Non-Literal Language Processing

Based on: Chapter 7 of the Traxler textbook

Can you open the door?

- Can you open the door?
- ► He is a real stud.

- Can you open the door?
- He is a real stud.
- The stop light went from green to red.

- Can you open the door?
- He is a real stud.
- The stop light went from green to red.
- ► Speakers produce about six metaphors (4 "frozen" and 2 "novel" metaphors) per minute of speaking time

- Can you open the door?
- He is a real stud.
- The stop light went from green to red.
- ► Speakers produce about six metaphors (4 "frozen" and 2 "novel" metaphors) per minute of speaking time
- About about one every 10 seconds (Pollio, Barlow, Fine, & Pollio, 1977)

Main Themes

1. What are some theories of non-literal language processing?

Main Themes

- 1. What are some theories of non-literal language processing?
- 2. What are the neural events involved in non-literal language processing?

Non-literal Language Processing

Non-literal language requires the listener to draw pragmatic inferences

Non-literal Language Processing

Non-literal language requires the listener to draw pragmatic inferences

1. Recognition problem: How do listeners know that the speaker does not intend a literal meaning?

Non-literal Language Processing

Non-literal language requires the listener to draw pragmatic inferences

- 1. Recognition problem: How do listeners know that the speaker does not intend a literal meaning?
- 2. How do listeners compute the non-literal meaning?

Theories

1. Standard Pragmatic view

Theories

- 1. Standard Pragmatic view
- 2. Comparison views: Property matching and graded salience hypotheses

Theories

- 1. Standard Pragmatic view
- 2. Comparison views: Property matching and graded salience hypotheses
- 3. Class inclusion view

Assumes that computing literal meaning is the core function in language interpretation (Clark & Lucy, 1975; Glucksberg, 1998; Searle, 1979)

Assumes that computing literal meaning is the core function in language interpretation (Clark & Lucy, 1975; Glucksberg, 1998; Searle, 1979)

1. First interpretation connected to tangible objects and the directly perceivable world

Assumes that computing literal meaning is the core function in language interpretation (Clark & Lucy, 1975; Glucksberg, 1998; Searle, 1979)

- 1. First interpretation connected to tangible objects and the directly perceivable world
- 2. If initial interpretation is literally false, it is discarded subsequently in favor of a more sensible one

Assumes that computing literal meaning is the core function in language interpretation (Clark & Lucy, 1975; Glucksberg, 1998; Searle, 1979)

- 1. First interpretation connected to tangible objects and the directly perceivable world
- 2. If initial interpretation is literally false, it is discarded subsequently in favor of a more sensible one

Deb's a real tiger

Criticism of Standard Pragmatic View

 $1. \ \ Counter-examples \ related \ to \ the \ recognition \ problem$

Criticism of Standard Pragmatic View

- 1. Counter-examples related to the recognition problem
- 2. Experimental counter-evidence

My wife is an animal

- My wife is an animal
- Literally true!

- My wife is an animal
- ► Literally true!
- ▶ Non-literal: My wife behaves in an unpredictable and uncivilized way

- My wife is an animal
- ▶ Literally true!
- ▶ Non-literal: My wife behaves in an unpredictable and uncivilized way
- ▶ Literal falsehood is not a necessary precondition for an utterance to be assigned a non-literal meaning.

Paraphrasing

- Paraphrasing
- Priming

- Paraphrasing
- Priming
- Reading

- Paraphrasing
- Priming
- Reading

Are literal meanings computed faster than non-literal meanings?

Paraphrasing $\overline{\text{(Gibbs 1983)}}$

Particpants asked to paraphrase:

▶ Direct, literal form: *I would like you to open the window*

Paraphrasing (Gibbs 1983)

Particpants asked to paraphrase:

- ▶ Direct, literal form: I would like you to open the window
- ▶ Indirect, non-literal form: Can you open the window?

Paraphrasing (Gibbs 1983)

Particpants asked to paraphrase:

- ▶ Direct, literal form: I would like you to open the window
- ▶ Indirect, non-literal form: Can you open the window?
- No difference in paraphrasing and paraphrase initiation time!

