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Abstract

Systems and network-based approaches are becoming increasingly popular

in cellular biology. One contribution of such approaches has been to shed

some light on the evolutionary origins of core organisational principles in

biological systems, such as modularity, robustness, and evolvability. Models

of interactions between genes (epistasis) have also provided insight into how

sexual reproduction may have evolved. Additionally, recent work on viewing

evolution as a form of learning from the environment has indicated certain

bounds on the complexity of the genetic circuits that can evolve within fea-

sible quantities of time and resources. Here we review the key studies and

results in these areas, and discuss possible connections between them. In

particular, we speculate on the link between the two notions of ‘evolvabil-

ity’: the evolvability of a system in terms of how agile it is in responding

to novel goals or environments, and the evolvability of certain kinds of gene

network functionality in terms of its computational complexity. Drawing on

some recent work on the complexity of graph-theoretic problems on modular
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networks, we suggest that modularity as an organising principle may have

its raison d’etre in its ability to enhance evolvability, in both its senses.

Keywords: Systems, Networks, Evolution, Evolvability, Modularity

1. Introduction

The last decade or so has witnessed the rise to prominence of an ap-

proach to biology that seeks to be more holistic than ‘conventional’ biology,

by experimenting on and modelling simultaneously the interactions between

different units like genes, proteins, and metabolites. This has broadly come

to be known as systems biology (Ideker et al., 2001; Kitano, 2002; Noble,

2010). A significant aspect of the systems approach has been the use of net-

works (Newman, 2003, 2009) to model the connectivity structures between

such units (Barabási and Oltvai, 2004). In this paper, we look at some of the

key results on the evolutionary implications of different biological network

models, including with regard to the evolution of reproduction.

A network consists of a set of elements (called nodes or vertices) and a set

of pairwise connections between those elements (called links or edges). The

type of networks we will be primarily concerned with here are gene regulatory

networks, which have been very widely studied in recent years (Schlitt and

Brazma, 2007; Hecker et al., 2009). Here the nodes are genes, and the links

represent regulatory relationships between genes, which may correspond to

either activation or inhibition. The detailed structure of such interactions

is depicted in Figure 1. A wide range of mathematical models have been

used to represent the dynamics of gene expression in such networks, ranging

from full-fledged ordinary differential equations to Boolean networks, where
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Figure 1: Detailed structure at a node of a gene regulatory network. Figure reproduced

from http://genomics.energy.gov.

each gene is always in one of two states, on or off (Schlitt and Brazma, 2007;

Hecker et al., 2009). Many studies looking at evolution and development

have made use of a basic Boolean network model first proposed by Wagner

(1994, 1996a), described further in Section 2.

Some of the evolutionary questions that gene network-based studies have

sought to address include:

• The emergence of properties such as modularity, robustness, and evolv-

ability in biological organisms (see Section 3).
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• The conditions that might favour sexual or asexual reproduction, with

particular reference to the role of epistasis, or dependencies between the

expression levels of genes — such dependencies are just what network

models seek to capture (see Section 4).

• What kinds of genetic circuitry and functionality are realistically evolv-

able, given time and resource constraints (see Section 5).

Here we review extant work in each of these directions, and then discuss

some broader implications, potential connections and prospects for future

research (Section 6).

2. Models of gene network dynamics and evolution

A basic Boolean model for gene network dynamics was proposed by Wag-

ner (1994, 1996a), and has been extended or adapted for use in several other

studies (Siegal and Bergman, 2002; Azevedo et al., 2006; MacCarthy and

Bergman, 2007). This model makes a number of simplifying assumptions:

most significantly, that the genes have just two relevant expression states,

which correspond to on/off, and that the regulatory effects of genes are in-

dependent of each other. Thus, the expression state of gene i at time t is

denoted by xi(t), which is either +1 (on or expressed) or −1 (off or not ex-

pressed). If we take a time step of τ , then the expression level of the ith gene

at time t + τ is specified in terms of the expression states of all genes (say

we have N of them) at time t, as follows (Wagner, 1996a):

xi(t+ τ) = σ

[

N
∑

j=1

wijxj(t)

]

. (1)
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Here wij is a weight specifying the extent to which the jth gene affects

the expression of the ith gene: positive weights correspond to activation,

and negative weights to repression. σ() is the sign function, i.e., σ(y) = +1

for y > 0 and −1 for y < 0. Once the initial expression states xi(0) have

been specified (these may be based on certain assumptions, or thought of as

determined by external factors), then the model gives the dynamics of how

these states evolve with time. These dynamics will eventually lead to some

equilibrium state, which may be a steady state (fixed point) where the states

become constant, or a limit cycle where they oscillate in a fixed pattern.

