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Abstract

We apply kernel-based machine learning methods to online learning situations, and
look at the related requirement of reducing the complexity of the learnt classifier.
Online methods are particularly useful in situations which involve streaming data,
such as medical or financial applications. We show that the concept of span of
support vectors can be used to build a classifier that performs reasonably well while
satisfying given space and time constraints, thus making it potentially suitable for
such online situations.

1 Introduction

Kernel-based learning methods [16] have been successfully applied to a wide
range of problems. The key idea behind these methods is to implicitly map the
input data to a new feature space, and then find a suitable hypothesis in this
space. The mapping to the new space is defined by a function called the kernel
function. Due to promising generalization performance, kernel methods have
been widely used in many applications. However, they may not always be the
most efficient technique; training and classification times are the two main is-
sues which concern researchers and practitioners. Many techniques have been
proposed to speed up training time of (offline) SVMs. Sequential minimal op-
timization (SMO) [15], modified SMO [11], decomposition method [9] and low
rank kernel matrix construction method [8] are some of the methods proposed
towards speeding up the training time.
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Classification time on the other hand is primarily determined by the num-
ber of support vectors (SVs). Vapnik has given a lower bound on the number
of SVs in terms of the expected probability of error, E[p], and the number of
training data points (N −1)E[p] [19]. Steinwart [17] established a relationship
between the number of SVs and the number of training data points. This rela-
tion gives a lower bound on the number of SVs; thus it has a significant impact
on the classifier’s time complexity. Several techniques have been proposed to
address the problem of reducing the time complexity of the SVM classifier as
well. These include: the reduced set method [2, 16, 13], exact simplification
of support vectors [7], classifier complexity reduction using basis vectors [10],
sparse large margin classifiers [21], variant of reduced set method [14], rele-
vance vector machine [18], classification on a budget [6] and online SVM with
a budget [5].

1.1 Offline Learning

The reduced set method aims to minimize the distance between the original
separating hyperplane (which uses all of the SVs) and a new hyperplane (which
uses fewer vectors) for obtaining a reduced set of vectors and their associated
coefficients. The new hyperplane is described in terms of vectors which are not
SVs (and not necessarily from the training set) and do not lie on the margin.

Let w =
NSV
∑

i=1

αiyiϕ(Xi) be the optimal hyperplane in the mapped space using

all the SVs and let w′ =
NSV z
∑

i=1

γiϕ(Zi) be a new hyperplane with a specified size

of the set of vectors. The reduced set {(γi,Zi)}
NSV z

i=1 is computed by minimizing
the objective function: ||w −w′||.

In [16], reduced subset selection methods (proposed by Burges [2]) and ex-

traction methods were discussed in detail. In subset selection methods a set
of vectors is obtained from the training dataset. On the other hand, in subset
extraction methods, the set of vectors obtained need not be from the training
dataset. Recently, a variant of the reduced set method has been proposed by
DucDung Nguyen et al., in [14]. In their method, two SVs of the same class are
replaced by a vector that is a convex combination of the two. The weights are
expressed in terms of the Lagrangian multipliers of the two SVs. Different ex-
pressions are used to obtain a new vector for Gaussian and polynomial kernels.

Mingrui Wu et al., [21] introduced an explicit constraint, w =
NSV z
∑

i=1

βiϕ(Zi),

in the primal formulation of the SVM for controlling its sparseness. The aim
has been to minimize β and Z in addition to the primal variables in the SVM
formulation. In Keerthi’s work [10] basis vectors are obtained by solving the
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primal formulation of SVMs using Newton’s gradient descent technique. This
is a promising approach giving an order of magnitude reduction in the number
of SVs. It uses heuristics in the primal space to build the classifier. Downs et

al., [7] have proposed a method for retaining linearly independent SVs and
thereby reducing the complexity of the classifier. Some of the above methods
reduce SVs after the training process of the SVM is completed. These include
the reduced set method and its variants [2, 16, 14]. On the other hand, the
basis vector method proposed by Keerthi et al., [10], Mingrui et al., [21] aims
at pruning SVs during the training process itself.

