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Abstract

A key question in modern biology is how the apparent
complexity of protein interaction networks relates to bi-
ological functionality. One way of understanding the set
of proteins and their interactions (known as the interac-
tome) is to look at them as a network of nodes connected
by links. By studying the structure of this network, we
may hope to learn something about the interactome’s or-
ganisation. However, it is important to note that this in-
teraction network is not static or uniform throughout the
organism: at different times, and under different physi-
ological conditions, it varies substantially, as expression
levels of proteins vary. In this project our goal was to
use gene expression data to try and infer which parts of
the interactome would be ‘active’ at a given time and
place, and thus to study the dynamics of its organisa-
tion. We attempt to look at the idea of static and dy-
namic modules (Komurov and White, 2007), based on a
partitioning of the network into communities. Our re-
sults provide some, though not very strong, evidence for
these. Another aspect we focus on is the function of
highly connected nodes, or hubs, in the interactome. It
has been proposed that hubs fall into two classes, ‘date’
and ‘party’, and that these play a key role in the modular
organization of the yeast interactome (Han et al., 2004).
This classification was made on the basis of the extent to
which hubs are co-expressed with their interaction part-
ners, but was then used to impute to them specific topo-
logical roles. We attempt to use purely topological mea-
sures to examine the extent to which these hubs really
fall into the roles thus attributed. Based on a study of
multiple yeast and human datasets, our results suggest
that there is little evidence for a clear date/party distinc-
tion, but rather hubs in the protein interaction network
seem to perform a variety of roles falling along a contin-
uum. Finally, we look at how incomplete datasets and
the experimental methods used to generate interaction
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data may influence what we observe.

1 Introduction

Advances in molecular biology in recent years have al-
lowed us to acquire a vast store of information about
the molecules which are the primary building blocks of
life on earth: proteins. We now know much about their
makeup, their structural forms, the levels at which they
are expressed in various situations, and their bindings
and interactions. However, there remains a major dis-
connect between this new knowledge and the traditional
study of biology, where living organisms are analysed by
breaking them down into organs and organ systems and
studying their respective functions. The challenge which
has been receiving much attention in the last few years is
that of going from the biochemistry of tens of thousands
of proteins to the physiology of a relatively small num-
ber of high-level functions and processes. A key step in
making this connection is to understand how groups of
proteins combine to carry out various tasks. Thus, there
has been a lot of interest in the study of the interac-
tome, i.e., the set of all physical protein-protein interac-
tions. The interactome can tell us how proteins ‘talk’ to
each other, and how coordination amongst them comes
about. Given that even a relatively simple organism like
baker’s yeast (Saccharomyces cerevisiae) is thought to
have nearly 18,000 protein-protein interactions (Yu et al.,
2008), it is clear that a very complex system underlies the
high-level biological functionality which we observe, and
understanding how it comes about is a major challenge.

From a mathematical perspective, the interactome is
a graph or network, where nodes represent proteins and
unweighted, undirected links between them represent bi-
nary interactions. A study of the structure and organi-
sation of this network is likely to provide insights which
will aid in forming abstractions for higher-level under-
standing. In particular, we have tried to look at the
extent to which protein interaction networks are mod-
ular and exhibit coherent community structure (New-
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man, 2006b). The mathematical concept of modularity
quantifies the extent to which the number of links falling
within groups exceed the number that would be expected
in an equivalent random network (Newman and Girvan,
2004). Based on this quantity, we can attempt to par-
tition a network into subnetworks such that ‘modular-
ity’ is maximized: this is one of the standard techniques
for community detection. The subgroups or communi-
ties thus formed have been found to be informative with
regard to functionality in a number of social and bio-
logical networks (Girvan and Newman, 2002; Fortunato
and Castellano, 2008). Here we run community detection
algorithms on protein interaction networks and look at
whether proteins with similar functions group together.
This is assessed using annotations assigned to proteins
with known functions, as per the Gene Ontology (GO)
database (Ashburner et al., 2000).

Another important issue is the dynamic nature of the
interactome. Protein interaction networks as constructed
from data obtained via techniques like yeast two-hybrid
screening do not capture the fact that the actual inter-
actions occurring in vivo depend on the prevailing phys-
iological conditions. For instance, the proteins that are
being actively expressed vary from tissue to tissue in the
body of an organism, and also change over time. Thus,
the specific parts of the interactome which are active and
the organisational form it takes is determined to an ex-
tent by where and when we are looking at it: this is what
we refer to as ‘dynamically organised modularity’. In or-
der to incorporate such information, mRNA expression
data from microarray experiments can be used to get
measures of which protein pairs are co-expressed. Han
et al. (2004) used such expression data to examine the
extent to which hubs (defined by them as proteins with
5 or more interactions) in the yeast interactome are co-
expressed with their interaction partners. Based on the
averaged Pearson correlation coefficient (PCC) of expres-
sion over all partners, they found that hubs fall into two
distinct classes: those with a low average PCC (called
‘date’ hubs) and those with a high average PCC (‘party’
hubs). They inferred that these two types of hubs play
different roles in the modular organization of the net-
work, with party hubs serving to coordinate a single func-
tion performed by a community of proteins all expressed
at the same time, and date hubs serving as higher-level
connectors between communities which perform varying
functions and are active at different times. However, the
validity of the date/party hub distinction has since been
debated in a sequence of papers (Batada et al., 2006;
Bertin et al., 2007; Batada et al., 2007), and there ap-
pears to be no consensus on the issue yet. The key points
of debate have been whether the distribution of hubs is

truly bimodal, rather than following a unimodal varia-
tion, and also whether the date/party distinction origi-
nally seen was an artefact of the dataset used rather than
a general property of the interactome. Different statisti-
cal tests have seemingly suggested different answers.

