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Background

Recent years have seen the collection of vast quantities
of data on expression levels and interactions of genes
and gene products in various organisms. Such data has
been analysed and modelled in many ways. One of the
most popular paradigms for modelling interaction data
has been to look at it as a network of linked compo-
nents [30]. This approach has led to the construction
of several types of biological networks, such as those for
gene regulation, protein interactions and metabolic re-
actions. In this project, our broad aim will be to look at
ways of integrating different kinds of experimental data
in order to get insights into the functional organization
and dynamics of biological networks. Another goal will
be studying the evolutionary history of biological net-
works: an understanding of the mechanisms of their
evolution may help us to explain some of their observed
properties and how they relate to network robustness.

Our current focus is on protein-protein interaction net-
works, which represent experimentally observed physical
binding interactions between proteins in a cell (these are
collectively referred to as the interactome). The devel-
opment of high-throughput screening techniques has led

to the compilation of large interaction datasets, in par-
ticular for yeast. The two major experimental methods
used are yeast two-hybrid (Y2H) screening [12,13,24,36],
and tandem affinity purification followed by mass spec-
trometry (TAP/MS) [15,23]. The quality and reliability
of available datasets is a major issue; recent studies [37]
indicate that the properties of Y2H and TAP/MS data
differ substantially, with the latter mostly picking up
interactions that are part of protein complexes, whilst
Y2H is better at capturing more transient binary inter-
actions. Consequently, interaction networks constructed
from the two kinds of data also tend to have different
characteristics, and one of the key problems in this area
is how to combine insights from the different experimen-
tal sources in order to obtain a comprehensive picture of
the interactome’s organisation.

One of the major theoretical approaches to modelling
sets of interacting elements in various domains has been
to look at them as graphs or networks [30]. Here the
elements are represented by nodes, and interactions are
represented by links between nodes. In particular, for
protein interaction networks, the usual method is to
have a node for each protein, and place a link between
all pairs of interacting proteins. Typically, no direction
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or weight is attached to these links; thus the interac-
tome is generally modelled as an unweighted, undirected
network. Various properties can be studied for such
networks - a particularly relevant one in this context is
that of community structure [11, 17]. Roughly speaking,
a community (also sometimes referred to as a cluster or
module) is a set of nodes with a higher than expected
number of links amongst them, as compared to links
to nodes outside the community. Many real-world net-
works have been shown to possess significant community
structure [30], as compared to random networks with the
same distribution of node degrees. In particular, several
studies have pointed towards modular organisation of
the proteome [16,20,26], with densely interacting groups
of proteins being responsible for specific functions and
processes. Community structure has also been seen in
metabolic networks; a study by Guimerà and Amaral [19]
showed that metabolites could be assigned distinct roles
in the network by means of a topological analysis based
on communities.

The dynamics of these biological networks are also im-
portant: for example, it is clear that the interactome is
not a static network, but in fact the actual set of proteins
and interactions active at a given time and place is highly
dependent on the physiological conditions. Looking at
gene expression levels using microarray data [14, 25] can
tell us which proteins are being expressed in a given sit-
uation. In a pioneering study, Han et al. [20] combined
protein interaction and expression data to show the ex-
istence of two kinds of ‘hubs’ in the protein interaction
network of Saccharomyces cerevisiae: party hubs, which
interact with a number of partners simultaneously, and
date hubs, which interact with several partners at differ-
ent points in time. It was posited that these two kinds
of hubs may play a key role in the modular organiza-
tion of the interactome, with party hubs coordinating
a given function and date hubs serving to link different
functions. However, there has been considerable debate
over the validity of the date/party hub distinction [4–6],
with some studies suggesting that it may at least in
part have been an artifact of the particular datasets and
statistical techniques used, and that the actual range of
‘roles’ taken on by hubs is more diverse than a simple di-
chotomy. For instance, Komurov and White [26] showed
that another kind of distinction, that between statically
and dynamically expressed proteins, may also be of sig-
nificance. Since the notion of node roles in a network is
essentially a structural one, it may better to assess these
by way of structural metrics, as in [19], rather than by
using statistics based on expression data.

