
CG152 Introduction: slide 1CS223 Introduction: slide 1

CS223 Introduction to Software
Engineering

Doron Peled, Roger Packwood,
Arshad Jhumka, Ananda Amatya,

Mike Joy

© The University of Warwick 1998-2005

CG152 Introduction: slide 1CS223 Introduction: slide 1

The Software Process
 Why is there a Software Process ?

– why not just write the program ?
 What the customer wants

– how it is implemented, or at least designed
– change, for the better, sometimes ...

 Why is software "engineering" hard ?
– what solutions does "engineering" offer ?

 The traditional software lifecycle
– other development models

CG152 Introduction: slide 1CS223 Introduction: slide 1

Software Specification
 "What" needs to be specified

– many people communicate via written documents

 A specification that the customer can agree to
– a specification for the programmer (one of many)

 Many aspects (views) of a software design

 Complete, Concise, Testable

CG152 Introduction: slide 1CS223 Introduction: slide 1

Software Cost Estimation
 Before we even start, do we want the job ?
 Need to estimate -

– how much effort
– how much time
– how much money

 Primarily based on how much last time
– model based

 Constructive Cost Model COCOMO
 Mythical Man Month - Brooks

CG152 Introduction: slide 1CS223 Introduction: slide 1

Safety-Critical Systems
 Developing software that should never compromise the

overall safety of a system
 Reliability is with respect to specification

– safety is independent of specification
 Therac and Arianne examples
 Risk analysis

– intolerable
– As Low As Reasonably Practical (ALARP)
– acceptable

 The Myths of Software Safety

CG152 Introduction: slide 1CS223 Introduction: slide 1

Software Testing
 A successful test finds a fault

– testing does not prove the absence of faults
 White Box, Black Box testing
 Coverage testing, Exhaustive testing

– can you trust the test software?
 Test data values, Corner Cases, Fencepost errors

– mistyped variable names, operators, constructs
 Unit test, integration test, System, Alpha, Beta

– top-down, Bottom-up, Inside-out, Sandwich ??

CG152 Introduction: slide 1CS223 Introduction: slide 1

Software Reliability
 Availability, Reliability, Safety, Integrity, etc.

 Defects, Density and Zero

 Fault Tolerance, N-Way, Recovery Blocks, Diversity

 Dangerous Programming

CG152 Introduction: slide 1CS223 Introduction: slide 1

 Bernd Bruegge, Adjunct, Carnegie
Mellon University
Allen H. Dutoit, Technical
University of Munich

 ISBN: 0-13-191179-1

 Publisher: Prentice Hall
Copyright: 2004
Paperback 762 pages (November
30, 2003)

 Amazon.co.uk Price: £35.99

 Warwick Bookshop: In stock

CG152 Introduction: slide 1CS223 Introduction: slide 1

Factors affecting the quality of a software system

 Complexity:
– System too complex for a single programmer to comprehend;
– Fixing one bug introduces another bug.

 Change:
– Entropy of a software system increases with each change:

Change in a system alters its structure
Change in structure makes the next change more

difficult.
– Cost of subsequent changes increase rapidly:

Whatever the system’s application domain or
technological base.

CG152 Introduction: slide 1CS223 Introduction: slide 1

Dealing with Complexity

 Abstraction

 Decomposition

 Hierarchy

CG152 Introduction: slide 1CS223 Introduction: slide 1

Abstraction

 Inherent human limitation to deal with complexity
– The 7 +- 2 phenomena

 Chunking:
– Group collection of objects

 Ignore unessential details:
– Models

CG152 Introduction: slide 1CS223 Introduction: slide 1

Models are used to provide abstractions

 System Model:
– Object Model: system structure; object interaction
– Functional model: system functions; data flow through the system
– Dynamic model: system reaction to external events; event flow

 Task Model:
– PERT Chart: dependencies between the tasks
– Schedule: time limit
– Org Chart: roles in the project or organization

 Issues Model:
– Open and closed issues;
– constraints posed by the client;
– resolutions made.

CG152 Introduction: slide 1CS223 Introduction: slide 1

Which decomposition is the right one?

Decomposition
 A technique used to master complexity (divide and conquer)
 Functional decomposition

– system decomposed into modules
– Module: a major processing step (function) in the application domain
– Modules can be decomposed into smaller modules

 Object-oriented decomposition
– The system is decomposed into classes (objects)
– Each class is a major abstraction in the application domain
– Classes can be decomposed into smaller classes

CG152 Introduction: slide 1CS223 Introduction: slide 1

Class Identification
 Object-oriented modelling requires Class identification:

– Finding classes for a new software system (Greenfield Engineering)
– Identifying classes in an existing system (Reengineering)
– Creating class-based interface to a system (Interface Engineering)

 Class identification uses:
– Philosophy
– Science
– Experimental evidence

 Difficulty in identifying classes:
– Determining the purpose of a system

CG152 Introduction: slide 1CS223 Introduction: slide 1

Hierarchy

 Abstraction & Decomposition:
– Leads to classes & objects (object model)