In practical situations memory can be an important constraint and designing
SVMs to address memory requirements is recognized as an important research
problem. Reducing the number of SVs is a potential solution for addressing
memory constraints. Some of the techniques mentioned above can be thought
of as a “budgetary constraint” on the number of SVs. The linear growth of the
number of SVs in proportion to the number of training data points may be
unaffordable in practical situations. A few applications where this budgetary
constraint comes into play, as pointed out by Ofer Dekel et al., [6], include: (a)
Speech recognition systems. In these, the classifier needs to keep up with the
rate at which the speech signal is acquired. (b) A classifier that is designed to
run on mobile phones needs to consume very little space and should be very
fast with respect to classification time.

The SVM formulation does not take into account memory limits as a pa-
rameter at training time. Some of the classifier complexity reduction methods
discussed above do take this sort of constraint into account to obtain a de-
cision function that incurs the minimum increase in the generalization error
compared to original decision function, whilst meeting the specified limits. A
recent effort by Ofer Dekel et al. [6] addresses this issue of incorporating a
budget parameter into SVMs at training time and has given an algorithm for
the same.

1.2 Online Learning

In online kernel-based learning algorithms, typically one data point at a time
is considered for updating the parameters involved in specifying the optimal
hyperplane. Budget requirements become one of the important parameters in
online learning. When there is a memory limit on the number of SVs that can
be stored, one has to choose from amongst the available set of SVs, the ‘good’
SVs that ‘best’ describe the decision surface. The aim is to find an approximate
decision surface which is as close as possible to the decision surface obtained
when all of the SVs are used. Discarding SVs involves mainly two steps: (1)
deciding which SV should be discarded; and (2) updating the Lagrangian
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multipliers for the retained points. The first step is crucial as discarding SVs
directly affects the decision function and hence the generalization error.

Koby et al. [5] have proposed a method for online classification on a budget for
the perceptron problem. The budgetary constraint is taken into account via a
two step process. If the tth test data point is misclassified then in the first step
the misclassified data point is added to the set of SVs and the weight vector
is updated as wt = wt−1 + ytαtXt; where wt is the new hyperplane and wt−1

is the hyperplane using (t − 1) data points. In second step, an SV is found
from the set of SVs such that removing it yields the maximum margin, i.e.,
compute i = arg maxj∈Ct

{yj (wt−1 − αjyjXj)}. The ith SV is discarded from
the set thus maintaining the adherence to the memory limit. This approach is
implemented using an online algorithm: the margin infused relaxed algorithm
(MIRA) [4].

In [12], a truncation method was proposed: once the memory has filled up,
the oldest SVs are knocked out to make way for new ones. A bound on the
increase in the generalization error (as compared to the infinite memory case)
was also given in the context of truncation. The intuition behind discarding
old SVs is that as we see more data points, the quality of the decision function
improves and old SVs contribute little to the quality this decision function;
they can thus potentially be discarded [5]. However, this idea simply amounts
to maintaining a queue of support vectors.

In this paper, we look to address the constrained memory problem based on a
concept known as support vector span. The rationale for using the span is that
it directly influences the generalization error bound. Our experiments show
that often it is possible to reduce classifier complexity substantially without
significant loss in performance.

The rest of this paper is organized as follows: Section 2 looks at the concept
of support vector span, which allows us to bound the generalization error. In
Section 3, we describe the online learning framework, and present our proposed
span-based algorithm, comparing its performance with a standard method for
this setting. We also evaluate the performance of the span-based heuristic
by comparing it with other ”budgeted classification” methods, and present
our experimental results in Section 4. Section 5 summarizes our work and
concludes the paper.

2 Span of Support Vectors

In the present work, we address the memory constraint problem in online
SVMs using the concept of span of support vectors introduced by Vapnik [20].
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Fig. 1. Geometric interpretation of S−span

The span of support vectors is used to bound the estimated generalization
error for SVMs. It gives an estimate of the leave-one-out error and has been
empirically shown to be tight.

