Semantic Analysis



@

Source
Code

Where We Are

Syntax Analysis

Machine

Code



Where We Are

(@ )

Source| mm)>
Code

¢ ) Syntax Analysis

Machine
Code

Achievement unlocked
Syntax-tic!




@

Source
Code

Where We Are

Semantic Analysis

Machine

Code



Not Symantec Analysis

Norton
SystemWorks
Premier Edition

i
X

TR



Where We Are

 Program is lexically well-formed:

« Identifiers have valid names.
« Strings are properly terminated.
« No stray characters.

 Program is syntactically well-formed:

« Class declarations have the correct structure.
« Expressions are syntactically valid.

* Does this mean that the program is legal?



A Short Decaf Program

class MyClass 1mplements MyInterface {

string myInteger;

vold doSomething () {
int[] x = new string;

x[5] = myInteger * y;

}
vold doSomething () {

}

int fibonacci(int n) {
return doSomething ()

}

+ fibonacci(n -

1)



A Short Decaf Program

class MyClass 1mplements MyInterface {

string myInteger;
4 T J Intertace nof

void doSomething () declared
Can't multiply int[] x = new string; <
sTrings Wrong Type
x[5] = myInteger * y; =
}
void doSomething() { Variable nof
» Can't redefine declared
} | o functions
int fibonacci (int n)
return doSomething() + fibonacci(n - 1);
} b
} Can't add void

< No main function



Semantic Analysis

« Ensure that the program has a well-defined
meaning.

« Verify properties of the program that aren't caught
during the earlier phases:

« Variables are declared before they're used.

Expressions have the right types.

Arrays can only be instantiated with NewArray.

Classes don't inherit from nonexistent base classes

* Once we finish semantic analysis, we know that
the user's input program is legal.



Challenges in Semantic Analysis

* Reject the largest number of incorrect
programs.

» Accept the largest number of correct
programs.



Validity versus Correctness

int main () {
string x;
1f (false) {
x = 137;
}



Validity versus Correctness

int main () {
string x;
1f (false) {
x = 137; «
}

} Sate: can't
happen



Validity versus Correctness

int Fibonacci (int n) {
if (n <= 1) return O0;

return Fibonacci(n - 1) + Fibonacci(n - 2);

}

int main () {
Print (Fibonacci (40)) ;

}



Validity versus Correctness

Incorrect,

int Fibonacci (int n) { should be

if (n <= 1) return 0; = ‘veturn n:*
return Fibonacci(n - 1) + Fibonacci(n - 2);

}

int main () {
Print (Fibonacci (40)) ;

}



Challenges in Semantic Analysis

* Reject the largest number of incorrect
programs.

» Accept the largest number of correct
programs.

* Do so quickly.



Challenges in Semantic Analysis

* Reject the largest number of incorrect
programs.

» Accept the largest number of correct
programs.

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

* Do so quicKkly. “MY CODE'S COMPILING."

HEY! GET BACK




Other Goals of Semantic Analysis

* Gather useful information about program
for later phases:

 Determine what variables are meant by each
identifier.

e Build an internal representation of
inheritance hierarchies.

« Count how many variables are in scope at
each point.



Why can't we just do this during parsing?



[.imitations of CFGs

« Using CFGs:
 How would you prevent duplicate class
definitions?

 How would you differentiate variables of one type
from variables of another type?

« How would you ensure classes implement all
interface methods?



[.imitations of CFGs

« Using CFGs:
 How would you prevent duplicate class
definitions?

 How would you differentiate variables of one type
from variables of another type?

« How would you ensure classes implement all
interface methods?

« For most programming languages, these are
provably impossible.

 Use the pumping lemma for context-free
languages, or Ogden's lemma.



