

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

What is IR Generation?

● Intermediate Representation Generation.
● The final phase of the compiler front-end.
● Goal: Translate the program into the format

expected by the compiler back-end.
● Generated code need not be optimized; that's

handled by later passes.
● Generated code need not be in assembly; that

can also be handled by later passes.

Why Do IR Generation?
● Simplify certain optimizations.

● Machine code has many constraints that inhibit optimization.
(Such as?)

● Working with an intermediate language makes optimizations
easier and clearer.

● Have many front-ends into a single back-end.
● gcc can handle C, C++, Java, Fortran, Ada, and many other

languages.
● Each front-end translates source to the GENERIC language.

● Have many back-ends from a single front-end.
● Do most optimization on intermediate representation before

emitting code targeted at a single machine.

Designing a Good IR

● IRs are like type systems – they're extremely hard to
get right.

● Need to balance needs of high-level source language
and low-level target language.

● Too high level: can't optimize certain implementation
details.

● Too low level: can't use high-level knowledge to
perform aggressive optimizations.

● Often have multiple IRs in a single compiler.

Architecture of gcc

Architecture of gcc

Source
Code

Architecture of gcc

Source
Code

AST

Architecture of gcc

Source
Code

AST

GENERIC

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

SSA

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

SSA

Low
GIMPLE

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

SSA

Low
GIMPLE

RTL

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

SSA

Low
GIMPLE

RTL

Machine
Code

Another Approach: High-Level IR

● Examples:
● Java bytecode
● CPython bytecode
● LLVM IR
● Microsoft CIL.

● Retains high-level program structure.
● Try playing around with javap vs. a disassembler.

● Allows for compilation on target machines.
● Allows for JIT compilation or interpretation.

Runtime Environments

An Important Duality

● Programming languages contain high-level structures:
● Functions
● Objects
● Exceptions
● Dynamic typing
● Lazy evaluation
● (etc.)

● The physical computer only operates in terms of several
primitive operations:
● Arithmetic
● Data movement
● Control jumps

Runtime Environments

● We need to come up with a representation of these
high-level structures using the low-level structures of
the machine.

● A runtime environment is a set of data structures
maintained at runtime to implement these high-level
structures.
● e.g. the stack, the heap, static area, virtual function

tables, etc.
● Strongly depends on the features of both the source

and target language. (e.g compiler vs. cross-
compiler)

● Our IR generator will depend on how we set up our
runtime environment.

Data Representations

● What do different types look like in
memory?

● Machine typically supports only limited
types:
● Fixed-width integers: 8-bit, 16-bit- 32-bit,

signed, unsigned, etc.
● Floating point values: 32-bit, 64-bit, 80-bit

IEEE 754.

● How do we encode our object types using
these types?

Encoding Primitive Types

● Primitive integral types (byte, char, short, int,
long, unsigned, uint16_t, etc.) typically map
directly to the underlying machine type.

● Primitive real-valued types (float, double, long
double) typically map directly to underlying
machine type.

● Pointers typically implemented as integers holding
memory addresses.
● Size of integer depends on machine architecture; hence

32-bit compatibility mode on 64-bit machines.

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● C-style arrays:

int a[3][2];

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● C-style arrays:

int a[3][2];

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● C-style arrays:

int a[3][2];

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

Array of size 2 Array of size 2 Array of size 2

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● C-style arrays:

int a[3][2];

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

Array of size 2 Array of size 2 Array of size 2

How do you know
where to look for an
element in an array

like this?

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● Java-style arrays:

int[][] a = new int [3][2];

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● Java-style arrays:

int[][] a = new int [3][2];

a[0]

a[1]

a[2]

3

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● Java-style arrays:

int[][] a = new int [3][2];

a[0]

a[1]

a[2]

3 a[0][0] a[0][1]

a[1][0] a[1][1]

a[2][0] a[2][1]

2

2

2

Encoding Functions

● Many questions to answer:
● What does the dynamic execution of functions

look like?
● Where is the executable code for functions

located?
● How are parameters passed in and out of

functions?
● Where are local variables stored?

● The answers strongly depend on what the
language supports.