► Novel metaphoric expressions: *indecision is a whirlpool* used as a prime

- Novel metaphoric expressions: indecision is a whirlpool used as a prime
- ► Literal, related target word *water*

- Novel metaphoric expressions: indecision is a whirlpool used as a prime
- ► Literal, related target word *water*
- ▶ Non-literal, related target word: *confusion*

- Novel metaphoric expressions: indecision is a whirlpool used as a prime
- ► Literal, related target word *water*
- Non-literal, related target word: confusion
- Lexical decision times same for both kinds of targets!

- Novel metaphoric expressions: indecision is a whirlpool used as a prime
- ▶ Literal, related target word water
- Non-literal, related target word: confusion
- Lexical decision times same for both kinds of targets!
- Non-literal meanings computed just as quickly as literal meanings

Reading (Ortony 1979)

- ▶ The investors looked to the Wall Street banker for advice.
- ► The sheep followed their leader over the cliff.

Reading (Ortony 1979)

- ▶ The investors looked to the Wall Street banker for advice.
- ▶ The sheep followed their leader over the cliff.
- ► The animals were grazing on the hillside.
- The sheep followed their leader over the cliff.

Reading (Ortony 1979)

- ▶ The investors looked to the Wall Street banker for advice.
- The sheep followed their leader over the cliff.
- The animals were grazing on the hillside.
- The sheep followed their leader over the cliff.

Subjects read literal and non-literal sentences with similar speeds!

Stroop Task (Stroop 1935)

Story context: Keith is described as an adult who acts in an immature way

Statement: Keith is a baby

- Statement: Keith is a baby
- People asked to judge literal truth of such statements

- Statement: Keith is a baby
- People asked to judge literal truth of such statements
- ▶ Literally false, but good non-literal interpretation

- Statement: Keith is a baby
- People asked to judge literal truth of such statements
- Literally false, but good non-literal interpretation
- People had a hard time rejecting literally and metaphorically "true" statements

- Statement: Keith is a baby
- People asked to judge literal truth of such statements
- Literally false, but good non-literal interpretation
- People had a hard time rejecting literally and metaphorically "true" statements
- Compared to literally and metaphorically "false" statements like Keith is a banana

Standard Pragmatic View: Problems

Experimental evidence suggests:

1. Non-literal meanings become available to the listener as quickly as literal meanings do

Standard Pragmatic View: Problems

Experimental evidence suggests:

- 1. Non-literal meanings become available to the listener as quickly as literal meanings do
- 2. Computation of non-literal meanings is not optional

Standard Pragmatic View: Problems

Experimental evidence suggests:

- 1. Non-literal meanings become available to the listener as quickly as literal meanings do
- 2. Computation of non-literal meanings is not optional
- 3. Undertaken even when the literal meaning is non-problematic in a given context

Attributive metaphors: $Nicole\ Kidman_{(TOPIC)}$ is bad $medicine_{(VEHICLE)}$

Attributive metaphors: $Nicole\ Kidman_{(TOPIC)}$ is bad $medicine_{(VEHICLE)}$

Category assignment: Nicole Kidman is an actress

Attributive metaphors: $Nicole\ Kidman_{(TOPIC)}$ is bad $medicine_{(VEHICLE)}$

Category assignment: Nicole Kidman is an actress

 Comparison Approaches: Property Matching and Graded Salience hypotheses

Attributive metaphors: $Nicole\ Kidman_{(TOPIC)}$ is bad $medicine_{(VEHICLE)}$

Category assignment: Nicole Kidman is an actress

- Comparison Approaches: Property Matching and Graded Salience hypotheses
- 2. Class Inclusion Approaches

- Copper is like tin.
- Baseball is like cricket.
- Mexico is like Spain.

- Copper is like tin.
- Baseball is like cricket.
- Mexico is like Spain.
- Nicole Kidman is like bad medicine

- Copper is like tin.
- Baseball is like cricket.
- Mexico is like Spain.
- Nicole Kidman is like bad medicine
- Tin is like copper

- Copper is like tin.
- Baseball is like cricket.
- Mexico is like Spain.
- Nicole Kidman is like bad medicine
- Tin is like copper
- ▶ ?Bad medicine is like Nicole Kidman

- Copper is like tin.
- Baseball is like cricket.
- Mexico is like Spain.
- Nicole Kidman is like bad medicine
- Tin is like copper
- ▶ ?Bad medicine is like Nicole Kidman
- My surgeon is a butcher