Here we seek to take a different approach to the hub
classification problem, by seeing if we can assign these
different roles to hubs purely on the basis of network
topology, rather than on the basis of expression data.
The rationale behind this is that the roles, by definition,
are essentially topological, and so should be detectable
within the topology rather than having to be inferred
from additional information. Once we have partitioned
the network into a set of meaningful communities, it is
possible to compute statistics for how connected each hub
is both within its own community and to other commu-
nities. A method for using such statistics to assign roles
to nodes in a metabolic network has been described by
Guimerà and Amaral (2005), and we follow the same pro-
cedure for the hubs in our networks. We then compare
how these roles match up with the date/party hypothe-
sis.

Given the expression data for a set of proteins, we
can compute a ‘correlation matrix’ where each entry is
the PCC of expression between the corresponding pair
of proteins. This can then be regarded as the adjacency
matrix of another protein network, in which nodes are
joined by weighted links, with weights proportional to
coexpression. We attempt to analyse this network in a
similar way to the interaction network, by running com-
munity detection algorithms to detect any ‘coexpression
communities’. We also examine combinations of the in-
teraction and correlation matrices to see if the expression
data can aid in finding better modules. Our results sug-
gest that this is not the case, and the most functionally
meaningful communities seem to come from looking at
the interaction network alone. However, the correlation
network does provide some interesting information, in
that there seems to be some evidence for a distinction
between ‘static’ and ‘dynamic’ communities (Komurov
and White, 2007), defined by the variance in expression
of the constituent proteins over a range of conditions.

The rest of this report is organised as follows: Section
2 discusses the concept of community detection and the
methods we used for this. Section 3 introduces the pro-
tein interaction data we have used and gives the results
of running a community detection algorithm on different
datasets. Section 4 introduces the use of protein expres-
sion data, ways of combining this with interaction data
and the idea of static and dynamic communities. Section
5 explains the method of node role assignment based on
network topology and examines how our results match
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up to a date/party hub categorisation based on partner
coexpression. Section 6 presents a comparison of some
extant interactome datasets based on our analysis and
discusses issues with data gathering techniques. Finally,
Section 7 summarizes our observations and states possi-
ble directions for future study.

2 Modularity and Communities
in Networks

2.1 Defining Modularity

A network consists of individual components (nodes)
amongst which there exist interactions or connections of
some sort (links). Many real-world networks, such as so-
cial, information and biochemical networks, are found to
divide naturally into close-knit subnetworks, which are
called communities or modules. The study of algorithms
for detecting communities in networks has received a lot
of attention in recent years (Fortunato and Castellano,
2008).

We have a fairly clear intuitive idea of what commu-
nities should be like: groups of nodes with many links
within them and only sparse connections between groups.
In order to devise algorithms to detect these groups au-
tomatically, we require a mathematical formalisation of
this notion. One example of a metric which has been
used for this purpose is called ‘modularity’, defined by
Newman and Girvan (2004). Supposing an unweighted
network with n nodes and m links is divided into N com-
munities, denoted C1, C2, ..., CN . Let ki denote the de-
gree (number of links) of node i, and let An×n be the
adjacency matrix, such that A(i, j) is 1 if nodes i and j
have a link between them, and 0 otherwise. Then mod-
ularity Q is given by (Newman, 2006b):

Q =
1

2m

N
∑

k=1

∑

i,j∈Ck

(Aij −
kikj

2m
) (1)

Note that kikj/2m is the expected number of links be-
tween nodes i and j in a network with the same degree
distribution where links are placed at random. The mod-
ularity metric is thus essentially capturing how many
more links there are within the specified communities
than one would expect to see by chance in a network
with no modular structure. However, this is under the
assumption of a particular null model, where we are ex-
plicitly preserving the degree distribution in the random
setting; and it is possible to assume other null models,
as we will do later in Section 4.1.

2.2 Community Detection

Detecting communities in this framework is reduced to
a modularity maximisation problem over the space of all
possible network partitions. Since the size of this space is
huge for even modestly-sized networks, finding an exact
solution is in general computationally intractable (Bran-
des et al., 2007). However, there exist a wide range of
optimisation methods that can be used to compute ap-
proximate solutions.