Thus far we have a model for network dynamics. How does this network

evolve with successive biological generations? To model this, one may con-

sider that there is an optimal equilibrium state xopt(∞) = {xopt
1 (∞), ..., xopt

N (∞)},

where the ∞ denotes that this is a state attained after the dynamics have

run for an infinitely long time. This may be motivated on the basis that if a

gene pathway network is acting in a developmental process, it is thought to

require a certain expression state to proceed optimally, and any deviations

that perturb development will reduce the organism’s fitness (Wagner, 1996a).

Then, for any given network, the equilibrium expression state achieved by

it may be denoted x(∞), and we would like to define a distance measure

between state vectors, for which a standard choice would be the Hamming

distance: d[xopt(∞),x(∞)] = 1/2 − 1/(2N)
∑N

i=1 xi(∞)xopt
i (∞) (Wagner,

1996a). Using this, the fitness f(x(∞)) of an individual with gene network

corresponding to equilibrium state x(∞) was defined by Wagner (1996a) via

a Gaussian function of the following form:

f(x(∞)) = exp

(

−
d[xopt(∞),x(∞)]2

s

)

. (2)
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Here s > 0 is a parameter which specifies the variance or spread of the

Gaussian; it represents the strength of selection for the optimal network,

with small s implying strong selection against variation from the optimum.

Given that a selection criterion has been defined, one can now set up an

evolutionary simulation structured as follows:

1. An ensemble of individuals (with given gene network characteristics) is

generated via some random mechanism.

2. Their fitness is evaluated as per (2), and the fittest ones are prefer-

entially reproduced in the next generation (via possible recombination

and mutation steps).

3. Steps 1 and 2 are repeated for an appropriate number of generations

or until the fitness optimum has been attained.

The use of this model to study the evolution of properties like robustness,

evolvability, and sex is discussed in Sections 3 and 4.

In some cases, the evolution of generic network characteristics like modu-

larity and frequencies of motifs (small subgraphs with particular connectivity

patterns) has been studied in synthetic systems that are meant to solve cer-

tain logical computation or pattern recognition tasks, like electronic circuits

and artificial neural networks (Kashtan and Alon, 2005; Kashtan et al., 2007;

Clune et al., 2013). Specifically, these systems were evolved (via simulations

of the fashion just described) under specific types of constraints:

• Modularly varying goals (Kashtan and Alon, 2005; Kashtan et al., 2007),

where the fitness is defined not just by performance on a single task,

but by the ability to adapt quickly to multiple tasks that contain com-

mon subtasks (a situation that often seems to apply in real life). For
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example, Kashtan and Alon (2005) evolved logic circuits that had to

compute the Boolean functions (X XOR Y ) AND (Z XOR W ) and

(X XOR Y ) OR (Z XOR W ); they kept switching the goal from one

to the other every 20 generations, and found that the system evolved

two separate modules to calculate the two subgoals, (X XOR Y ) and

(Z XOR W ). This made it possible to quickly rewire just the inter-

module connections to adapt each time the goal was switched.

• Minimal connection cost (Clune et al., 2013), where in addition to per-

formance on a given task, the defined fitness also included a component

for how low the total cost of the connections between the network nodes

was. This cost may be defined just as the number of connections in

the network (for unweighted links), or the total sum of all link weights.

Thus the evolved networks were attempting to simultaneously max-

imise performance and minimise total connection cost.

In the following section, we discuss what simulations with these models

revealed about the evolution of modularity in networked systems.

