

Programming Languages and
Compilers

Sumeet Agarwal
Department of Electrical Engineering

IIT Delhi

References:
● Aho, Sethi, and Ullman. Compilers: Principles,
Techniques, and Tools.

● MacLennan. Principles of Programming
Languages: Design, Evaluation and
Implementation.

Programming Paradigms

● Imperative
– Procedural

– Structured/Object-oriented

● Declarative
– Functional

– Logic

Imperative vs. Declarative

● Imperative programming uses a state-based
model of computation (Turing machine);
expresses programs in terms of sequences of
command statements to change states

● Declarative programming uses a function-based
model of computation (Lambda calculus);
expresses programs as logical or functional
statements, without control flow

HOW vs. WHAT

Procedural programming

● C, C++, Fortran, Pascal, BASIC
● Break down your task into variables, data

structures and subroutines
● Use of procedures, modularity for efficiency

and clarity (e.g., scoping)
● Allows for development of shared libraries

Structured programming, OOP

● Structured: Extensive use of subroutines,
blocks, for/while loops (as opposed to goto);
modularity very important

● OOP (Smalltalk, VB.NET, C#, Java, Python,
Ruby): Arrange data attributes and methods
into objects; break down your programming
task into a collection of interacting classes of
objects

● Control flow less clear in OOP; in this sense
less 'imperative'

Functional programming

● LISP, Scheme, Haskell, SQL, Lex/Yacc
● Computation as evaluation of mathematical

functions; implementation left to compiler
● As opposed to 'functions' in procedural

languages: no side effects, referential
transparency

● Used more in academia, not so much in
commercial or industrial applications

Logic Programming

● Prolog, Datalog
● Theory of computation based on first-order

logic
● Typically uses Horn clauses to make

declarative statements:

grandparent(A,B) if parent(A,C) and
parent(C,B)

● Can be seen procedurally as goal reduction

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

