Non-Literal Language Processing

Based on: Chapter 7 of the Traxler textbook
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The stop light went from green to red.
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Non-literal Language

» Can you open the door?
> He is a real stud.
» The stop light went from green to red.

» Speakers produce about six metaphors (4 “frozen” and 2
“novel” metaphors) per minute of speaking time

» About about one every 10 seconds (Pollio, Barlow, Fine, &
Pollio, 1977)
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1. What are some theories of non-literal language processing?

2. What are the neural events involved in non-literal language
processing?

Non-Literal Language Processing



Non-literal Language Processing

Non-literal language requires the listener to draw pragmatic
inferences

Non-Literal Language Processing



Non-literal Language Processing

Non-literal language requires the listener to draw pragmatic
inferences

1. Recognition problem: How do listeners know that the speaker
does not intend a literal meaning?

Non-Literal Language Processing



Non-literal Language Processing

Non-literal language requires the listener to draw pragmatic
inferences

1. Recognition problem: How do listeners know that the speaker
does not intend a literal meaning?

2. How do listeners compute the non-literal meaning?
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1. Standard Pragmatic view

2. Comparison views: Property matching and graded salience
hypotheses
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1. Standard Pragmatic view

2. Comparison views: Property matching and graded salience
hypotheses

3. Class inclusion view
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Standard Pragmatic View

Assumes that computing literal meaning is the core function in
language interpretation (Clark & Lucy, 1975; Glucksberg, 1998;
Searle, 1979)
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Standard Pragmatic View

Assumes that computing literal meaning is the core function in
language interpretation (Clark & Lucy, 1975; Glucksberg, 1998;
Searle, 1979)

1. First interpretation connected to tangible objects and the directly
perceivable world

2. If initial interpretation is literally false, it is discarded subsequently
in favor of a more sensible one

Deb’s a real tiger
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Criticism of Standard Pragmatic View

1. Counter-examples related to the recognition problem
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Criticism of Standard Pragmatic View

1. Counter-examples related to the recognition problem

2. Experimental counter-evidence
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Recognition of Non-literal Meaning

» My wife is an animal
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» My wife is an animal
> Literally true!

> Non-literal: My wife behaves in an unpredictable and uncivilized way
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Recognition of Non-literal Meaning

v

My wife is an animal

v

Literally true!

v

Non-literal: My wife behaves in an unpredictable and uncivilized way

v

Literal falsehood is not a necessary precondition for an utterance to
be assigned a non-literal meaning.
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Experimental Counter-Evidence

» Paraphrasing
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Experimental Counter-Evidence

» Paraphrasing
> Priming

> Reading

Are literal meanings computed faster than non-literal meanings?
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Paraphrasing (Gibbs 1983)

Particpants asked to paraphrase:

» Direct, literal form: | would like you to open the window
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Paraphrasing (Gibbs 1983)

Particpants asked to paraphrase:
» Direct, literal form: | would like you to open the window

» Indirect, non-literal form: Can you open the window?

Non-Literal Language Processing



Paraphrasing (Gibbs 1983)

Particpants asked to paraphrase:
» Direct, literal form: | would like you to open the window
» Indirect, non-literal form: Can you open the window?

> No difference in paraphrasing and paraphrase initiation time!
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Priming (Blasko and Connine 1993)

> Novel metaphoric expressions: indecision is a whirlpool used as a
prime
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>

Novel metaphoric expressions: indecision is a whirlpool used as a
prime

v

Literal, related target word water

v

Non-literal, related target word: confusion

v

Lexical decision times same for both kinds of targets!
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Priming (Blasko and Connine 1993)

> Novel metaphoric expressions: indecision is a whirlpool used as a
prime

> Literal, related target word water
> Non-literal, related target word: confusion
» Lexical decision times same for both kinds of targets!

> Non-literal meanings computed just as quickly as literal meanings
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Reading (Ortony 1979)

» The investors looked to the Wall Street banker for advice.

> The sheep followed their leader over the cliff.
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The sheep followed their leader over the cliff.
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The animals were grazing on the hillside.
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The sheep followed their leader over the cliff.

Non-Literal Language Processing



Reading (Ortony 1979)

» The investors looked to the Wall Street banker for advice.

v

The sheep followed their leader over the cliff.

v

The animals were grazing on the hillside.

v

The sheep followed their leader over the cliff.