The approach employed by us makes use of a physi-
cal interpretation of this problem as finding the ground
state of a Potts spin glass (Reichardt and Bornholdt,
2006). The nodes can be thought of as spins, with the
links representing ferromagnetic interactions and lack of
link corresponding to an antiferromagnetic interaction.
Then, under a natural choice of parameters, finding the
ground state is equal to finding the maximum modularity
partitioning, with spin states corresponding to commu-
nities. Thus, we can recast it as an energy minimisa-
tion problem, and then apply an appropriate optimisa-
tion algorithm. Here we have primarily used a spectral
bisection algorithm (Newman, 2006a) on the interaction
data, whilst we used a mix of this and a greedy algorithm
(Reid, 2008) for the runs on the correlation networks,
choosing the better of the solutions found by the two in
each case.

3 The Organisation of the Inter-
actome

3.1 Protein Interaction Datasets

There are several experimental methods which have been
used to gather protein interaction data. Amongst these
are high throughput yeast two-hybrid (Y2H) screening
(Uetz et al., 2000; Ito et al., 2001; Fromont-Racine et al.,
1997; Fromont-Racine et al., 2000); affinity purifica-
tion of tagged proteins followed by mass spectrometry
(AP/MS) to identify associated proteins (Ho et al., 2002;
Gavin et al., 2002); curation of individual protein com-
plexes reported in the literature (Mewes et al., 2002);
and in silico predictions based on multiple kinds of gene
data (von Mering et al., 2002). None of these methods is
believed to give more than a partial picture of the inter-
actome; for instance, a recent aggregation of high-quality
Y2H datasets for S. cerevisiae, the best studied organ-
ism, was estimated to represent only about 20% of the
whole yeast binary protein interaction network (Yu et
al., 2008). Choosing which datasets to use for building
and analysing the network is itself a major issue, dis-
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Dataset name Species Nodes Links Source
Total MCC Total MCC

Filtered yeast S. cerevisiae 1,379 778 2,493 1,798 Han et al. (2004)
interactome (FYI)

Filtered high- S. cerevisiae 2,559 2,233 5,991 5,750 Bertin et al. (2007)
confidence (FHC)

Database of Interacting S. cerevisiae 2,808 2,587 6,212 6,094 http://dip.doe-mbi.ucla.edu/
Proteins core (DIPc) (Oct. 2007 version)
Structural Interaction S. cerevisiae 864 205 1,241 335 Kim et al. (2006)

Network v.1 (SIN)
CCSB Human Interactome H. sapiens 1,549 1,307 2,611 2,483 Rual et al. (2005)

v.1 (CCSB-HI1)

Table 1: Different protein interaction datasets used in this project. MCC refers to the maximal connected compo-
nent.

cussed in more detail in Section 6 below. For our anal-
ysis, we chose to work mostly with networks consisting
of multiply-verified interactions, i.e., those for which ev-
idence has been found from at least two distinct sources.
These datasets have high specificity, in the sense that
they are unlikely to contain many false positives, but at
the same time have low sensitivity and may have lots
of false negatives, i.e., missing interactions. The specific
datasets we use are summarized in Table 1, and described
in more detail in Appendix A.

3.2 Communities in the Interactome

We ran spectral bisection based modularity optimisation
on the various interaction networks to get an idea of their
community structures. Figure 1 shows the results for
the maximal connected component of the filtered yeast
interactome (FYI) dataset (Han et al., 2004), with nodes
coloured according to community. It is apparent that the
network does have substantial ‘modular’ structure, in the
sense defined in Section 2.1, and that the algorithm has
done a fairly good job of finding it.

In order to assess how well these topological commu-
nities correspond to functional organisation, we used the
Gene Ontology (GO) database. GO provides a controlled
vocabulary for describing genes and gene products such
as proteins, with a limited set of annotation terms, and
actually consists of three separate ontologies, one each
for biological process, cellular component and molecular
function. We computed the p-value of the most enriched
GO annotation term within each community, i.e., the
term whose frequency within the community is highest
relative to its background frequency in the entire net-
work. For this we used the hypergeometric distribution,
which corresponds to random sampling without replace-

ment. The extent of enrichment can be gauged by a mea-
sure known as information content (IC), which is defined
as IC = −log10(p−value) (Resnik, 1995). The results of
calculating this measure for communities detected on two
of the yeast interaction datasets are summarized in Ta-
ble 2; a random partition of FYI into communities with
the same size distribution as the actual ones is shown for
comparison.

From these results, it is clear that there is on aver-
age very significant functional enrichment within the de-
tected communities; in particular, it is far greater than
could be expected by chance. It is also evident that the
IC numbers vary widely over communities, and not all
of them are equally enriched. There are some relatively
vague communities (i.e., no single, specific GO term de-
scribes them very well), and others that show a very
high functional coherence. In particular, more detailed
inspection of the community composition revealed that
proteins that are part of the large and small ribosomal
subunit complexes had been almost perfectly grouped
together, and several other communities comprised ex-
clusively proteins that are known to be part of a given
complex. Thus, the topology of the interaction network
provides a great deal of information about the functional
organisation of the proteome. However, it can only give
us a static picture, and we know that the interactome
is dynamic. Can we gain greater insight by using ex-
pression data to capture dynamic behaviour? The next
section looks at this issue.
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Figure 1: Community structure in the FYI network; the different colours correspond to different communities (25
in all). Visualisation generated using the Kamada-Kawai algorithm (Kamada and Kawai, 1989); code shared by
Mason Porter.