There are several other approaches to looking at net-
work dynamics and integrating multiple kinds of infor-
mation. Recent work by Hegde et al. [21] has sought
to use microarray expression data to reduce the interac-
tion network to an ‘active’ subnetwork under different
sets of conditions (i.e., the subnetwork contains only
interactions between proteins being expressed in that
condition), and then study the differences between these
subnetworks to learn how the roles of different genes are
affected by a changing cellular environment. Marazi-
otis et al. [28] take the alternative route of clustering
genes by expression data and using these clusters to
assign weights to known protein-protein interactions,
followed by community detection on the weighted net-
work. Another type of data which has recently been
made available relates to phenotypic effects of gene dele-
tion. Hillenmeyer et al. [22] look at the growth response
of single-gene deletion strains to a wide range of chem-
ical and environmental stress conditions, such as the
presence of drugs. They find that 97% of gene deletions
exhibit a measurable growth phenotype relative to the
wildtype, and also show that meaningful gene groups
can be extracted by clustering the phenotypic profiles
across different conditions. Such data can serve as an-
other source of information for the analysis of proteome
organisation.

Finally, some recent work by Bonneau et al. [10] has
attempted to take these approaches further by construct-
ing a predictive model of dynamic interactome response
to environmental changes for the archæon Halobacterium

salinarum NRC-1. This is done by data-driven discovery
of functional and regulatory relationships amongst genes
and abiotic environmental factors. The model is able
to accurately predict dynamic transcriptional responses
of genes for a number of experiments representing com-
pletely new genetic backgrounds and environments. The
success of this kind of modelling suggests a very high
degree of completeness in the constructed networks, and
provides a possible way out of the perennial problems
of data quality and completeness. There have also been
other promising efforts to integrate multiple types of
data and use them to construct network-based models
for predicting expression and phenotypic responses to ge-
netic perturbations and environmental changes [27, 38].
Approaches of this sort may be a pointer to the future di-
rection we need to take in order to achieve a systems-level
understanding of the functioning of biological networks.
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Research Plan and Initial Results

Our focus in the initial part of this project has been
on looking at node roles in the protein interaction net-
work, in particular in the context of the date/party hub
hypothesis. We have been working largely with the pro-
tein interaction datasets which were used to perform
the experiments leading to the hypothesis [6, 20]. Our
attempt has been to examine structural properties of
the network and of individual nodes within it, and see
whether these are in consonance with a date/party type
dichotomy. Towards this end, we initially partitioned
the network into communities, via maximising one of
the metrics which has been devised for quantifying com-
munity structure, called modularity [32]. This metric
formalises the notion of within-community links being
more frequent than one would expect in a corresponding
random network. The general problem of finding the
optimal partition into communities as per this metric
is computationally intractable [7]; but there exist many
approximate optimisation algorithms. The one used by
us was the spectral partitioning method proposed by
Newman [31]. We found that most of the communities
discovered in this network are meaningful in the sense
of having a high degree of functional homogeneity, as
measured by shared protein annotations from the Gene
Ontology (GO) database [2]. We then looked topologi-
cal measures for each node, such as the number of links
within its community and the distribution of links across
communities, and based on these categorised nodes into
roles as per the method of Guimerà and Amaral [19].
We found that the proposed date and party hubs did
not fall cleanly into any particular role or subset of roles,
and also that there was no apparent bimodality in the
distribution of hub roles but rather a more evenly spread
continuum of varying roles [1].

Based on these results, obtained for multiple datasets
and also verified by looking at other measures of node
importance such as centrality measures [33], there seems
to be good evidence for refuting the date/party hub hy-
pothesis for protein interaction networks. More recently,
we have been looking at possible alternative ways of un-
derstanding the different structural functions of proteins
in such networks. One such possibility is to look at cen-
trality measures on links (i.e., interactions) rather than
nodes. Using a standard measure known as betweenness
centrality [17, 30], which measures how important a link
is to global network connectivity, we have found a fairly
strong inverse correlation between a link’s betweenness
and the functional similarity of the two proteins it links.
There is also some indication of a centrality ‘threshold’,

a point beyond which there is a sudden drop in mean
functional similarity (again assessed based on GO anno-
tations); and this threshold appears to be a function of
the network size. This leads to the idea that there may
broadly be two types of interactions, those occurring
within communities of functionally linked proteins and
those serving as bridges between such communities. This
notion also corresponds fairly well to the long-established
theory of ‘strong’ and ‘weak’ ties in the social networks
literature [18, 34].

In the short-term, our primary aim will be to see if
similar results are replicated across multiple datasets for
different species (our current results are for relatively
small yeast datasets), as well as examining whether this
sort of link categorisation might be a general property of
modular networks from various domains, or whether it is
in some way specific to our protein/biological networks.
Also, there is evidence to suggest that one of the rea-
sons for observing a date/party hub distinction in some
cases may be the combination into a single dataset of
interactions from both Y2H and TAP/MS experiments,
which tend to differ markedly in their properties [37]. We
will look at the relation between data source and link
centrality properties as well, along with the question of
reliability of data from different sources, which we will
try to assess based on network structure [8].

