estimate predictive performance was 

used:

(1) Let  T denote the dataset comprised of sequences from datasets D1 and D2  

(described earlier  in Methods section). Randomly partition  T  into k (near)  

equal parts  T1, T2, ..., Tk.

(2) For i = 1 to k

(a) Let Traini consist of all the sequences in T1 , T2 , ..., Ti−1 , Ti+1 ,

     ..., Tk ; and Testi consist of all the sequences in Ti.

(b) The parameters for the CSHMM in Fig. 1 using was estimated using the 

      primary and secondary structures of miRNA precursors in Traini.

(c) For each sequence in Traini: the trained CSHMM and the optimal   
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   alignment algorithm were used to obtain the likelihood score.

(d) A classification tree was constructed (Treei),  using the likelihood score  

only. This results in a simple threshold on the likelihood score being detected  

automatically.

(e) Treei was used to predict the class (miRNA precursor or non-precursor) of 

sequences in Testi. The predictions will result in some numbers of true positives 

(miRNA precursors  correctly  predicted as  precursors),  false  positives (non-

precursors predicted as precursors) false  negatives (precursors predicted as  

non-precursors)  and  true  negatives  (non-precursors   predicted  as  non  -  

precursors). 

The value of  k used was 5.

(3) The primary and secondary structures of miRNA precursors in the complete  

dataset T was used to  (re-)estimate  the  parameters  of  the  CSHMM.  This  

CSHMM, the optimal alignment algorithm, all the sequences in T , the feature 

extractor, and the classification tree-builder were used  to  construct  a  

classification tree Tree.

(4) The counts of true positives, false positives, false negatives and true negatives 

from each of the  Treei  predictions in Step 2e were summed. The resulting  

table provides  a  nearly  unbiased  estimate  of  the  overall  accuracy  of  

prediction of tree  Tree  (the ratio of the number of correct predictions to the  

total number of sequences in  T ), as well as its overall  true-positive rate or 

sensitivity (the ratio of true positives to the total number of miRNA precursors 

in  T) and specificity (the ratio of true negatives to the total number of non-

precursors in T ).
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