Let {(Xi, yi)}
NSV

i=1 be the set of SVs. Let the corresponding Lagrange multipliers
for the data points be (α0

1, α
0
2, . . . , α

0
NSV

). Define a set Λj for a fixed SV Xj as:

Λj =







NSV
∑

i=1, i6=j

λi Xi :
NSV
∑

i=1, i6=j

λi = 1, ∀ i 6= j, α0
i + yi yj α0

j λi ≥ 0







where λi ∈ R. The span of support vector Xj is denoted by Sj and is given
by:

S2
j = d2(Xj, Λj) = minX∈Λj

(Xj − X)2

The maximal value of Sj over all j is known as S-span and is given by:

S = max {d (X1, Λ1) , d (X2, Λ2) , . . . , d (XNSV
, ΛNSV

)} = max Sj

The above definition is geometrically illustrated in Figure 1. In this, one SV
at a time is removed and a set Λ is constructed using the rest of SVs. Then
the minimum distance from the left-out SV to the set Λ is found. This process
is repeated for all SVs and maximum of all such distances is said to be the
S−span.

Using the above definition of S−span, the following theorem has been proved:

Theorem 2.1 Suppose that an SVM separates training data of size N with-

out error. Then the expectation of the probability of error pN−1
error for the SVM

trained on training data of size (N − 1) has the bound:

EpN−1
error ≤ E

(

SD

Nρ2

)

(1)
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where the values of the span of support vectors S, the diameter of the smallest

sphere containing the training data points D, and the margin ρ are considered

for training sets of size N .

3 Streaming Data and Online Learning Applications

For streaming and online applications the amount of data and consequently
the size of the training set keep increasing, and as per [17], the number of SVs
will also increase at least proportionately. Clearly, a method is needed to up-
date the classifier continuously. If there is a size limit of NSV m on the SV set of
the SVM classifier, then for every subsequent misclassified data point we must
decide which one of the existing SVs (if any) will be replaced by the new point.

To formalize, assume we have a memory limit of NSV m SVs. Initially, the mem-
ory is empty and training data points keep streaming in. We cannot retrain
the SVM from scratch for every new data point since it would be prohibitively
expensive to do so. One approach is to use some kind of gradient-descent to
adjust the old coefficient (αi) values based on the extent to which the new
point was misclassified (note that points classified correctly can be ignored).
Simultaneously, we must also compute the multiplier for the new point. This
procedure continues as long as the number of SVs is less than N . Once we
have NSV m SVs, we cannot add a point to the set without first discarding an
existing SV. We propose to use the S-span to decide which point to remove.

Let Xold be the set (of size NSV m) of SVs, Sold the corresponding S-span,
X the new misclassified data point and Xp ∈ Xold the point that leads to the
least S-span, say Snew, when X replaces Xp in Xold (see algorithm below). We
replace Xp by X if Snew < Sold. The basic objective is to not increase the
bound on the predicted generalization error at each step. From (1), it is clear
that the expected value of the generalization error depends on the value of S,
the span of the set of SVs. We cannot really control the variation in D and
ρ as they will follow the same trend irrespective of which vectors we throw
out. However, the variation in span is not bound to follow any such trend and
therefore becomes the key determining factor. So, our idea is to try and replace
points in the set of SVs so as to maximally reduce the S-span of the resulting
set. The simplest replacement strategy would be to leave out the oldest point
in the memory each time a new one was to be added; this is essentially what
was done in the algorithm proposed by Kivinen et al. [12]. Although this has
the advantage of implicitly accounting for time-varying distributions, it also
runs the risk of discarding a more informative point in favor of a less useful one.
The span-based idea is unlikely to encounter this difficulty. We say unlikely
since we do not yet have a proof that the method will always work optimally.
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However, our experiments with synthetic and real-life datasets suggest that
the approach seems to do well. The algorithm is summarized below:

(1) Let the current set of SVs in the memory be Xold = ((X1, y1), ..., (XNSV m
, yNSV m

)),
and let their multipliers be (α1, ..., αNSV m

) (we assume the memory is full;
otherwise, one can keep adding the incoming SVs until it is full). Let (x, y)
be an incoming data point. We first compute: f(x) =

∑NSV m

i=1 αiyik(Xi,x)
Here k is the usual kernel function.