 Relationships between classes & objects
– Structure (static models), interactions (dynamic models)
– Hierarchical relationships between classes

 2 important hierarchies
– "Part of" hierarchy
– "Is-kind-of" hierarchy

CG152 Introduction: slide 1CS223 Introduction: slide 1

Part of Hierarchy
Computer

Cache ALU Program
 Counter

I/O Devices CPU Memory

CG152 Introduction: slide 1CS223 Introduction: slide 1

Is-Kind-of Hierarchy (Taxonomy)
Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

CG152 Introduction: slide 1CS223 Introduction: slide 1

So where are we right now?
 Three ways to deal with complexity:

– Abstraction
– Decomposition
– Hierarchy

 Object-oriented decomposition is a good methodology
– Difficulty in determining the purpose of a system
– Depending on the purpose, different objects are found

 How can we do it right?
– Many different possibilities
– Use Case Modelling (currently popular) approach:

Start with a description of the functionality
Then proceed to the object model
This leads us to the software lifecycle

CG152 Introduction: slide 1CS223 Introduction: slide 1

Software Lifecycle Activities

Use Case
Model

Solution
Domain
Objects

Realized By

Application
Domain
Objects

Expressed in
Terms Of

Test
Cases

?

Verified
By

class.... ?

Subsystems

Structured By

class...
class...
class...

Source
Code

Implemented
 By

System
Design

Object
Design

Implemen-
tation

TestingRequirements
Elicitation

Analysis

...and their models

CG152 Introduction: slide 1CS223 Introduction: slide 1

Reusability … living with change
 A good software design solves a specific problem but is

general enough to address future problems (for example,
changing requirements)

 Experts do not solve every problem from first principles
– They reuse solutions that have worked for them in the past

 Goal for the software engineer:
– Design the software to be reusable across application

domains and designs
 How?

– Use design patterns and frameworks whenever possible

CG152 Introduction: slide 1CS223 Introduction: slide 1

Design Patterns and Frameworks

 Design Pattern:
– A small set of classes that provide a template solution to a

recurring design problem
– Reusable design knowledge on a higher level than

datastructures (link lists, binary trees, etc)
 Framework:

– A moderately large set of classes that collaborate to carry
out a set of responsibilities in an application domain.
Examples: User Interface Builder

 Provide architectural guidance during the design phase
 Provide a foundation for software components industry

CG152 Introduction: slide 1CS223 Introduction: slide 1

Patterns are used by many people
 Chess Master:

– Openings

– Middle games

– End games
 Writer

– Tragically Flawed Hero (Macbeth,
Hamlet)

– Romantic Novel

– User Manual
 Architect

– Office Building

– Commercial Building

– Private Home

 Software Engineer

– Composite Pattern: A collection of
objects needs to be treated like a single
object

– Adapter Pattern (Wrapper): Interface to
an existing system

– Bridge Pattern: Interface to an existing
system, but allow it to be extensible

 Now Read Chapter 1 of BD book

CG152 Introduction: slide 1CS223 Introduction: slide 1

Goal: software reliability
Use software engineering

methodologies to develop
the code.

Use formal methods during
code development

CG152 Introduction: slide 1CS223 Introduction: slide 1

What are formal methods?

Techniques for analyzing systems, based on some
mathematics.

This does not mean that the user must be a mathematician.

Some of the work is done in an informal way, due to
complexity.

CG152 Introduction: slide 1CS223 Introduction: slide 1

Examples for FM
Deductive verification:

Using some logical formalism, prove formally that the
software satisfies its specification.

Model checking:
Use some software to automatically check that the software
satisfies its specification.

Testing:
Check executions of the software according to some
coverage scheme.

CG152 Introduction: slide 1CS223 Introduction: slide 1

Typical situation:
 Boss: Mark, I want that the new internet marketing software

will be flawless. OK?

 Mark: Hmmm. Well, ..., Aham, Oh! Ah??? Where do I start?

 Bob: I have just the solution for you. It would solve
everything.

CG152 Introduction: slide 1CS223 Introduction: slide 1

Some concerns
• Which technique?
• Which tool?
• Which experts?
• What limitations?
• What methodology?
• At which points?
• How expensive?
• How many people?

• Needed expertise.
• Kind of training.
• Size limitations.
• Exhaustiveness.
• Reliability.
• Expressiveness.
• Support.

CG152 Introduction: slide 1CS223 Introduction: slide 1

Common critics

 Formal methods can only be used by mathematicians.

 The verification process is itself prone to errors, so why
bother?

 Using formal methods will slow down the project.

CG152 Introduction: slide 1CS223 Introduction: slide 1

Some questions and answers...
Formal methods can only be used by mathematicians.
Wrong. They are based on some math but the user

should not care.

The verification process is itself prone to errors, so
why bother?

We opt to reduce the errors, not eliminate them.

Using formal methods will slow down the project.
Maybe it will speed it up, once errors are found

earlier.

CG152 Introduction: slide 1CS223 Introduction: slide 1

Some exaggerations
Automatic verification can always find errors.
Deductive verification can show that the

software is completely safe.
Testing is the only industrial practical method.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