- Copper is like tin.
- Baseball is like cricket.
- Mexico is like Spain.
- ▶ Nicole Kidman is like bad medicine
- Tin is like copper
- ▶ ?Bad medicine is like Nicole Kidman
- My surgeon is a butcher
- My butcher is a surgeon

Metaphor is converted to simile first and processed

- Copper is like tin.
- Baseball is like cricket.
- Mexico is like Spain.
- Nicole Kidman is like bad medicine
- Tin is like copper
- ▶ ?Bad medicine is like Nicole Kidman
- My surgeon is a butcher
- My butcher is a surgeon

Literal comparisons are more stable and hence can be reversed

Metaphor is converted to simile first and processed

- Copper is like tin.
- Baseball is like cricket.
- Mexico is like Spain.
- Nicole Kidman is like bad medicine
- Tin is like copper
- ▶ ?Bad medicine is like Nicole Kidman
- My surgeon is a butcher
- My butcher is a surgeon

Literal comparisons are more stable and hence can be reversed

▶ Prediction: Metaphoric expressions will take longer to interpret than similes

- Prediction: Metaphoric expressions will take longer to interpret than similes
- Under some circumstances, similes take longer to understand than equivalent metaphors (Glucksberg, 1998, 2003)

- Prediction: Metaphoric expressions will take longer to interpret than similes
- ▶ Under some circumstances, similes take longer to understand than equivalent metaphors (Glucksberg, 1998, 2003)
- Seems metaphors can be interpreted without mentally converting them to similes.

- A dog is a mammal
- Nicole Kidman is bad medicine

- A dog is a mammal
- Nicole Kidman is had medicine
- Both similes and metaphors interpreted by finding properties of the topic that are identical to vehicle

- ► A dog is a mammal
- Nicole Kidman is bad medicine
- Both similes and metaphors interpreted by finding properties of the topic that are identical to vehicle
- No special interpretation processes that apply only to metaphors

- A dog is a mammal
- Nicole Kidman is bad medicine
- Both similes and metaphors interpreted by finding properties of the topic that are identical to vehicle
- No special interpretation processes that apply only to metaphors
- ▶ ?Billboards are like pears

- ► A dog is a mammal
- Nicole Kidman is bad medicine
- Both similes and metaphors interpreted by finding properties of the topic that are identical to vehicle
- No special interpretation processes that apply only to metaphors
- ?Billboards are like pears
- No common properties!

Salience Imbalance Hypothesis (Johnson & Malgady, 1979; Tourangeau & Sternberg, 1981)

Refined version of the Property Matching hypothesis

Salience Imbalance Hypothesis (Johnson & Malgady, 1979; Tourangeau & Sternberg, 1981)

- Refined version of the Property Matching hypothesis
- Literal comparisons used when properties are salient in both the topic and the vehicle

Salience Imbalance Hypothesis (Johnson & Malgady, 1979; Tourangeau & Sternberg, 1981)

- Refined version of the Property Matching hypothesis
- ► Literal comparisons used when properties are salient in both the topic and the vehicle
- Metaphors used when (in addition to common properties) some properties are obscure in topic and salient in the vehicle

Salience Imbalance Hypothesis (Johnson & Malgady, 1979; Tourangeau & Sternberg, 1981)

- Refined version of the Property Matching hypothesis
- Literal comparisons used when properties are salient in both the topic and the vehicle
- Metaphors used when (in addition to common properties) some properties are obscure in topic and salient in the vehicle
- Involve low-salience properties of the topic and high-salience properties of the vehicle

Criticism

► Cases where salience is low in both the topic and the vehicle cases

Criticism

- Cases where salience is low in both the topic and the vehicle cases
- ► The senator was an old fox who could outwit the reporters every time.
- Zero shared properties cases

Criticism

- Cases where salience is low in both the topic and the vehicle cases
- ► The senator was an old fox who could outwit the reporters every time.
- Zero shared properties cases
- No man is an island

My lawyer is a well-paid shark (High aptness rating)

- ► My lawyer is a well-paid shark (High aptness rating)
- ?My lawyer is like a well-paid shark (Lower aptness rating)

- ► My lawyer is a well-paid shark (High aptness rating)
- ?My lawyer is like a well-paid shark (Lower aptness rating)
- ▶ Dual reference of the word *shark*

- My lawyer is a well-paid shark (High aptness rating)
- ?My lawyer is like a well-paid shark (Lower aptness rating)
- Dual reference of the word shark
 - 1. Basic-level concept (a real shark)