(2) If f(x) = y, we ignore it, return to step 1 and wait for the next point.
(3) Compute Sold, the S−span of Xold. Remove support vector Xi from Xold

and include the new data point x. Let the new set of SVs be:
X i

new = {(X1, y1), · · · , (Xi−1, yi−1), (Xi+1, yi+1), · · · , (XNSV m
, yNSV m

), (x, y)}.
Compute the span corresponding to this set of SVs; call it Si.

(4) Repeat the above step for all NSV m data points. Find the least S−span
among the Si ∀ i = 1, 2, · · · , N . Let this be Sp; the corresponding support
vector removed is Xp.

(5) If Sp < Sold then we remove Xp from the set by making αp = 0 while si-
multaneously adjusting the other coefficients in order to maintain the op-
timality conditions for the SVM. This is done via the Poggio-Cauwenberghs
decremental unlearning procedure [3]. If Sp ≥ Sold do not include the new
point in the SV set.

(6) If Xp was removed in step 5, add the new point to the SV set, i.e. compute
the appropriate multiplier for it. Once again the other αi values must
be adjusted so as to maintain optimality. Use the Poggio-Cauwenberghs
incremental learning procedure [3] to carry out this adjustment.

(7) We now have an updated set of NSV m SVs, with the new point possibly
replacing one of the earlier ones. Run the current classifier on an inde-
pendent test set, to gauge its generalization performance. Return to step
1 and await the next point.

3.1 Baseline: Margin Maximization

Our proposed span-based method is one possible heuristic among several oth-
ers for achieving the budgetary requirements in online learning situations.
Others include: leaving out the oldest SV (which we refer to as the least re-
cently used (LRU) method); or retaining that set of SVs which results in the
largest margin, as the key idea in kernel-based methods is to maximize the
margin of separation. Margin maximization is a natural heuristic for the bud-
get problem and we call this the baseline heuristic. We compare the proposed
span-based heuristic with (1) LRU, (2) the baseline heuristic, and (3) the
budget classification algorithm proposed by Koby et al. [5]. We note that the
online learning algorithm employed in [5] is different from the one used in the
present work (the incremental-decremental learning algorithm).
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4 Experimental Results

For evaluating the performance of the proposed span-based heuristic for the
online budget problem, we consider comparisons with three other methods as
described in Section 3.1. We experimented with both static and time-varying
distributions of data in the case of artificial datasets. The artificial datasets
we used were generated according to multi-variate Gaussian distributions.
A total of 500 points were generated for the training dataset and another
500 points for the test dataset. To these datasets, 5% Gaussian noise was
added (we call the resulting set g5). For simulating a dataset with a time-
varying distribution, the generation procedure was similar, but after every
100 data points the means of the two classes being considered were changed
by introducing uniform perturbations (the set thus generated is referred to as
chng-g5). For the static distribution case, a memory limit was fixed (smaller
than the training set size), and all the training data was streamed in. The
final classifier obtained was then tested on an independent test set drawn
from the same distribution. This procedure was repeated for varying values
of the memory limit. For the time-varying distribution case, the procedure
used was similar, except that the training data’s distribution varied gradually
(changing after every 100 data points) as it was streamed in. The test set was
drawn from the current distribution, i.e., the distribution prevailing at the end
of the training data stream. In this way, the ability of the algorithm to adapt
to the variation could be gauged. We report both preliminary experimental
results on g5, chng-g5 and extensive results averaged over 100 realizations
of each dataset. In the case of real-world data, we consider 3 datasets, namely
breast-cancer, thyroid and waveform, each having 100 realizations.