Data Commu- Mol. Fn. IC Cell. Comp. IC Biol. Proc. IC Best IC
set nities Min Max Avg Min Max Avg Min Max Avg Min Max Avg
FYI 25 2.05 43.09 14.36 4.28 51.60 17.18 2.99 35.74 15.72 4.81 51.60 20.15
FYI 25 (rand.) 1.28 2.78 1.88 1.25 3.00 2.07 1.46 3.04 2.13 1.46 3.04 2.36
FHC 63 1.47 51.37 11.22 0.11 68.18 16.40 1.73 98.51 17.08 1.97 98.51 20.08

Table 2: Information Content of most enriched term for each of the 3 GO ontologies, and over all 3 ontologies
(‘Best IC’). Minimum, Maximum and Average are over all the communities detected in a given dataset; the random
communities for FYI were generated with the same size distribution as the actual ones.
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4 Interaction Dynamics

4.1 Analysing the correlation network

Different proteins are expressed differently at varying
places and times, so the set of proteins and protein inter-
actions in play varies across situations. Thus, it is impor-
tant to think of the interactome as a dynamic network
rather than a static one. However, most available pro-
tein interaction data does not indicate when and where
those interactions actually occur in vivo. One way of
attempting to infer this is by examining mRNA expres-
sion data, which has been gathered over a wide range of
conditions via microarray experiments (Kemmeren et al.,
2002). In particular, one can use such data to investigate
which pairs of proteins are coexpressed, thus obtaining
an extra type of information about protein association.
Expression correlation was used as the basis for propos-
ing a division of hubs into the date and party categories
in the yeast interactome (Han et al., 2004).

Here, we investigated whether the expression data can
provide information about community structure in any
way, over and above what we see from the interaction
network alone. We made use of two sources of expres-
sion data: for yeast, a set of microarray data measur-
ing cell response to changing environmental conditions,
with 174 data points for each gene (Gasch et al., 2000),
and for humans, expression correlation coefficients for
all pairs of proteins, computed over a range of exper-
iments measuring expression levels, taken from COX-
PRESdb (Obayashi et al., 2008). For yeast too, we
computed the PCC for each protein pair based on the
expression dataset. Once we have a correlation value
for each pair of proteins, we can model this data also
as a network, albeit a weighted one. Since the interac-
tion networks we were using had unweighted adjacency
matrices with 0/1 entries, we chose to map the corre-
lation values to this range as well by using the formula
A(i, j) = (1+PCC(i, j))/2, the range of PCC values be-
ing between -1 and 1. Thus, we get an adjacency matrix
for the ‘correlation network’, with a value of 1 represent-
ing perfect correlation in expression and 0 representing
perfect anticorrelation. These matrices were calculated
for the sets of proteins comprising the different datasets
given in Table 1. The choice of our mapping is designed
for the assumption that proteins with similar function-
ality are more likely to be coexpressed. Since it is pos-
sible that strongly anticorrelated proteins may also be
linked, we also tried an alternative mapping of the form
A(i, j) = |PCC(i, j)|, but the results obtained were of
the same nature. Those presented here are for the for-
mer mapping.

The idea of modularity has been generalised to
weighted networks by counting sums of link weights
rather than links, both within and between communi-
ties (Newman, 2006a). We ran the same community
detection procedure on the correlation networks to see
what communities we could detect in these. However, for
these weighted networks, rather than preserving degree
distribution as we did for the unweighted binary inter-
action networks, we followed Reid (2008) in choosing a
uniformly connected null model, such that the quantity
being maximised becomes:

Q =
1

2W

N
∑

k=1

∑

i,j∈Ck

(Aij − λ), (2)

where W is the sum of the weights of all links in the
network, and λ is a constant between 0 and 1, meaning
that our null model now is that all pairs of nodes are
connected by a link of weight λ. By varying λ, we can
change the resolution at which we are looking for commu-
nity structure: the lower it is, the greater the tendency
for nodes to clump together. In particular, λ = 0 corre-
sponds to just one community, whereas λ = 1 will lead
to each node being in its own community.

The results of running the algorithm for a range of λ
values for two different datasets are depicted in Figure
2. We show the number of communities detected at each
λ setting. As expected, the number increases with λ,
but the notable thing is that there is apparently no long
plateau in which the number of communities obtained
is persistent. In fact what happens is that there is one
giant community to start with, and nodes separate from
it gradually, with a few nodes ‘peeling’ off for every in-
crement in λ. Thus, this network by itself doesn’t seem
to tell us much about the proteome’s functional organi-
sation.