- My lawyer is a well-paid shark (High aptness rating)
- ?My lawyer is like a well-paid shark (Lower aptness rating)
- Dual reference of the word shark
 - 1. Basic-level concept (a real shark)
 - 2. Superordinate category (prototype of a dangerous animal)

- ► My lawyer is a well-paid shark (High aptness rating)
- ?My lawyer is like a well-paid shark (Lower aptness rating)
- Dual reference of the word shark
 - 1. Basic-level concept (a real shark)
 - 2. Superordinate category (prototype of a dangerous animal)
- Subjects read metaphoric expressions faster than corresponding simile versions

- ► My lawyer is a well-paid shark (High aptness rating)
- ?My lawyer is like a well-paid shark (Lower aptness rating)
- Dual reference of the word shark
 - 1. Basic-level concept (a real shark)
 - 2. Superordinate category (prototype of a dangerous animal)
- Subjects read metaphoric expressions faster than corresponding simile versions

Class Inclusion: Priming Study (Glucksberg, Manfredi, & McGlone, 1997)

Reading times measured for target sentence *My lawyer is a shark*, preceded by prime sentences:

Class Inclusion: Priming Study (Glucksberg, Manfredi, & McGlone, 1997)

Reading times measured for target sentence *My lawyer is a shark*, preceded by prime sentences:

Literal meaning of shark: Sharks can swim

Class Inclusion: Priming Study (Glucksberg, Manfredi, & McGlone, 1997)

Reading times measured for target sentence *My lawyer is a shark*, preceded by prime sentences:

- Literal meaning of shark: Sharks can swim
- Participants had a harder time connecting topic (lawyer) and the superordinate category (dangerous animals)

a child is a snowflake

- a child is a snowflake
- no two snowflakes are identical

- a child is a snowflake
- no two snowflakes are identical
- youth is a snowflake

- a child is a snowflake
- no two snowflakes are identical
- youth is a snowflake
- youth is fleeting

- a child is a snowflake
- no two snowflakes are identical
- youth is a snowflake
- youth is fleeting
- Vehicle makes a set of superordinate categories available for interpretation

- a child is a snowflake
- no two snowflakes are identical
- youth is a snowflake
- youth is fleeting
- Vehicle makes a set of superordinate categories available for interpretation
- Characteristics of the topic point the reader toward the appropriate one

Neural Basis

1. Right hemisphere hypothesis

Neural Basis

- 1. Right hemisphere hypothesis
- 2. Graded salience hypothesis

Neural Basis

- 1. Right hemisphere hypothesis
- 2. Graded salience hypothesis

Inconclusive results

Process of analyzing and interpreting language

▶ Left hemisphere dominates for literal language

- Left hemisphere dominates for literal language
- ▶ Right hemisphere dominates for non-literal language

- Left hemisphere dominates for literal language
- Right hemisphere dominates for non-literal language
- Novel metaphoric meanings: The investors were squirrels collecting nuts

- ► Left hemisphere dominates for literal language
- Right hemisphere dominates for non-literal language
- Novel metaphoric meanings: The investors were squirrels collecting nuts
- ▶ Literal meaning: *The boy used stones as paperweights*

- ► Left hemisphere dominates for literal language
- Right hemisphere dominates for non-literal language
- Novel metaphoric meanings: The investors were squirrels collecting nuts
- ▶ Literal meaning: *The boy used stones as paperweights*
- Participants judged whether it made sense on its literal reading

- Left hemisphere dominates for literal language
- Right hemisphere dominates for non-literal language
- Novel metaphoric meanings: The investors were squirrels collecting nuts
- ▶ Literal meaning: *The boy used stones as paperweights*
- Participants judged whether it made sense on its literal reading
- Right-hemisphere regions showed greater response to the metaphoric sentences (compared to the literal)

- ▶ Left hemisphere dominates for literal language
- Right hemisphere dominates for non-literal language
- Novel metaphoric meanings: The investors were squirrels collecting nuts
- ▶ Literal meaning: *The boy used stones as paperweights*
- Participants judged whether it made sense on its literal reading
- Right-hemisphere regions showed greater response to the metaphoric sentences (compared to the literal)
- No left-hemisphere regions showed similar greater response to metaphoric sentences