A key goal for the short to medium-term will be to
look at approaches to data integration, as indicated ear-
lier [10, 27, 38]. We now have access to a number of
datasets relating to proteins and the genes that code
for them, giving us information about their interactions,
expression levels, localisation, response to environmental
changes, knockout phenotypes and so forth. A major
challenge is to devise appropriate frameworks and al-
gorithms to be able to build models that draw on all
of this diverse knowledge. Bonneau et al. have taken
some steps in this direction: they stress the importance
of appropriately integrating data obtained from vari-
ous high-throughput technologies into a comprehensive
model that can quantitatively predict how an organism’s
cellular networks will interact with the environment and
what responses this will lead to [10]. To start, we will
attempt to look at this issue largely in the context of the
organisation of the proteome and the roles of different
proteins, and how these things are affected by chang-
ing physiological conditions. Related to this, another
medium-term task will be to formulate a more appro-
priate notion of ‘roles’ for proteins, which might serve
as an alternative to a date/party hub conception. Such
a notion may take into account multiple levels of or-
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ganisation in the interactome, such as the possibility of
communities themselves being grouped. We will attempt
to use the recently proposed framework of hierarchical
random graph models [9] to study multi-level structure
in interaction networks. It may turn out that in terms
of network structure, it is more appropriate to talk of
roles for protein interactions rather than for individual
proteins; this is perhaps suggested by our current results.

In the longer term, one of our aims is to look at the
evolutionary processes that may have shaped the struc-
ture and dynamics of biological networks. Comparison
of interactome organisation across different species can
give us some insight into how it evolves; for instance, a
study on available human data shows enrichment for in-
teractions between proteins from the same evolutionary
lineage, which may suggest a mechanism of preferential
attachment between such proteins [35]. If we observe
properties like date and party ‘hubness’ for certain pro-
teins, we might also ask if such properties are biologically
conserved. In general, can observed variation and con-
servation in these networks be explained by some of
the proposed models of network evolution [3]? It has
been shown that a machine learning approach based on
frequencies of small motifs can be used to confidently
predict growth mechanisms for the protein interaction
network of Drosophila melanogaster [29]. We will look to
use similar approaches to predict such mechanisms for
other species, and for change across species. It would
be of interest to study appropriate evolutionary models,
or formulate them if required, to see what they imply
about network functionality and robustness.

Another long-term goal will be to work towards a unified
framework for modelling and understanding the various
kinds of biological networks that are currently studied,
such as gene regulatory networks, protein interaction
networks and metabolic networks. This can be seen as
a natural extension of the data integration approach
mentioned above; it is clear that the entities in each of
these networks are linked, and there is a continual flow
of information between them. Ultimately, we might like
to be able to think of an entire biological system (which
may be a cell, an organism or even an entire population
or society) as being modelled by one single network (or
perhaps by some more complicated formal structure de-
rived from it), which would have many different levels of
organisation. It would be interesting to consider what
the basic elements of such a structure might actually
represent: would they be things like genes or proteins,
would they be of multiple types, or would they perhaps
need to capture some more abstract notion of biological

building blocks? It is unlikely that definitive answers
to such questions will be available any time soon, but
we hope in the course of this thesis to take a few steps
towards this ultimate end.

Proposed Timeline

• Next 3-4 months (till April 2009): Study edge
centrality properties for bigger yeast protein in-
teraction networks and networks in other species;
look at how these compare to observations on real-
world networks from other domains, such as so-
cial networks. Look at variations by experimental
source and data reliability. Collect, write up and
submit for publication results on evidence against
date/party hub view of proteins, and alternative
notions such as weak/strong type interactions in
protein networks.

• Next 8-9 months (till September 2009): Start to
study data integration approaches with a partic-
ular view to improving the understanding of pro-
tein interaction networks. Combine at least some of
expression, genetic interaction and knockout phe-
notype data with interaction data to create more
comprehensive networks; study community struc-
ture and other structural features in these networks
to better categorise proteins and protein modules.
Also look at hierarchical structure models for these
networks and their possible use in refining the no-
tions of protein roles and functional groupings.

• 3rd and 4th years (till September 2011): Extend
further the work on data-driven integrated models,
including looking at predictive models of system re-
sponse to environmental changes. Enlarge the ‘sys-
tem’ by attempting to incorporate multiple inter-
action types like genetic regulation, protein-protein
and metabolic reactions into the same network-
based model. An intermediate stage towards this
may be a sort of ‘network of networks’, with en-
tities of the different types represented in distinct
networks with some linkages between them. Also,
look at models for evolution of biological networks,
based on comparative studies of network properties
across species. In the final year, collect results and
observations from the different strands and present
them as a coherent thesis.
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