Type-Checking

E)

Source
Code

Where We Are

Semantic Analysis

Machine

Code

Review from Last Time

class MyClass implements MyInterface {
string mylInteger;

vold doSomething () {

int[] x;
X = new string;
x[5] = myInteger * vy;

}
voilid doSomething () {

}

int fibonacci (int n) {
return doSomething () + fibonacci(n - 1);

}

Review from Last Time

class MyClass implements MyInté;;;;e‘;\\\\
string mylInteger;

Intertace nof
vold doSomething () { declared

int[] x; ﬂ//////////’\\\
X = new string; < Wrong Type

;Ig}\ﬂ>my1nteger X Y« —
} Variable not
void doSomething() { (..t ,edefine declared
| functions

Can't mulfiply
strings

}

int fibonacci(int n) {
return doSomething() + fibonacci(n - 1);
} - Can't add void

No main function
-

Review from Last Time

class MyClass i1mplements MylInterface {
string mylInteger;

vold doSomething () {

int[] x; ﬂ//////////’\\\
X = new string; < Wrong Type

;Ig}\ﬂ>my1nteger X Y« —
} Variable not
void doSomething() { (..t ,edefine declared
| functions

Can't mulfiply
strings

}

int fibonacci(int n) {
return doSomething() + fibonacci(n - 1);
} - Can't add void

No main function
-

Review from Last Time

class MyClass i1mplements MylInterface {
string mylInteger;

vold doSomething () {

int[] x; ~//////////’\\\
X = new string; < Wrong Type

Can't mulfiply
b
P lrings ;Ig}\$>my1nteger X Y« —
} Variable not
void doSomething () { declared

}

int fibonacci(int n) {
return doSomething() + fibonacci(n - 1);
} - Can't add void

No main function
-

Review from Last Time

class MyClass i1mplements MylInterface {
string mylInteger;

vold doSomething () {

int[] x; ﬁ){
= ing: ron e
Can't multiply ¥ = DNEW string; -« q Tup
b
e ‘;?g}*>mylnteger * y;

}
void doSomething () {

}

int fibonacci(int n) {

return doSomething() + fibonacci(n - 1);
) v~ Can't add void

No main function
-

Review from Last Time

class MyClass i1mplements MylInterface {
string mylInteger;

vold doSomething () {

int[] x; ﬁ){
= ing: ron e
Can't multiply ¥ = DNEW string; -« q Tup
b
e ‘;?g}*>mylnteger * y;

}
void doSomething () {

}

int fibonacci(int n) {

return doSomething() + fibonacci(n - 1);
) v~ Can't add void

What Remains to Check?

- Type errors.

« Today:
 What are types?
 What is type-checking?
» A type system for Decaf.

What is a Type?

« This is the subject of some debate.

« To quote Alex Aiken:
 “The notion varies from language to
language.
 The consensus:
- A set of values.

- A set of operations on those values”

» Type errors arise when operations are
performed on values that do not support
that operation.

Types of Type-Checking

» Static type checking.

* Analyze the program during compile-time to prove the
absence of type errors.

 Never let bad things happen at runtime.
 Dynamic type checking.
 Check operations at runtime before performing them.

 More precise than static type checking, but usually
less efficient.

* (Why?)
* No type checking.

e Throw caution to the wind!

Type Systems

 The rules governing permissible
operations on types forms a type
system.

* Strong type systems are systems that
never allow for a type error.

« Java, Python, JavaScript, LISP, Haskell, etc.

 Weak type systems can allow type
errors at runtime.

« C, C++

Type Wars

 Endless debate about what the “right”
system 1s.

 Dynamic type systems make it easier to
prototype; static type systems have fewer
bugs.

« Strongly-typed languages are more
robust, weakly-typed systems are often
faster.

Type Wars

 Endless debate about what the “right”
system 1s.

 Dynamic type systems make it easier to
prototype; static type systems have fewer
bugs.

« Strongly-typed languages are more
robust, weakly-typed systems are often
faster.

 I'm staying out of this!

Our Focus

» Decatft is typed statically and weakly:

» Type-checking occurs at compile-time.

« Runtime errors like dereferencing null or an
invalid object are allowed.

e Decaf uses class-based inheritance.

* Decaft distinguishes primitive types and
classes.

Typing in Decat

Static Typing in Decat

« Static type checking in Decaf consists of
twoO separate processes:

» Inferring the type of each expression from
the types of its components.

« Confirming that the types of expressions in
certain contexts matches what is expected.

» Logically two steps, but you will probably
combine into one pass.

An Example

while (numBilitsSet(x + 5) <= 10) {

it (1.0 + 4.0) {
/* ./
J

while (5 == null) {
VA

An Example

while (numBitsSet(x + 5) <= 10) {

it (1.0 + 4.0) {
/* ./
J

while (5 == null) {
VA

An Example

while (numBilitsSet(x + 5) <= 10) {

if (1.0 + 4.0) {
/* .. */
}

while (5 == null) {
VA

An Example

while (numBitsSet(x + 5)

if (1.0 + 4.0){

/* . x/
}
while (5 ==
VA

null)

<= 10) {

Well—=typed
expression with
wrong type,

An Example

while (numBilitsSet(x + 5) <= 10) {

it (1.0 + 4.0) {
/* ./
J

while (5 == null) /{
VA

An Example

while (numBilitsSet(x + 5) <= 10) {

it (1.0 + 4.0) {
/* ./
J

while (5 == null) {

/* o x/
J

Expression with
Tupe ervor

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

|

e

IntConstant IntConstant

137 42

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

|

e

int IntConstant IntConstant

137 42

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

+
int IntConstant int IntConstant

137 42

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

int +
int IntConstant int IntConstant

137 42

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

N

bool X Identifier

bool

Identifier

bool

T

true

RoolConstant

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

i

bool X Identifier

bool

bool =

Identifier

bool

T

true

RoolConstant

Inferring Expression Types

« How do we determine the type of an
expression?

 Think of process as logical inference.

bool =

i

bool X Identifier

bool

bool =

Identifier

bool

T

true

RoolConstant

Type Checking as Proofs

 We can think of syntax analysis as
proving claims about the types ot
expressions.

 We begin with a set of axioms, then
apply our inference rules to determine
the types of expressions.

 Many type systems can be thought of as
proof systems.

Sample Inference Rules

« “If x 1s an identifier that refers to an
object of type t, the expression x has
type t.”

» “If e is an integer constant, e has type
int.”
. “If the operands e, and e, of e + e, are

known to have types int and int, then
e + e, has type int.”