We then combined the correlation data with the inter-
action network. A natural way of doing so seemed to be
to take a termwise product of the adjacency matrices of
the two networks in order to get a new network. That is,
we retain only those links in the weighted correlation net-
work that correspond to interacting proteins, and remove
all other links (i.e., set their weights to 0). When the
community detection algorithm was run on this hybrid
network, some community structure was seen to emerge.
In order to assess its functional relevance, we computed
information content (IC) based on GO term enrichment,
as described in Section 3.2. The results for the hybrid
network on the FYI dataset are depicted in Figure 3,
along with the enrichment values for the original inter-
action network which were summarized in Table 2. Note
that IC of the most informative GO term across all three
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(b) CCSB-HI1 (1,307 nodes)

Figure 2: Number of communities detected at different settings of the resolution parameter, for the expression
correlation networks of proteins in yeast and human datasets.
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Figure 3: Information content of most enriched GO term for each community versus community average PCC,
computed over all pairs of nodes. Colours depict which ontology the most enriched term belongs to.
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ontologies has been plotted against average community
PCC, which is calculated by averaging expression PCC
over all possible protein pairs in the given community.
Colours depict which ontology the most informative term
came from for each community.

From these results, it is apparent that the communities
found from the interaction data alone are on average sub-
stantially better, in terms of functional coherence, than
those detected on the hybrid network. Some of the most
enriched communities are also those that have the highest
coexpression amongst the constituents, and not surpris-
ingly these are picked up well in both networks. However,
many communities with large enrichment but low coex-
pression also seem to exist in the interaction network,
and in the hybrid they appear to fragment into a larger
number of less coherent subgroups. In terms of partition-
ing the proteome into functional modules, it seems that
using interaction data alone works best. Another inter-
esting observation from Figure 3 is that the communities
with high coexpression tend to be best described by a
term from the Cellular Compartment ontology, whereas
those with lower coexpression are often most enriched
in the Biological Process or Molecular Function ontolo-
gies. This suggests that perhaps different kinds of com-
munities have varying expression dynamics, though this
trend was much less apparent in the larger filtered high-
confidence (FHC) (Bertin et al., 2007) dataset when the
same analysis was repeated for it.

4.2 Static and Dynamic Communities

We see in Figure 3(a) that most of the structural com-
munities have high functional coherence, but they show a
wide range of average expression correlation values. The
natural question that arises is how do proteins manage to
interact and carry out a given function if they are not be-
ing expressed at the same time and place? One possible
answer may lie in the idea of static and dynamic com-
munities, proposed by Komurov and White (2007). They
used the concept of ‘expression variance’ (EV), i.e., how
much the expression level of a given protein changes with
time and over different physiological conditions. They
found that proteins tend to interact preferentially with
other proteins with similar EV values, and based on this
proposed that modules in the network could be broadly
categorized as static or dynamic. In static modules, the
proteins all have a low EV, so that their expression does
not change much. In dynamic modules, all proteins show
high variation in expression, and tend to be strongly co-
expressed, implying that the entire community becomes
‘active’ only under certain conditions. Static modules
have relatively low expression correlation, but they are

‘on’ all the time and thus still able to interact.
In order to examine if this categorisation can be ap-

plied to our communities, we used the microarray dataset
for yeast to compute the variance of the expression vec-
tor for each protein (we could not do this for the human
dataset, as we only had the correlation values for pairs
of proteins, not the actual expression values). We then
plotted these values against the communities ordered by
average pairwise expression correlation. The results for
two yeast datasets are shown in Figure 4. In each of the
two cases, we see that a couple of communities with the
highest average coexpression also have much higher ex-
pression variance on average, and seem to be ‘dynamic
modules’. However, there is little relationship between
coexpression and expression variance for the remaining
communities, and even those with low coexpression seem-
ingly contain some ‘dynamic’ proteins. Of course, these
may be due to mismatches between the communities de-
tected here and the actual functional modules. On the
whole, there is some evidence for a static/dynamic dis-
tinction, but it does not appear to provide a comprehen-
sive answer. Also note that even for those communities
with a seemingly low average expression PCC, the num-
ber is in most cases higher than the average PCC on the
whole network. For FYI, the whole-network average is
0.0743, whilst for FHC it is 0.0492; in both cases the dis-
tribution is approximately normal. It is thus clear that
there is a strong tendency for the structural communi-
ties from the interaction network to have higher expres-
sion correlation than would be expected at random, even
though the value varies quite widely across communities.

5 Node Roles and the Date/Party

Distinction

Interactome dynamics were first studied in the context of
network hubs by Han et al. (2004). They used expression
data to calculate the coexpression (PCC) of hubs (which
they defined as nodes with degree 5 or more) with their
interaction partners, and found that the average PCC for
hubs follows a bimodal distribution in the yeast interac-
tion network (FYI). Based on this, they proposed the ex-
istence of two kinds of hubs, date and party, and inferred
certain roles for them in the network: party hubs interact
with all their partners at once, and serve as coordinators
of a particular task or module, whereas date hubs inter-
act with their partners at different times and/or places,
and function as higher-level organisers, linking together
multiple modules. Thus, they used expression data to
make inferences about the topological roles played by
hub nodes in the interactome.

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Community avg. PCC

V
ar

ia
nc

e 
in

 E
xp

re
ss

io
n 

(lo
g 2 fo

ld
 c

ha
ng

e 
fr

om
 b

as
el

in
e)
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Figure 4: Expression variance of proteins by community. Each colour represents a community, and larger circles
are community averages.