3. Modularity, robustness, evolvability

Many biological and engineered systems are observed to have the property

of modularity, i.e., they consist of distinct subunits which function largely

independently of each other (Hartwell et al., 1999; Kashtan and Alon, 2005;

Wagner et al., 2007). In the context of networks, ‘modularity’ has been given

a more formal mathematical definition by Newman and Girvan (2004). Many

real-world networks display some sort of modular organisation, as they can
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be partitioned into cohesive groups of nodes such that there is a relatively

high ratio of internal (within-group) to external (between-group) link density

(the number of links as a fraction of the number of possible links). Such

sub-networks, known as communities, are often construed to correspond to

distinct functional units (Girvan and Newman, 2002; Fortunato, 2010; Porter

et al., 2009; Agarwal, 2012). The Newman-Girvan technique attempts to

partition a network into groups of nodes so as to maximise the number of links

between nodes in the same group, whilst minimising links between nodes in

different groups. For a given partition, it quantitatively defines modularity as

essentially the excess of within-group links, relative to a comparable random

network with no modular structure (Newman and Girvan, 2004; Newman,

2006).

Kashtan and Alon (2005) used this measure of modularity to study whether,

in their model systems of logic circuits and neural networks mentioned earlier,

higher modularity would emerge under certain kinds of evolutionary selec-

tive pressures. They found that evolution under rapidly switching, modularly

varying goals leads to networks with high modularity and pronounced motifs,

whereas evolution under a single goal led to relatively nonmodular solutions

with low motif frequencies.

Their results further suggested that networks evolved under the first con-

dition appear to discover the common subtasks between the different goals,

and they evolve separate network modules for dealing with each subtask.

Thus, when the goal switches, the system is able to quickly evolve to

adapt, by keeping the same modules and just rewiring a few connections

between them (Kashtan et al., 2007). This is an instance of how system
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modularity (itself evolved in an environment with modularly varying goals)

can be an enabler of evolvability (Wagner, 1996b; Wagner and Altenberg,

1996).

There have also been other similar studies, in particular those by Hod

Lipson and collaborators, showing that modularity in networks can emerge

in response to environmental variation (Lipson et al., 2002), requirements for

stable linear dynamics (Variano et al., 2004), or the minimal connection cost

criterion (Clune et al., 2013). The last interestingly suggests that the pressure

to reduce connection costs may serve as an initial driver for the emergence of

modularity, a kind of bootstrapping process that creates sufficient modularity

to then allow selection for its evolvability benefits to set in, in environments

like the one with modularly varying subgoals. This may be necessary because

it has been suggested that the evolvability selection cannot get started until

modularity has reached a certain threshold, where its benefits for adaptation

speed begin to become apparent (Wagner et al., 2007; Clune et al., 2013).

Robustness is another property of biological systems that has been sug-

gested to be related to modularity and evolvability (Wagner, 1996b; Pigliucci,

2008). Robustness can have various senses: one is mutational robustness,

which is naturally enhanced in a modular system, since a mutation in a gene

would generally affect only the corresponding functional module (i.e., there

would be no pleiotropy), with the functioning of the other modules being

essentially independent (Wagner et al., 2007). A general notion of robust-

ness is in terms of the genotype-to-phenotype mapping: random or accidental

changes in the genotype should get buffered to preserve phenotypic outcomes,

like expression states in developmental pathways as indicated earlier. This
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property was referred to by Waddington (1942) as ‘canalisation’, and is also

known as epigenetic stability (Wagner, 1996a). A key idea has been that

both modularity and robustness are building blocks of evolvability, and that

natural selection leads to systems which are largely robust to mutations and

perturbations, but that can also respond quickly to changed environments

and take on new functionality, due to the effectiveness of certain special

types of mutations (e.g., those leading to rewiring between existing modules)

(Wagner, 2005, 2008; Pigliucci, 2008). Andreas Wagner’s notion of ‘neutral

spaces’ (Wagner, 2005) proposes that the canalisation or epigenetic stability

allows a range of genetic variants to build up in a population, which are in

essence functionally equivalent; the mutations mapping between them are

‘neutral’ in phenotype space. However, the existence of these variants en-

hances evolvability, as in a novel environment, some of them may be able

to adapt more easily and thus get selected. Modularity may even be a con-

sequence of selection for such robustness, as it may imply lower pleiotropy

(Wagner et al., 2007). It has also been demonstrated, using gene network

models of development dynamics as described in Section 2, that canalisation

may emerge just as a result of the need for developmental stability, and thus

may require no explicit selection for suppressed phenotypic variation (Sie-

gal and Bergman, 2002). Another recent simulation-based study by Steiner

(2012) has suggested that robustness and evolvability, just like modularity,

can emerge in response to fluctuating environments, in particular if the noise

or variation is autocorrelated.

