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What is IR Generation?

● Intermediate Representation Generation.
● The final phase of the compiler front-end.
● Goal: Translate the program into the format 

expected by the compiler back-end.
● Generated code need not be optimized; that's 

handled by later passes.
● Generated code need not be in assembly; that 

can also be handled by later passes.



  

Why Do IR Generation?
● Simplify certain optimizations.

● Machine code has many constraints that inhibit optimization. 
(Such as?)

● Working with an intermediate language makes optimizations 
easier and clearer.

● Have many front-ends into a single back-end.
● gcc can handle C, C++, Java, Fortran, Ada, and many other 

languages.
● Each front-end translates source to the GENERIC language.

● Have many back-ends from a single front-end.
● Do most optimization on intermediate representation before 

emitting code targeted at a single machine.



  

Designing a Good IR

● IRs are like type systems – they're extremely hard to 
get right.

● Need to balance needs of high-level source language 
and low-level target language.

● Too high level: can't optimize certain implementation 
details.

● Too low level: can't use high-level knowledge to 
perform aggressive optimizations.

● Often have multiple IRs in a single compiler.
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Another Approach: High-Level IR

● Examples:
● Java bytecode
● CPython bytecode
● LLVM IR
● Microsoft CIL.

● Retains high-level program structure.
● Try playing around with javap vs. a disassembler.

● Allows for compilation on target machines.
● Allows for JIT compilation or interpretation.



  

Runtime Environments



  

An Important Duality

● Programming languages contain high-level structures:
● Functions
● Objects
● Exceptions
● Dynamic typing
● Lazy evaluation
● (etc.)

● The physical computer only operates in terms of several 
primitive operations:
● Arithmetic
● Data movement
● Control jumps



  

Runtime Environments

● We need to come up with a representation of these 
high-level structures using the low-level structures of 
the machine.

● A runtime environment is a set of data structures 
maintained at runtime to implement these high-level 
structures.
● e.g. the stack, the heap, static area, virtual function 

tables, etc.
● Strongly depends on the features of both the source 

and target language. (e.g compiler vs. cross-
compiler)

● Our IR generator will depend on how we set up our 
runtime environment.



  

Data Representations

● What do different types look like in 
memory?

● Machine typically supports only limited 
types:
● Fixed-width integers: 8-bit, 16-bit- 32-bit, 

signed, unsigned, etc.
● Floating point values: 32-bit, 64-bit, 80-bit 

IEEE 754.

● How do we encode our object types using 
these types?



  

Encoding Primitive Types

● Primitive integral types (byte, char, short, int, 
long, unsigned, uint16_t, etc.) typically map 
directly to the underlying machine type.

● Primitive real-valued types (float, double, long 
double) typically map directly to underlying 
machine type.

● Pointers typically implemented as integers holding 
memory addresses.
● Size of integer depends on machine architecture; hence 

32-bit compatibility mode on 64-bit machines.



  

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

 
● Java-style arrays: Elements laid out consecutively in memory with 

size information prepended.

 
● D-style arrays: Elements laid out consecutively in memory; array 

variables store pointers to first and past-the-end elements.  

 

 

 
●  (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End
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● Shape depends on the array type used.
● C-style arrays:

int a[3][2];
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● Often represented as an array of arrays.
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● C-style arrays:

int a[3][2];

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

Array of size 2 Array of size 2 Array of size 2

How do you know 
where to look for an 
element in an array 

like this?
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Encoding Functions

● Many questions to answer:
● What does the dynamic execution of functions 

look like?
● Where is the executable code for functions 

located?
● How are parameters passed in and out of 

functions?
● Where are local variables stored?

● The answers strongly depend on what the 
language supports.



  

Review: The Stack

● Function calls are often implemented using a 
stack of activation records (or stack 
frames).

● Calling a function pushes a new activation 
record onto the stack.

● Returning from a function pops the current 
activation record from the stack.

● Questions:
● Why does this work?
● Does this always work?



  

Activation Trees

● An activation tree is a tree structure 
representing all of the function calls made by a 
program on a particular execution.
● Depends on the runtime behavior of a program; 

can't always be determined at compile-time.
● (The static equivalent is the call graph).

● Each node in the tree is an activation record.
● Each activation record stores a control link to 

the activation record of the function that 
invoked it.



  

Activation Trees
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    Fib(3);
}

int Fib(int n) {
    if (n <= 1) return n;
    return Fib(n – 1) + Fib(n – 2);
}
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An activation tree is a spaghetti stack.



  

The runtime stack is an optimization 
of this spaghetti stack.



  

Why Can We Optimize the Stack?

● Once a function returns, its activation 
record cannot be referenced again.
● We don't need to store old nodes in the 

activation tree.

● Every activation record has either finished 
executing or is an ancestor of the current 
activation record.
● We don't need to keep multiple branches alive 

at any one time.

● These are not always true!



  

Breaking Assumption 1

● “Once a function returns, its 
activation record cannot be 
referenced again.”

● Any ideas on how to break this?
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Control and Access Links

● The control link of a function is a 
pointer to the function that called it.
● Used to determine where to resume 

execution after the function returns.

● The access link of a function is a pointer 
to the activation record in which the 
function was created.
● Used by nested functions to determine the 

location of variables from the outer scope.



  

Closures and the Runtime Stack

● Languages supporting closures do not 
typically have a runtime stack.

● Activation records typically dynamically 
allocated and garbage collected.

● Interesting exception: gcc C allows for 
nested functions, but uses a runtime stack.

● Behavior is undefined if nested function 
accesses data from its enclosing function 
once that function returns.
● (Why?)



  

Breaking Assumption 2

● “Every activation record has either 
finished executing or is an ancestor 
of the current activation record.”

● Any ideas on how to break this?
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Coroutines

● A subroutine is a function that, when invoked, runs 
to completion and returns control to the calling 
function.
● Master/slave relationship between caller/callee.

● A coroutine is a function that, when invoked, does 
some amount of work, then returns control to the 
calling function.  It can then be resumed later.
● Peer/peer relationship between caller/callee.

● Subroutines are a special case of coroutines.



  

Coroutines and the Runtime Stack

● Coroutines often cannot be implemented 
with purely a runtime stack.
● What if a function has multiple coroutines 

running alongside it?

● Few languages support coroutines, 
though some do (Python, for example).



  

So What?

● Even a concept as fundamental as “the 
stack” is actually quite complex.

● When designing a compiler or 
programming language, you must keep in 
mind how your language features 
influence the runtime environment.

● Always be critical of the languages 
you use!