Results for the artificial datasets are shown in Figures 2 (a) to (d). In (a) and
(b), we consider one realization each of g5 and chng-g5 data sets [1]. It is
evident that for all the heuristic approaches, the generalization error increases
as the memory limit decreases; in the case of artificial datasets (for both static
and time-varying distributions), the margin-based heuristic outperforms the
rest of the methods; while span and LRU compete closely. As the memory
limit is reduced further, span performs better than LRU. Using the span-based
heuristic, a reduction of 44.44% of the original SVs is observed with an increase
in generalization error of less than 1.0%. For LRU the comparable reduction in
SVs is observed to be 55.55%, and it is 66.66% when using the margin-based
heuristic. For the time-varying distribution, the span method is again seem
to compete closely with LRU. However, when the amount of deviation from
the original distribution increases, then the span method’s performance breaks
down (this was observed in our experiments for higher amounts of variation in
the distribution; however, those results are not included here). This is because
the span-based bounds are derived based on the assumption that the data
points are drawn from independent and identical distributions.
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Fig. 2. Comparison of the Span-based method with the LRU and Maximum Margin
heuristics. We have generated synthetic two-class data consisting of two overlapping
3-D Gaussian ‘bells’, with 5% Gaussian noise added in. Preliminary experimental re-
sults are reported in (a) and (b) and extensive results averaged over 100 realizations
are given in (c) and (d).

In the case of the real-world datasets, the performance of the span-based and
LRU methods is better than that of the baseline method in the majority of
cases. For the breast-cancer and waveform datasets, the margin-based heuristic
performs particularly poorly compared to the others. Results are given in
Figures 3 (a) to (d) and 4 (a), (b) for real world data sets. Here too the
span-based algorithm is seen to compete closely with LRU.

We compare the proposed span-based method’s performance with that of the
“classification on a budget” (budget perceptron) method proposed by [5] on
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Fig. 3. Comparison between the Span, LRU and Margin heuristics. Results on bench-
mark datasets: waveform (training size: 400, test size: 4600) and thyroid (training
size: 140, test size: 75). (a) and (b) give preliminary results using only one realiza-
tion; (c) and (d) show extensive experimental results averaged over 100 realizations.

both artificial and real-world datasets 3 . The comparison is not a fair one
because we use the incremental-decremental SVM (with minor variations so
as to take into account the online setting) whereas Koby et al. [5] use the
MIRA algorithm for online learning. Hence a comparison based on absolute
percentages is not fair; nevertheless, a comparison of the trends of the graphs

3 incremental-decremental learning algorithm is obtained from author’s web page
http://bach.ece.jhu.edu/pub.gert/svm/incremental; budget perceptron algo-
rithm is obtained from The Spider general purpose machine learning toolbox http:

//www.kyb.tuebingen.mpg.de/bs/people/spider/

10



 5

 10

 15

 20

 25

 30

 20 25 30 35 40 45

E
rr

o
r

Memory Limit

Span
Budget

LRU

 5

 10

 15

 20

 25

 30

 35

 10 15 20 25 30 35 40 45

%
 e

rr
o

r

Memory Limit

Span
Budget

LRU

(a) g5: Fixed Distribution (b) chng-g5: Varying Distribution

 10

 12

 14

 16

 18

 20

 22

 24

 8 10 12 14 16 18 20 22 24

%
 e

rr
o

r

Memory Limit

Span
Budget

LRU

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 20 30 40 50 60 70 80 90 100 110

%
 e

rr
o

r

Memory Limit

Span
Budget

LRU

(c) Thyroid (d) Waveform

Fig. 4. Comparison between Span, LRU and Budget perceptron. Results on artificial
datasets: g5 and chng-g5; and benchmark datasets: thyroid and waveform.

gives us an intuitive idea of how well both methods are performing under
varying memory constraints. Results are presented in Figures 4 (a) to (d) and
5 (a) and (b). On the whole, our proposed method gives encouraging results in
an online setting. It is not as fast as the simple LRU approach; but for small
memory sizes, it competes very well in terms of actual time taken. Also, we see
that when the memory limit is very low, the span-based heretic’s performance
is considerably better than that of the LRU method (Figures 2, 3 and 4).
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Fig. 5. Comparisons of Span and LRU with: (a) Margin heuristic and (b) Budget
perceptron, using the benchmark dataset breast-cancer (training size: 200, test size:
77).

5 Conclusions and Future Work

This work proposes a new learning procedure for a kernel-based classifier for
streaming, online data where the maximum size of the support vector set is
fixed. We use the concept of the span of the set of SVs to decide which support
vector to replace from the current set when a new SV is to be added. While
we do not have a formal theoretical justification for the procedure, the exper-
imental results are quite encouraging. Establishing performance guarantees in
the form of error bounds remains the major outstanding task.
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