Interesting correlations have also been suggested between modularity, ro-

bustness and modes of reproduction; we look at some of these next.
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4. The evolution of reproduction

The rationale for the evolution of sexual reproduction has long been a

matter of debate (de Visser and Elena, 2007). Studies suggest that the na-

ture of epistasis has a key role to play in determining the favourability of sex

and recombination, in terms of their contribution to mutational robustness

(Kondrashov, 1988; Azevedo et al., 2006; MacCarthy and Bergman, 2007).

There are two kinds of epistasis possible: negative/synergistic, where the mu-

tation of multiple genes is more harmful to fitness than the sum of the effects

of the individual mutations, and positive/antagonistic, where the combined

effect is less harmful than the individual ones. It has been hypothesised (the

deterministic mutation hypothesis) that sexual reproduction confers particu-

lar robustness benefits when there is negative epistasis, because recombina-

tion can cause individual deleterious mutations to come together, and then

if there is a substantial fitness loss such individuals will get selected against,

leading to the purging of the mutations from the population (Kondrashov,

1988; Azevedo et al., 2006). However this effectively just pushes the question

back a step, as one might now ask why negative epistasis itself evolved?

Azevedo et al. (2006), working with a gene network model of the type

discussed in Section 2, show via simulations that negative epistasis can actu-

ally evolve as a consequence of sexual reproduction itself. Thus there is the

possibility of a bootstrapping process; once some degree of negative epistasis

has emerged initially, it favours the evolution of sex, which in turn selects

for further negative epistasis, thus enabling its own maintenance. In their

simulations, network evolution was implemented both sexually (via recom-

bination) and asexually (mutation only), with selection for networks that
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exhibited stable gene expression patterns; it was found that sexual reproduc-

tion leads to the emergence of greater mutational robustness than asexual

reproduction. Also, starting from an initial condition of average positive epis-

tasis, only sexual reproduction led to a switchover to negative epistasis. In

similar work, Misevic et al. (2006) also found that sexual reproduction leads

to greater robustness, and also greater modularity in the genome. Steiner

(2012) found that both robustness and evolvability evolve more strongly in

sexually reproducing populations.

MacCarthy and Bergman (2007) also carried out simulations with the

same type of gene network model, but they allowed both epistasis and the

reproductive mode (sexual vs. asexual, i.e., the amount of recombination)

to coevolve, rather than just fixing one and looking at the effect on the

other. They found that in this setting, asexual reproduction actually out-

does sexual reproduction in terms of fitness benefits, thus casting doubt on

the deterministic mutation hypothesis. Their results indicate that epistasis

does not determine the fate of the reproductive mode, but that the converse

determination does happen: asexual reproduction leads to positive epistasis,

whilst sexual reproduction encourages negative epistasis, in accordance with

earlier studies (Azevedo et al., 2006; Misevic et al., 2006). Thus, MacCarthy

and Bergman (2007) demonstrate the importance of looking at the coevolu-

tion of parameters like epistasis and recombination, rather than examining

one in isolation, and tells us that we still do not have a clear-cut explanation

for the evolution of sex.
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5. Evolution as computational learning

The term evolvability has been used so far in our discussion to mean the

capacity of an organism to produce new variants and functionality and thus

respond to environmental changes (Wagner and Altenberg, 1996). Recent

path-breaking work by Feldman, Valiant, and collaborators (Feldman, 2008;

Feldman and Valiant, 2008; Valiant, 2009; Feldman, 2009; Kanade et al.,

2010) has sought to formalise a somewhat different notion of evolvability:

what kinds of functionality can evolve at all, given reasonably constrained

time and resources? This work places evolution with the context of compu-

tational learning theory (Valiant, 1984; Anthony and Biggs, 1997), viewing it

as a form of learning from experience (across generations). This is a partic-

ularly interesting perspective because it implies that evolved characteristics

are also ‘learnt’ (just as the learning that happens over an individual’s life-

time); and thus the traditional ‘nature vs. nurture’ debate may be irrelevant

to understanding the emergence of biological behaviour.