- ▶ Left hemisphere dominates for literal language
- Right hemisphere dominates for non-literal language
- Novel metaphoric meanings: The investors were squirrels collecting nuts
- ▶ Literal meaning: *The boy used stones as paperweights*
- Participants judged whether it made sense on its literal reading
- Right-hemisphere regions showed greater response to the metaphoric sentences (compared to the literal)
- No left-hemisphere regions showed similar greater response to metaphoric sentences

PET Results (Bottini et al. 1994)

PET Results (Bottini et al. 1994)

Subsequent imaging studies have not supported the right hemisphere hypothesis, however

Graded Salience Hypothesis

▶ Left hemisphere activates the salient meaning of an expression

- ▶ Left hemisphere activates the salient meaning of an expression
- ▶ Right hemisphere is better at activating non-salient meanings

- ▶ Left hemisphere activates the salient meaning of an expression
- ▶ Right hemisphere is better at activating non-salient meanings
- ► These predictions fall out from the coarse-coding hypothesis (Beeman, 1998)

- ▶ Left hemisphere activates the salient meaning of an expression
- ► Right hemisphere is better at activating non-salient meanings
- ► These predictions fall out from the coarse-coding hypothesis (Beeman, 1998)
- Right-hemisphere lexical representations are more diffuse and have fuzzier boundaries (compared to left hemisphere ones)

- ▶ Left hemisphere activates the salient meaning of an expression
- ► Right hemisphere is better at activating non-salient meanings
- ► These predictions fall out from the coarse-coding hypothesis (Beeman, 1998)
- Right-hemisphere lexical representations are more diffuse and have fuzzier boundaries (compared to left hemisphere ones)
- Right-hemisphere lexical representations well suited for distant semantic connections

- ▶ Left hemisphere activates the salient meaning of an expression
- ► Right hemisphere is better at activating non-salient meanings
- ► These predictions fall out from the coarse-coding hypothesis (Beeman, 1998)
- Right-hemisphere lexical representations are more diffuse and have fuzzier boundaries (compared to left hemisphere ones)
- Right-hemisphere lexical representations well suited for distant semantic connections
- Left hemisphere contains more sharply defined lexical representations

- ▶ Left hemisphere activates the salient meaning of an expression
- ► Right hemisphere is better at activating non-salient meanings
- ► These predictions fall out from the coarse-coding hypothesis (Beeman, 1998)
- Right-hemisphere lexical representations are more diffuse and have fuzzier boundaries (compared to left hemisphere ones)
- Right-hemisphere lexical representations well suited for distant semantic connections
- Left hemisphere contains more sharply defined lexical representations
- Thus activates a narrower range of associations in response to individual words

- ▶ Left hemisphere activates the salient meaning of an expression
- ► Right hemisphere is better at activating non-salient meanings
- ► These predictions fall out from the coarse-coding hypothesis (Beeman, 1998)
- Right-hemisphere lexical representations are more diffuse and have fuzzier boundaries (compared to left hemisphere ones)
- Right-hemisphere lexical representations well suited for distant semantic connections
- ▶ Left hemisphere contains more sharply defined lexical representations
- Thus activates a narrower range of associations in response to individual words
- More frequent meanings are more salient

Graded Salience Hypothesis receives some support from fMRI and TMS experiments

Graded Salience Hypothesis receives some support from fMRI and TMS experiments

► Literal (paper napkin) vs metaphoric (paper tiger) word pairs given to subjects

Graded Salience Hypothesis receives some support from fMRI and TMS experiments

- ► Literal (paper napkin) vs metaphoric (paper tiger) word pairs given to subjects
- ► Subject judgement: literal, novel metaphors, conventional (familiar) metaphors, or unrelated

Graded Salience Hypothesis receives some support from fMRI and TMS experiments

- ► Literal (paper napkin) vs metaphoric (paper tiger) word pairs given to subjects
- ► Subject judgement: literal, novel metaphors, conventional (familiar) metaphors, or unrelated
- Novel metaphors produced greater response than conventional/familiar metaphors in the right hemisphere

fMRI Results (Mashal, Faust, Hendler, & Jung-Beeman 2007)

Figure: Orange areas represent parts of the brain that responded with greater activity to novel metaphors compared to conventional/familiar metaphors. The circled area is the right homologue of (counterpart to) Wernickes area.