Given that we have found some functionally meaning-
ful communities based on interaction data alone, and in
fact that attempting to add in coexpression data seem-
ingly makes the communities worse, it seemed prudent
to examine whether something like the date/party dis-
tinction could also be observed based only on interac-
tion data. Guimerà and Amaral (2005) have proposed
a scheme for classifying nodes into roles in a modular
network, according to their pattern of intra- and inter-
module connections. This classification uses two statis-
tics: within-module degree and participation coefficient.
The within-module degree is normalized to a z-score; for
the ith node:

zi =
κi − κ̄si

σκsi

, (3)

where κi is the number of links of node i to other nodes
in the same module si, κ̄si

is the average of κ for all
nodes in si and σκsi

is the standard deviation of κ in si.
The participation coefficient measures how a node’s links
are distributed amongst different modules. It is defined
as:

Pi = 1 −

NM
∑

s=1

(

κis

ki

)2

, (4)

where NM is the number of modules, κis is the number
of links of node i to nodes in module s, and ki is the total
degree of node i. The participation coefficient approaches
1 if the links of node i are uniformly distributed amongst
all modules, and is 0 if they are all within its own module.

When we plot all nodes in a modular network in a two-
dimensional space with their coordinates determined by
the two measures above, we can divide the space into

regions that correspond to node roles. The boundaries
between regions are of course arbitrary, but we have
used the same cut-offs given by Guimerà and Amaral
(2005). They first make a distinction between ‘module
hubs’ and ‘non-hubs’, defining the former as those nodes
with z ≥ 2.5. Note that the term ‘hub’ as used by them
refers only to high within-module degree, and even their
‘non-hubs’ may have high overall degree. These two cate-
gories are further partitioned on the basis of participation
coefficient P as follows:

• Non-hubs: ultra-peripheral nodes (P ≤ 0.05 - virtu-
ally all links within own module), peripheral nodes
(0.05 < P ≤ 0.62 - most links within own mod-
ule), non-hub connector nodes (0.62 < P ≤ 0.80 -
links to many other modules) and non-hub kinless
nodes (P > 0.80 - links homogeneously distributed
amongst all modules).

• Module hubs: provincial hubs (P ≤ 0.30 - vast ma-
jority of links within own module), connector hubs
(0.30 < P ≤ 0.75 - many links to most other mod-
ules) and kinless hubs (P > 0.75 - links distributed
amongst all modules).

Thus the space is divided into 7 role boxes. These are
depicted in Figure 5, which shows the node roles for yeast
and human datasets, based on communities detected as
per the method of Section 2.

It would appear that some of the universal roles found
by this method are similar to the roles ascribed to
date/party hubs. For instance, party hubs should be
‘provincial hubs’, which have many links within their

9



0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

12

Participation coefficient

W
ith

in
−

m
od

ul
e 

de
gr

ee

Ultra−peripheral
Peripheral
Non−hub connector
Non−nub kinless
Provincial hub
Connector hub
Kinless hub

(a) FHC (2,233 nodes, 63 communities)

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

12

Participation coefficient

W
ith

in
−

m
od

ul
e 

de
gr

ee

Ultra−peripheral
Peripheral
Non−hub connector
Non−nub kinless
Provincial hub
Connector hub
Kinless hub

(b) CCSB-HI1 (1,307 nodes, 38 communities)

Figure 5: Node role assignments for yeast and human interaction datasets.

(a) FHC (553 hubs with min. degree = 7) (b) CCSB-HI1 (326 hubs with min. degree = 4)

Figure 6: Node role versus average expression correlation with partners, for hubs in yeast and human networks.
Larger circles are averages over all nodes in a given role. Note that ‘hub’ as used in the role names refers only to
within-module hubs, but all of the nodes shown here are hubs in the sense of being nodes with high degree. The
minimum degree to qualify as a hub was determined so that approximately the top 20% most connected nodes in
each case are hubs. The date/party PCC threshold of 0.5 was fixed for yeast by Bertin et al. (2007).
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module but few or none outside. Date hubs could be
‘non-hub connectors’ or ‘connector hubs’, both of which
have links to several different modules; they could also
fall into the ‘kinless’ roles, though very few nodes are
actually found in these categories. We sought to exam-
ine the relationship between the date/party classification
and the universal role classification. Figure 6 plots the
hubs (defined, as per Bertin et al. (2007), as the top 20%
most connected nodes) in two interaction networks ac-
cording to node role and average expression PCC with
interaction partners. The horizontal lines correspond to
an average PCC of 0.5, which was the threshold used to
distinguish date and party hubs in the yeast interactome
(Bertin et al., 2007).

One immediate observation from these results is that
the PCC threshold clearly does not carry over to the
human data; in fact all the hubs in the latter have average
PCC well below 0.5. Also, in the human network there
is little difference in the PCC distribution across roles,
suggesting that at least for this dataset no meaningful
date/party categorisation can be made. This may be
because the human dataset likely represents only a small
fraction of the actual interactome, and is derived from
only one technique (Y2H) and therefore not multiply-
verified like the yeast datasets; see further discussion of
data issues in Section 6.