The puzzle of evolvability is how complex mechanisms can evolve with-

out the occurrence of unlikely events (Valiant, 2009). Darwin’s key insight

was that natural selection could provide a plausible answer. In order to

reach a specific functional target, there needs to be an evolutionary path

consisting of small steps, each of which conveys some discernible fitness ben-

efit. One might ask, what are the conditions in biology which allow such

paths to be taken routinely and efficiently? Are some kinds of mechanisms

too complex to be evolvable via such paths in a feasible amount of time?

These kinds of questions had not been formally addressed prior to Feldman

and Valiant. Their major contribution is to have laid out a mathematical
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framework within which this can be done. If we view biological mechanisms

as mathematical functions, then considerations of computational complexity

allow us to examine what sorts of function classes are feasibly evolvable.

The following are the fundamental notions underlying the framework for

evolvability set out in Valiant (2009):

• The targets of evolution are essentially many-argument functions. In

the context of gene networks, for instance, each gene’s expression level

can be thought of as being determined by a function of all other genes

that regulate it (possibly including itself). Suppose there are N genes

that could regulate gene i; we denote the expression levels of these

genes by x = {x1, x2, ..., xi, ..., xN} (in this model time has not been

considered explicitly, as it is assumed that these are steady state ex-

pression levels). Then the expression level of gene i is some function

of all these expression levels: xi = f(x1, x2, ..., xN ); for instance, f()

could be a simple sign function of a linear function, of the form of (1).

Here we assume that each xi is restricted to being either +1 or −1, as

also in the model described in Section 2.

• For any gene, there is assumed to be an optimal function f(x) for its

expression state; this is the function, which if achieved, would confer

maximum fitness to the organism. Suppose the actual function evolved

is r(x), then a performance measure is defined which quantifies the

similarity between the actual and optimal functions, given a probability

distribution over input states DN(x):

Perff(r,DN) =
∑

x

f(x)r(x)DN(x). (3)
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This can be seen as a fitness landscape over the space of possible func-

tions r(x): it effectively captures the correlation between r(x) and

f(x), with a value of 1 corresponding to perfect correlation and -1 to

perfect anti-correlation (see Figure 2). These functions can effectively

be thought of as representing the regulatory network controlling the

expression of a given gene, just as described in the model presented in

Section 2. If the distribution DN(x is non-uniform, then the perfor-

mance measure becomes a weighted correlation over input states, with

each state weighted by its likelihood of occurrence. This allows it to

capture more general situations where not all gene expression states

are equally likely in a given environment.

• It is assumed that the size of the population that can be produced in

each generation is limited (limited resources).

• It is assumed only a limited number of generations are available for the

emergence of any given mechanism or function type (limited time).

Given these guidelines, Valiant (2009) uses the mathematical framework

of Probably Approximately Correct (PAC) learning (Valiant, 1984) to evalu-

ate whether certain classes of functions can be evolved (with high probability

and small error) within time and resources that are polynomial functions of

the number of genes N . Evolution occurs via mutation and selection based

on the performance measure (3). Mutations are appropriate small changes,

based on the form of the function class being dealt with; for instance, if we

are optimising over the space of all disjunctive functions (those of the form

x1 OR x2 OR x4..., so that if any one of the inputs is on then the output is
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Figure 2: Example of how the performance measure defines a fitness landscape over pos-

sible functions. Here f is assumed to be the ideal or target function; r1 to r16 are the 16

possible binary two-input functions; and U2 denotes the uniform distribution over possible

input states for the 2 genes, x1 and x2.
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on), then a single mutation may involve removing or adding a single variable.

Within this setup, Valiant is able to prove that some function classes are

evolvable whilst others are not. For example, monotone Boolean conjunctions

(e.g., x1 AND x2 AND x4...) and disjunctions (e.g., x1 OR x2 OR x4...) are

shown to be evolvable if the distribution DN over input instances is uniform,

meaning that if the search space is restricted to one of these classes, then

the optimal function within the class can be evolved in polynomial time and

resources. For arbitrary input distributions evolvability remains an open

question. On the other hand, parity functions (functions that return +1 if

and only if an odd number of the inputs are +1) are not evolvable in this

sense for any sort of distribution over input instances.

These results are primarily interesting because they demonstrate that

the Darwinian notion of evolution can be mathematically formalised and

the tractability of the evolution of different sorts of complex mechanisms

can actually be studied analytically. Since certain function classes are not

feasibly evolvable, biology must have made a choice of which classes are

actually implemented in living systems (like gene networks); it is interesting

to ask how this choice got made. Does it reflect physical constraints on

the sorts of mechanisms that are actually possible in biochemistry? Could

the restriction on possible types of mechanisms lie behind the emergence of

modularity?