Subjects read literal and non-literal sentences with similar speeds!
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Stroop Task (Stroop 1935)
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Semantic Stroop Task (Glucksberg, 1998; 2003)

Story context: Keith is described as an adult who acts in an
immature way
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Semantic Stroop Task (Glucksberg, 1998; 2003)

Story context: Keith is described as an adult who acts in an
immature way

» Statement: Keith is a baby
> People asked to judge literal truth of such statements
» Literally false, but good non-literal interpretation

> People had a hard time rejecting literally and metaphorically “true”
statements

» Compared to literally and metaphorically “false” statements like
Keith is a banana
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Standard Pragmatic View: Problems

Experimental evidence suggests:

1. Non-literal meanings become available to the listener as quickly as
literal meanings do
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Standard Pragmatic View: Problems

Experimental evidence suggests:

1. Non-literal meanings become available to the listener as quickly as
literal meanings do

2. Computation of non-literal meanings is not optional

3. Undertaken even when the literal meaning is non-problematic in a
given context
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Metaphor Processing Accounts

Attributive metaphors: Nicole Kidmantopic) is bad
medicine(VEH,C,_E)
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Metaphor Processing Accounts

Attributive metaphors: Nicole Kidmantopic) is bad
medicine(VEH,C,_E)

Category assignment: Nicole Kidman is an actress

1. Comparison Approaches: Property Matching and Graded
Salience hypotheses

2. Class Inclusion Approaches
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Comparison Approaches

Metaphor is converted to simile first and processed
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» Copper is like tin.
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Comparison Approaches

Metaphor is converted to simile first and processed
» Copper is like tin.
> Baseball is like cricket.
> Mexico is like Spain.
> Nicole Kidman is like bad medicine
» Tin is like copper

» ?Bad medicine is like Nicole Kidman
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than similes
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> Prediction: Metaphoric expressions will take longer to interpret
than similes

» Under some circumstances, similes take longer to understand than
equivalent metaphors (Glucksberg,1998, 2003)

Non-Literal Language Processing



> Prediction: Metaphoric expressions will take longer to interpret
than similes

» Under some circumstances, similes take longer to understand than
equivalent metaphors (Glucksberg,1998, 2003)

> Seems metaphors can be interpreted without mentally converting
them to similes.
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Property Matching Hypothesis (Ortony, 1979; Tversky,

1977)

> A dog is a mammal

» Nicole Kidman is bad medicine
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topic that are identical to vehicle

Non-Literal Language Processing



Property Matching Hypothesis (Ortony, 1979; Tversky,
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> A dog is a mammal

v

Nicole Kidman is bad medicine
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Both similes and metaphors interpreted by finding properties of the
topic that are identical to vehicle
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No special interpretation processes that apply only to metaphors
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Property Matching Hypothesis (Ortony, 1979; Tversky,

1977)

> A dog is a mammal

v

Nicole Kidman is bad medicine

v

Both similes and metaphors interpreted by finding properties of the
topic that are identical to vehicle

v

No special interpretation processes that apply only to metaphors

v

?Billboards are like pears
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Property Matching Hypothesis (Ortony, 1979; Tversky,

1977)

> A dog is a mammal
» Nicole Kidman is bad medicine

> Both similes and metaphors interpreted by finding properties of the
topic that are identical to vehicle

> No special interpretation processes that apply only to metaphors
» ?Billboards are like pears

» No common properties!
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Salience Imbalance Hypothesis (Johnson & Malgady, 1979;

Tourangeau & Sternberg, 1981)

> Refined version of the Property Matching hypothesis
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Salience Imbalance Hypothesis (Johnson & Malgady, 1979;

Tourangeau & Sternberg, 1981)

> Refined version of the Property Matching hypothesis

» Literal comparisons used when properties are salient in both the
topic and the vehicle

> Metaphors used when (in addition to common properties) some
properties are obscure in topic and salient in the vehicle
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Salience Imbalance Hypothesis (Johnson & Malgady, 1979;

Tourangeau & Sternberg, 1981)

> Refined version of the Property Matching hypothesis

» Literal comparisons used when properties are salient in both the
topic and the vehicle

> Metaphors used when (in addition to common properties) some
properties are obscure in topic and salient in the vehicle

> Involve low-salience properties of the topic and high-salience
properties of the vehicle
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Criticism

» Cases where salience is low in both the topic and the vehicle cases
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» Cases where salience is low in both the topic and the vehicle cases

» The senator was an old fox who could outwit the reporters every
time.

» Zero shared properties cases
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v

Cases where salience is low in both the topic and the vehicle cases

» The senator was an old fox who could outwit the reporters every
time.

v

Zero shared properties cases

» No man is an island
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Class Inclusion Hypothesis

> My lawyer is a well-paid shark (High aptness rating)
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Class Inclusion Hypothesis

v

My lawyer is a well-paid shark (High aptness rating)

v

?My lawyer is like a well-paid shark (Lower aptness rating)

v

Dual reference of the word shark

1. Basic-level concept (a real shark)
2. Superordinate category (prototype of a dangerous animal)

v

Subjects read metaphoric expressions faster than corresponding
simile versions
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My lawyer is a well-paid shark (High aptness rating)

v
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v
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Class Inclusion: Priming Study (Glucksberg, Manfredi, &

McGlone, 1997)

Reading times measured for target sentence My lawyer is a shark,
preceded by prime sentences:
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Class Inclusion: Priming Study (Glucksberg, Manfredi, &

McGlone, 1997)

Reading times measured for target sentence My lawyer is a shark,
preceded by prime sentences:

> Literal meaning of shark: Sharks can swim

> Participants had a harder time connecting topic (lawyer) and the
superordinate category (dangerous animals)
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Multiple Superordinate Categories (Glucksberg, Manfredi,

& McGlone, 1997)

> a child is a snowflake
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& McGlone, 1997)

» a child is a snowflake
» no two snowflakes are identical

> youth is a snowflake
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Multiple Superordinate Categories (Glucksberg, Manfredi,

& McGlone, 1997)

a child is a snowflake

v

» no two snowflakes are identical

v

youth is a snowflake

v

youth is fleeting
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Multiple Superordinate Categories (Glucksberg, Manfredi,

& McGlone, 1997)

>

a child is a snowflake

» no two snowflakes are identical

v

youth is a snowflake

v

youth is fleeting

v

Vehicle makes a set of superordinate categories available for
interpretation
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Multiple Superordinate Categories (Glucksberg, Manfredi,

& McGlone, 1997)

> a child is a snowflake

> no two snowflakes are identical
> youth is a snowflake

> youth is fleeting

» Vehicle makes a set of superordinate categories available for
interpretation

» Characteristics of the topic point the reader toward the appropriate
one
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Neural Basis

1. Right hemisphere hypothesis
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Neural Basis

1. Right hemisphere hypothesis
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Neural Basis

1. Right hemisphere hypothesis
2. Graded salience hypothesis

Inconclusive results
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Right hemisphere dominates for non-literal language

Novel metaphoric meanings: The investors were squirrels collecting
nuts
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Participants judged whether it made sense on its literal reading
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PET Results (Bottini et al. 1994)
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PET Results (Bottini et al. 1994)

Subsequent imaging studies have not supported the right
hemisphere hypothesis, however
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Graded Salience Hypothesis

> Left hemisphere activates the salient meaning of an expression

Non-Literal Language Processing



Graded Salience Hypothesis

> Left hemisphere activates the salient meaning of an expression

> Right hemisphere is better at activating non-salient meanings

Non-Literal Language Processing



Graded Salience Hypothesis

> Left hemisphere activates the salient meaning of an expression
> Right hemisphere is better at activating non-salient meanings

» These predictions fall out from the coarse-coding hypothesis
(Beeman, 1998)

Non-Literal Language Processing



Graded Salience Hypothesis

> Left hemisphere activates the salient meaning of an expression
> Right hemisphere is better at activating non-salient meanings

» These predictions fall out from the coarse-coding hypothesis
(Beeman, 1998)

> Right-hemisphere lexical representations are more diffuse and have
fuzzier boundaries (compared to left hemisphere ones)

Non-Literal Language Processing



Graded Salience Hypothesis

> Left hemisphere activates the salient meaning of an expression
> Right hemisphere is better at activating non-salient meanings

» These predictions fall out from the coarse-coding hypothesis
(Beeman, 1998)

> Right-hemisphere lexical representations are more diffuse and have
fuzzier boundaries (compared to left hemisphere ones)

» Right-hemisphere lexical representations well suited for distant
semantic connections

Non-Literal Language Processing



Graded Salience Hypothesis

> Left hemisphere activates the salient meaning of an expression
> Right hemisphere is better at activating non-salient meanings

» These predictions fall out from the coarse-coding hypothesis
(Beeman, 1998)

> Right-hemisphere lexical representations are more diffuse and have
fuzzier boundaries (compared to left hemisphere ones)

» Right-hemisphere lexical representations well suited for distant
semantic connections

» Left hemisphere contains more sharply defined lexical representations

Non-Literal Language Processing



Graded Salience Hypothesis
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Graded Salience Hypothesis

> Left hemisphere activates the salient meaning of an expression
> Right hemisphere is better at activating non-salient meanings

» These predictions fall out from the coarse-coding hypothesis
(Beeman, 1998)

> Right-hemisphere lexical representations are more diffuse and have
fuzzier boundaries (compared to left hemisphere ones)

» Right-hemisphere lexical representations well suited for distant
semantic connections

» Left hemisphere contains more sharply defined lexical representations

» Thus activates a narrower range of associations in response to
individual words

» More frequent meanings are more salient
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Experimental Evidence

Graded Salience Hypothesis receives some support from fMRI and
TMS experiments
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Experimental Evidence

Graded Salience Hypothesis receives some support from fMRI and
TMS experiments

> Literal (paper napkin) vs metaphoric (paper tiger) word pairs given
to subjects

> Subject judgement: literal, novel metaphors, conventional (familiar)
metaphors, or unrelated

> Novel metaphors produced greater response than
conventional /familiar metaphors in the right hemisphere
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fMRI Results (Mashal, Faust, Hendler, & Jung-Beeman

2.9
2248)
p < 1.016474

Figure: Orange areas represent parts of the brain that responded with
greater activity to novel metaphors compared to conventional /familiar
metaphors. The circled area is the right homologue of (counterpart to)

Wernickes area.
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