For yeast, we see that hubs below the threshold line
(date hubs) include virtually all of those falling into the
‘connector’ roles, but also many of the ‘provincial hubs’.
On the other hand, those above the line (party hubs)
include mainly the provincial hub and peripheral cate-
gories. Whilst there is a difference in role distributions
above and below the threshold, it is not very clear-cut,
and in particular the date hubs include nodes in all 7
roles. From these figures it would appear that even
for yeast, the distribution of hubs is not bimodal (the
original statistical analysis has already been disputed by
Batada et al. (2006, 2007)), and the topological prop-
erties attributed to date and party hubs by Han et al.
(2004) do not seem to correspond very well with their
actual roles as estimated here, which are more diverse.

6 Data Incompleteness and Ex-
perimental Bias

Multiple methods have been employed to gather the data
studied here, some of which were mentioned in Section
3.1. In a recent paper, Yu et al. (2008) examined the
properties of interaction networks derived from different
sources, and suggested that experimental bias may play
a key role in determining which properties are observed

in any given dataset. In particular, their findings seem
to indicate that Y2H tends to detect key interactions
between protein complexes and Y2H datasets contain a
high proportion of date hubs, whereas AP/MS largely de-
tects interactions within complexes and hubs in AP/MS-
derived networks are predominantly party hubs.

With AP/MS, there is also the issue of converting pro-
tein complex data into interaction data. Tandem-affinity
purification (TAP) involves using a ‘bait’ protein to ‘cap-
ture’ other proteins which bind to it to form complexes.
Once these complexes have been obtained and the pro-
teins in them identified via mass spectrometry, there
are two ways of assigning protein-protein interactions,
known as the spoke and matrix models (Hakes et al.,
2007). The spoke model only counts interactions between
the bait and each of the proteins captured by it, whereas
the matrix model counts all possible pairwise interactions
in the complex. The actual topology of the complex may
well be different from both of these representations. So
in terms of detecting binary interactions, Y2H is likely to
be more accurate, and due to the washing steps involved
in AP/MS, Y2H is also better at detecting transient in-
teractions. On the other hand, AP/MS may be more re-
liable at finding permanent associations, and two-hybrid
approaches also do not seem to be particularly suited for
characterizing protein complexes, giving rise to the view
that complex formation is more than the sum of binary
interactions (Gavin et al., 2002). Thus, the two major
techniques are in a sense orthogonal and cover different
subspaces of the interactome, and the differences between
datasets from these sources perhaps correspond mostly
to false negatives rather than false positives.

In order to look at how well the properties such as
communities and node roles computed here are preserved
across different datasets, we compared results on four dif-
ferent yeast interaction datasets: FYI, FHC, DIPc and
SIN (see Table 1). For each one, we examined only the
largest connected component, and in pairwise compar-
isons, counted the number of nodes and links in common.
For the overlapping portions, we computed the extent of
overlap in node roles and community structure. For the
latter we used a measure known as Jaccard distance. If a
node is part of set A of nodes in one network and set B in
the other, then Jaccard distance J = 1−(A∩B)/(A∪B).
A distance of 0 corresponds to identical communities,
whereas for very different ones J approaches 1. By av-
eraging J over all nodes, we can get an estimate of the
similarity of two partitions on the same set of nodes. Ta-
ble 3 presents the results of our binary comparisons of
the yeast datasets.

The comparisons show that there are large variations
amongst the different networks reported in the litera-
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Datasets compared Common Links in Communities3 Role3

(no. of nodes) nodes1 overlap2 Jaccard distance overlap4

FYI (778) vs. FHC (2233) 687 FYI-1416; FHC-1968; Both-1154 0.76 317 (46%)
FYI (778) vs. DIPc (2587) 616 FYI-1167; DIPc-1567; Both-885 0.77 244 (40%)

FHC (2233) vs. DIPc (2587) 1373 FHC-3350; DIPc-3243; Both-2139 0.84 696 (51%)
FYI (778) vs. SIN (205) 115 FYI-95; SIN-178; Both-63 0.66 72 (63%)

Table 3: Comparisons of analysis results on different yeast interaction datasets.
1 Proteins occurring in both networks for which expression data was also available in the Gasch et al. (2000) dataset.
2 Links amongst the common nodes as counted in the previous column, individually in either network and common to both networks.
3 Communities and node roles computed over entire maximal connected component in each dataset.
4 The number of nodes with the same role classification in both networks.

ture. FYI, FHC and DIPc are all supposed to be ‘high-
quality’ datasets, yet there are many interactions they
do not share. SIN is a smaller set of structurally verified
interactions, but only about a third of its links occur in
FYI (63/178). These differences lead to very different
community structure as well: Jaccard distance for each
pairwise comparison amongst the 3 bigger networks is
around 0.8, so on average the intersection of communi-
ties for the same node covers only about a fifth of their
union. Since node roles are computed based on modular
structure, it is not surprising that the role overlap too is
not very high. Thus we cannot really make any general
inferences from our results: they are largely dependent
on the dataset we are looking at, which in each case rep-
resents only part of the overall picture of the interactome.
However, if we are able to replicate some of our obser-
vations on a big dataset that is a union of all of these
smaller ones, or independently on different sets obtained
from individual sources like Y2H and AP/MS, then our
confidence in them will increase; so this is something we
intend to try soon.