6. Discussion

In this paper we have surveyed a variety of approaches involving the use

of ‘systems’ or network-based approaches to try and understand the evolu-
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tion of biological functionality. One set of studies has used simulations of

evolving network models, and suggested possible explanations for the emer-

gence of properties like modularity: it may facilitate adaptation to modularly

varying goals (Kashtan and Alon, 2005), and/or it may simply reflect selec-

tion for lower connection costs (Clune et al., 2013). Similar models have

also been employed to study the effects of sexual and asexual reproduction.

Whilst it was shown that in a sense, sexual reproduction could ‘forge its

own path’, by favouring the emergence of negative epistasis, which in turn

favours the maintenance of sex for robustness reasons (Azevedo et al., 2006),

another study indicates that if both reproduction mode and epistasis are al-

lowed to coevolve, the picture becomes more complicated and in fact asexual

reproduction appears to outcompete sexual reproduction (MacCarthy and

Bergman, 2007). Thus, the results of such simulation studies need to be

interpreted with caution. Finally, we discussed some recent work on a differ-

ent, more formal notion of evolvability, which models evolution as a form of

computational learning, and (using a number of simplifying assumptions), is

able to mathematically prove that certain kinds of complex mechanisms are

feasibly evolvable whilst others are not.

The possibilities for combining the insights from some of the work pre-

sented here are of great interest. In particular, can the analytic approach of

Valiant be extended to examine the questions that have been sought to be ad-

dressed by simulation thus far? To take a specific example, a running theme

through this survey has been the property of modularity shown by biologi-

cal systems, and what evolutionary explanations it might have. We suggest

exploring the connections between the following three strands of enquiry:

18



• Simulations which have shown that modular gene networks can achieve

certain tasks or functionality either quicker (Kashtan and Alon, 2005;

Kashtan et al., 2007) or more cheaply (Clune et al., 2013).

• Theoretical work on evolvability which allows us to put bounds on

what is feasibly evolvable. It has also been suggested by Valiant (2009)

that modularity in biology could be “a consequence of the limitations

of evolvability”. At the same time, this work has also suggested that

learning occurring in multiple phases, with varying target functions,

can lead to the evolution of arbitrarily complex genetic circuits; how

does this link to the simulations showing the emergence of modularity

and greater evolvability under modularly varying goals (Kashtan and

Alon, 2005; Kashtan et al., 2007)? Also, can the Valiant approach

be extended somehow to show that the existence of modularity reduces

the complexity (in terms of either time or resources) of evolving certain

kinds of functionality on gene networks, providing analytical backing

to the simulation results of Kashtan and Alon (2005); Kashtan et al.

(2007); Clune et al. (2013)?

• Some very recent work from a more general perspective has demon-

strated that modular structure in networks can make it easier to solve

certain hard graph-theoretic problems, both empirically (Agarwal, 2012)

and theoretically (Bui-Xuan and Jones, 2013). In particular, these

have looked at problems involving finding the shortest paths or walks

traversing all the nodes in a given network or graph (the famous travel-

ling salesman problem, or variants thereof). Could this also be relevant

19



to the evolution of modularity? If we conceive of the primary role of

biological systems as being information processing, then it is certainly

plausible that tasks like information flow on gene networks might also

be aided by structural properties that make routing easier. Can this

notion be formalised and analysed within the Valiant framework? Can

the graph-theoretic complexity analysis of Bui-Xuan and Jones (2013)

help to modulate the evolvability of certain complex mechanisms on

networks that have high modularity?

In the 150 years since Darwin proposed his seminal theory, it has led

to huge advances in our understanding of biology; but many questions have

also remained unanswered. The powers and limits of evolution continue to

be fascinating topics for enquiry. In particular, the evolution of sexual repro-

duction remains a significant mystery, despite the existence of several varied

and competing hypotheses attempting to explain it. Systems approaches,

brought to prominence by the high-throughput data revolution, have led to

some promising insights into the nature of evolution in recent years. But

much work still remains to be done to build on these and obtain experimen-

tal verification of their outcomes, in order to connect the simple abstractions

of networked models with the real-world complexity of living organisms.
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