Review: The Stack

● Function calls are often implemented using a
stack of activation records (or stack
frames).

● Calling a function pushes a new activation
record onto the stack.

● Returning from a function pops the current
activation record from the stack.

● Questions:
● Why does this work?
● Does this always work?

Activation Trees

● An activation tree is a tree structure
representing all of the function calls made by a
program on a particular execution.
● Depends on the runtime behavior of a program;

can't always be determined at compile-time.
● (The static equivalent is the call graph).

● Each node in the tree is an activation record.
● Each activation record stores a control link to

the activation record of the function that
invoked it.

Activation Trees

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Fib

n = 2

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Fib

n = 2

Fib

n = 1

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Fib

n = 2

Fib

n = 0

Fib

n = 1

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Fib

n = 1

Fib

n = 2

Fib

n = 0

Fib

n = 1

An activation tree is a spaghetti stack.

The runtime stack is an optimization
of this spaghetti stack.

Why Can We Optimize the Stack?

● Once a function returns, its activation
record cannot be referenced again.
● We don't need to store old nodes in the

activation tree.

● Every activation record has either finished
executing or is an ancestor of the current
activation record.
● We don't need to keep multiple branches alive

at any one time.

● These are not always true!

Breaking Assumption 1

● “Once a function returns, its
activation record cannot be
referenced again.”

● Any ideas on how to break this?

Breaking Assumption 1

● “Once a function returns, its
activation record cannot be
referenced again.”

● Any ideas on how to break this?
● One option: Closures

function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

Breaking Assumption 1

● “Once a function returns, its
activation record cannot be
referenced again.”

● Any ideas on how to break this?
● One option: Closures

function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

Closures

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

MyFunction

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

counter = 0

MyFunction

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

counter = 0

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

<fn>

counter = 0

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

<fn>

counter = 0

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

<fn>

counter = 1

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

<fn>

counter = 1

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 1

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 1

<fn>

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 1

<fn>

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 2

<fn>

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 2

<fn>

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1
 2

CreateCounter

<fn>

counter = 2

<fn>

MyFunction

f = <fn>

Control and Access Links

● The control link of a function is a
pointer to the function that called it.
● Used to determine where to resume

execution after the function returns.

● The access link of a function is a pointer
to the activation record in which the
function was created.
● Used by nested functions to determine the

location of variables from the outer scope.

Closures and the Runtime Stack

● Languages supporting closures do not
typically have a runtime stack.

● Activation records typically dynamically
allocated and garbage collected.

● Interesting exception: gcc C allows for
nested functions, but uses a runtime stack.

● Behavior is undefined if nested function
accesses data from its enclosing function
once that function returns.
● (Why?)

Breaking Assumption 2

● “Every activation record has either
finished executing or is an ancestor
of the current activation record.”

● Any ideas on how to break this?

Breaking Assumption 2

● “Every activation record has either
finished executing or is an ancestor
of the current activation record.”

● Any ideas on how to break this?
● One idea: Coroutines

def downFrom(n):
 while n > 0:
 yield n
 n = n - 1

Breaking Assumption 2

● “Every activation record has either
finished executing or is an ancestor
of the current activation record.”

● Any ideas on how to break this?
● One idea: Coroutines

def downFrom(n):
 while n > 0:
 yield n
 n = n - 1

Coroutines

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

>

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 0

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 0

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 0

Coroutines

● A subroutine is a function that, when invoked, runs
to completion and returns control to the calling
function.
● Master/slave relationship between caller/callee.

● A coroutine is a function that, when invoked, does
some amount of work, then returns control to the
calling function. It can then be resumed later.
● Peer/peer relationship between caller/callee.

● Subroutines are a special case of coroutines.

Coroutines and the Runtime Stack

● Coroutines often cannot be implemented
with purely a runtime stack.
● What if a function has multiple coroutines

running alongside it?

● Few languages support coroutines,
though some do (Python, for example).

So What?

● Even a concept as fundamental as “the
stack” is actually quite complex.

● When designing a compiler or
programming language, you must keep in
mind how your language features
influence the runtime environment.

● Always be critical of the languages
you use!

