
ELL784: Problem Set 2

September 16, 2022

1. Suppose we have observed a set of data points x1, x2, ..., xN drawn from a univariate Gaussian
distribution with mean µ and variance σ2. Write down the likelihood function for this data.
By differentiating the log likelihood with respect to µ and σ2, derive their respective maximum
likelihood estimates. Also obtain the expected values of these estimates (see Bishop, Exercise
1.12).

2. A biased coin with probability of heads given by θ is tossed N times, and M heads are ob-
served. (a) Write down the likelihood function, and obtain the maximum likelihood estimate
for θ, as a function of N and M . (b) Now assume that the prior distribution on θ is given
by the Beta(2, 2) distribution:

p(θ) = 6θ(1− θ); 0 ≤ θ ≤ 1 (1)

Use a Bayesian formulation to obtain the posterior distribution for θ as a function of N and
M . Derive the maximum a posteriori (MAP) estimate for θ. How does this differ from the
maximum likelihood estimate? What intuition does this give you about the choice of prior
we used?

3. Suppose I have data points x1,x2, ...,xN , where each point is a vector, so for instance x1 =
(x11, x12, ..., x1D), where D is the dimensionality of the input space. Now suppose I use a set
of M basis functions, φ1(.), φ2(.), ..., φM (.) to map my data points into a new M -dimensional
feature space. My N ×M design matrix in this feature space is given by:

Φ =


φ1(x1) φ2(x1) ... φM (x1)
φ1(x2) φ2(x2) ... φM (x2)
...

φ1(xN ) φ2(xN ) ... φM (xN )

 (2)

Also suppose that the target or output value for the nth data point is given by tn, and define
t = (t1, t2, ..., tN )T. Show that the matrix Φ(ΦTΦ)−1ΦT (the product of Φ and its Moore-
Penrose pseudo-inverse) orthogonally projects the vector t onto the space spanned by the
columns of Φ. (This corresponds to algebraically proving the geometrical interpretation of
the least-squares solution, which was discussed in class.)

4. Consider a data set containing K classes of data, denoted C1, C2, ..., CK . Suppose I am given
a K × K loss matrix L, such that Lij denotes the loss incurred in classifying an object of
class Ci into class Cj . Also suppose that I have the reject option, i.e., for some objects my
classifier may refuse to classify them, and in such a case the loss incurred is λ. (a) Obtain a
formulation for the optimal decision criterion, i.e., the one which minimises the expected loss,
as a function of the class posterior probabilities from the classifier, L, and λ. (b) Suppose
my loss matrix is given by Lii = 0;Lij = 1; 1 ≤ i, j ≤ K; i 6= j. Show that in this case
the criterion reduces to a simple rejection threshold θ (see Bishop Figure 1.26). How does θ
relate to λ?
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