7 Conclusions

In this project, we have tried to explore ways of combin-
ing protein interaction and expression data to analyse
interactome dynamics, in particular the issues of modu-
lar organisation and the roles of hubs in the network. We
showed that partitioning the interaction network based
on maximising modularity leads to largely functionally
coherent communities. The expression data can be used
to compute pairwise expression correlations, and this can
also be seen as a weighted network; however, this network
does not seem to have any persistent community struc-
ture, and combining it with the interaction network also
appears unhelpful. However, the communities from the
interaction network do tend to show higher than aver-
age coexpression, and there is also some indication that

certain communities may be dynamic, in that their com-
ponents show high variance in expression levels, whereas
others are static. It would be interesting to examine the
expression variance over multiple expression datasets to
see if we can get more evidence for a static/dynamic dis-
tinction. Also, the communities used by us are obtained
using a particular algorithm and a particular null model,
but there exist many others, and in order to make our
results more robust it is important to see how sensitive
they are to the choice of algorithm and resolution param-
eters.

Previous work looking at interactome dynamics had
largely focused on hubs in the network. Here we used
the community structure found from the interaction net-
work to study the properties of hub nodes. Our results
show that hubs are found across the entire spectrum of
structural roles, and there is little to suggest a definitive
date/party classification. Coexpression of a hub with its
partners is not necessarily a strong predictor of its role,
and coexpression properties also appear to be quite dif-
ferent for the yeast and human datasets we examined.
Our feeling is that a date/party dichotomy is an over-
simplification; in fact there appear to be many kinds of
hubs with a variety of properties, and any categories we
put them into will probably be largely arbitrary.

A key issue with existing interaction networks is that
they are very incomplete, and we have compared some
available yeast datasets and shown that they differ
widely. Protein interaction data is gathered using sev-
eral experimental techniques, and these appear to pref-
erentially pick up different kinds of interactions. The
datasets we used here all consisted of interactions taken
from multiple sources, so it is not possible to isolate the
effect of this factor on our observations. In order to do
so, as a next step we would like to repeat our analyses for
networks consisting of data from only one experimental
source. It is also important to examine data from a num-
ber of species to come to general conclusions, although
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at present there is not a great deal of it available for or-
ganisms other than yeast. As the quantity, quality and
diversity of protein interaction and expression datasets
increases, we should be able to enhance our understand-
ing of the organisational principles of the interactome.
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A Protein Interaction datasets
The interaction datasets used by us are summarized in Table 1. Below
are more details about how they were compiled:

• Filtered Yeast Interactome (FYI): Compiled by Han et al. (2004).
Was created by intersecting data generated by different meth-
ods, including Y2H, AP/MS, literature curation, in silico predic-
tions and the MIPS (http://mips.gsf.de/) physical interactions
list. Contains 2,493 interactions observed by at least two differ-
ent methods.

• Filtered High-Confidence (FHC): Was generated by Bertin et al.
(2007) by filtering a dataset called high-confidence (HC) compiled
by Batada et al. (2006). The filtration was done by applying crite-
ria similar to those used for FYI, to obtain 5,996 independently
verified interactions. HC consisted of 9,258 interactions taken
from published literature-curated and high-throughput datasets,
which were also supposed to be multi-validated. However, Han
et al. (2004) claimed that many interactions in HC had in fact
been derived from a single experiment reported in multiple pub-
lications, and thus removed such instances from it to generate
FHC.

• Database of Interacting Proteins core (DIPc): Obtained from
the DIP website (http://dip.doe-mbi.ucla.edu/). DIP is a large
database of protein interactions compiled from a number of
sources. The ‘core’ subset consists only of the most reliable in-
teractions, as judged manually by expert curators and also auto-
matically using computational approaches.

• Structural Interaction Network version 1 (SIN): Published by
Kim et al. (2006). The interaction network was compiled via a
consensus from various sources, and low-confidence interactions
were filtered out by statistical analysis. The remaining interac-
tions were mapped to Pfam (http://pfam.sanger.ac.uk/) domains
and thereby onto known structures of protein interactions. Only
those interactions in which both partners or their homologs could
be found in a 3-D structure of a protein complex were retained
in SIN. The interactions were then annotated structurally and
classified as ‘simultaneously possible’ or ‘mutually exclusive’, de-
pending on the protein interfaces used. We used the complete set
of SIN interactions for our analysis.

• Center for Cancer Systems Biology Human Interactome version 1
(CCSB-HI1): This was obtained by Rual et al. (2005) by means
of a high-throughput yeast two-hybrid system, which was used
to test pairwise interactions among the products of about 8,100
human open reading frames. Nearly 2,800 interactions were de-
tected, and the dataset was found to have a verification rate of
78% in an independent co-affinity purification assay.
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