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Introduction

Gene regulatory systems, metabolic pathways, neuronal connections, food webs,
social structures and the Internet are all naturally represented as networks; in-
deed, this may be said of any collection of distinct, interacting entities. Some-
times the value of this mathematical abstraction is clear; for instance, to min-
imise the spread of an epidemic it may be important to prioritise the immuni-
sation of individuals with high centrality. In many cases, however, one may not
know beforehand how a network representation could increase ones understand-
ing of its real-world counterpart.

It may be that abstracting a real-world system as a network discards all of
the relevant information, but this seems unlikely for such a high-dimensional
representation. Here, we presume that there is some valuable information en-
coded in the network; the problem is simply to find it. One approach for doing
so is to draw a full diagram of the network, since this can, if clearly drawn,
contain all of the recorded information. However, an unambiguous diagram is
only feasible for very small networks, in which case it is unlikely that the mathe-
matical abstraction will return any surprising results. To learn about a network
of any significant size it is therefore necessary to characterise it by summary
descriptions, which we will refer to as metrics.

A great variety of metrics exist in the literature, but studies that aim to
characterise a particular network typically employ a small subset of these, and
the choice of metrics is not systematic. Similarly, when a new model for gener-
ating synthetic networks is presented, the synthetic networks are compared to
real networks in only a few characteristics. This may be justified if one is inter-
ested only in the behaviour of a particular metric; but if the goal is to develop
synthetic networks that are statistically indistinguishable from real networks, it
is important to look at these networks in as many ways as possible. The same is
true of exploratory network analysis. Finally, it is typical for a new metric to be
introduced with a comparison to only a few existing metrics. The lack of a sys-
tematic comparison makes it difficult to tell which metrics give genuinely novel



information about a network, and which pairs of metrics might be redundant or
complementary.

Efforts to address this have recently been made [2], but it remains true that
there is as yet no systematic program for characterising network structure [7]
that can be used to compare the diverse ways in which networks are analysed.
We introduce a more systematic framework, in the form of a matrix whose rows
correspond to networks, and columns to metrics; we term this the data matriz.
Each element of the data matrix contains the value of one metric as applied to
one network. In this paper we show that this framework enables the systematic
comparison of networks and metrics, and demonstrate its utility in the objective
selection of metrics for a given purpose; in model fitting; in the analysis of
evolving networks; and to determine the robustness of metrics to variations in
network size, network damage and sampling effects.

Networks

We collected approximately 1,200 real network data sets. These included sev-
eral types of biological networks (such as trophic, brain connectivity, protein
interaction and metabolic networks), social networks, computer networks and
miscellaneous others (including word adjacency and transportation networks).
In addition to these real networks, we generated synthetic networks from the
Erdés-Rényi, Watts-Strogatz, Barabési-Albert, fitness and graphlet arrival mod-
els.

Metrics

This study included approximately 60 base metrics taken from the literature.
In order to obtain single numbers from metrics that return distributions (over
nodes or links), we generated a number of summary statistics of these distribu-
tions, including measures of central tendency and skewness and also likelihoods
of certain model fits. Additionally, we include graph clustering or community de-
tection [3, 8] metrics, which return a partition of the network into subnetworks.
We then summarise this in a number of ways, such as computing partition en-
tropy and coarse-grained measures on the network of subnetworks.

Selected Results

Given that a large number of metrics exist for describing a network, selecting
appropriate subsets for particular tasks is important. Here we demonstrate two
applications of feature selection in a supervised learning setting.

First, we consider two sets of networks from a study on metabolic net-
works [4]. The first set consists of 43 networks that each represent the full
cellular network of an organism. The networks in the second set are subsets
of the first, including only the metabolic part of each of the 43 networks. We
used this classified network data to investigate how metabolic networks differ



from whole-cellular networks. We performed sequential feature selection to opti-
mise the linear discriminability between the metabolic networks from eukaryotes,
archaea and bacteria. A 95% classification success rate was obtained by using
just three metrics (Figure 1).
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Fig. 1. Classification of metabolic networks of organisms from different kingdoms.

A natural extension of this approach is to look not only at a particular level
of species classification, but instead to attempt to take into account the entire
structure of evolutionary relationships between species, as represented by a phy-
logenetic tree. We are currently working on this using ideas from the area of
phylogenetic comparative methods [1,5,6]: one can assume a certain statistical
process (e.g., Brownian motion) underlying the variation in network character-
istics along the branches of a phylogeny, and then estimate the extent to which
different characteristics are constrained by the phylogenetic structure. As a rough
preliminary step towards this, we have taken the 43 metabolic networks referred
to above and grouped them at the leaves of a highly simplified phylogeny (Figure
2(a)). We represent each network by its feature vector of metrics, and then carry
out feature selection based on information gain at each of the branching points
in the phylogeny. Figure 2 shows that features based on closeness, a measure of
node centrality, are found to be amongst the most informative ones at each of the
3 branching points. This suggests that this metric is capturing some biologically
relevant network property, and it should be of interest to study this in greater
detail using the approach described above.

As an example to demonstrate unsupervised learning on more varied data, we
took a set of 192 networks from a wide range of disciplines and carried out prin-
cipal component analysis (PCA), utilising a set of 433 metrics. The results are
shown in Figure 3, with each data point representing a network’s position along
the two largest principal components and different colours depicting the different
domains from which the networks are drawn. We see that certain kinds of net-
works fall into very cohesive groupings, such as financial, fungal and metabolic
networks. On the other hand, some types of networks such as protein inter-
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Fig. 2. 43 metabolic networks [4] are grouped according to a simplified phylogeny
(a). Network features representing the closeness distribution of nodes are found to be
significantly different in their distributions on either side of the 3 branching points
(b,c,d).

action, collaboration and social networks are much less well separated. We also
attempted building a supervised classification tree for this set of networks, which
resulted in a 10-fold cross-validation accuracy of nearly 80% and made use of
only about 15 of the 433 features.

Discussion

In some ways, the approach taken here is complementary to standard perspec-
tives in network science. When a new metric is introduced in the networks lit-
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Fig. 3. Results of PCA on a set of 192 networks, using 433 features. The two largest
principal components are shown.

erature, it may be motivated by an expectation of what aspects of a network it
will capture, or by some distinguishing feature of its calculation. Similarly, new
network models are assessed by how closely they match certain particular met-
rics. Here, we simply apply all of the available metrics to a set of networks, and
use the resulting data structure to explore the networks or metrics in an unprej-
udiced manner. This framework as a way of systematically comparing metrics
should be valuable for both explorative network analysis, and for finding the
best way to answer a particular question in a data-driven manner. It continues
to be work in progress, but we hope that once complete, public distribution of
the software and database built for this project will benefit users and see new
applications of the framework.
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