
  

Type-Checking



  

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code



  

Review from Last Time
class MyClass implements MyInterface { 
    string myInteger; 
 
    void doSomething() { 
        int[] x;
        x = new string;
 
        x[5] = myInteger * y; 
    } 
    void doSomething() { 
         
    } 
    int fibonacci(int n) { 
        return doSomething() + fibonacci(n – 1); 
    } 
} 



  

Review from Last Time
class MyClass implements MyInterface { 
    string myInteger; 
 
    void doSomething() { 
        int[] x;
        x = new string; 
 
        x[5] = myInteger * y; 
    } 
    void doSomething() { 
         
    } 
    int fibonacci(int n) { 
        return doSomething() + fibonacci(n – 1); 
    } 
} 

Interface not 
declared

Wrong type

Variable not 
declared

Can't multiply 
strings

Can't redefine 
functions

Can't add void
No main function



  

Review from Last Time
class MyClass implements MyInterface { 
    string myInteger; 
 
    void doSomething() { 
        int[] x;
        x = new string; 
 
        x[5] = myInteger * y; 
    } 
    void doSomething() { 
         
    } 
    int fibonacci(int n) { 
        return doSomething() + fibonacci(n – 1); 
    } 
} 

Wrong type

Variable not 
declared

Can't multiply 
strings

Can't redefine 
functions

Can't add void
No main function



  

Review from Last Time
class MyClass implements MyInterface { 
    string myInteger; 
 
    void doSomething() { 
        int[] x;
        x = new string; 
 
        x[5] = myInteger * y; 
    } 
    void doSomething() { 
         
    } 
    int fibonacci(int n) { 
        return doSomething() + fibonacci(n – 1); 
    } 
} 

Wrong type

Variable not 
declared

Can't multiply 
strings

Can't add void
No main function



  

Review from Last Time
class MyClass implements MyInterface { 
    string myInteger; 
 
    void doSomething() { 
        int[] x;
        x = new string; 
 
        x[5] = myInteger * y; 
    } 
    void doSomething() { 
         
    } 
    int fibonacci(int n) { 
        return doSomething() + fibonacci(n – 1); 
    } 
} 

Wrong type
Can't multiply 

strings

Can't add void
No main function



  

Review from Last Time
class MyClass implements MyInterface { 
    string myInteger; 
 
    void doSomething() { 
        int[] x;
        x = new string; 
 
        x[5] = myInteger * y; 
    } 
    void doSomething() { 
         
    } 
    int fibonacci(int n) { 
        return doSomething() + fibonacci(n – 1); 
    } 
} 

Wrong type
Can't multiply 

strings

Can't add void



  

What Remains to Check?

● Type errors.
● Today:

● What are types?
● What is type-checking?
● A type system for Decaf.



  

What is a Type?

● This is the subject of some debate.
● To quote Alex Aiken:

● “The notion varies from language to 
language.

● The consensus:
– A set of values.
– A set of operations on those values”

● Type errors arise when operations are 
performed on values that do not support 
that operation.



  

Types of Type-Checking

● Static type checking.
● Analyze the program during compile-time to prove the 

absence of type errors.
● Never let bad things happen at runtime.

● Dynamic type checking.
● Check operations at runtime before performing them.
● More precise than static type checking, but usually 

less efficient.
● (Why?)

● No type checking.
● Throw caution to the wind!



  

Type Systems

● The rules governing permissible 
operations on types forms a type 
system.

● Strong type systems are systems that 
never allow for a type error.
● Java, Python, JavaScript, LISP, Haskell, etc.

● Weak type systems can allow type 
errors at runtime.
● C, C++



  

Type Wars

● Endless debate about what the “right” 
system is.

● Dynamic type systems make it easier to 
prototype; static type systems have fewer 
bugs.

● Strongly-typed languages are more 
robust, weakly-typed systems are often 
faster.



  

Type Wars

● Endless debate about what the “right” 
system is.

● Dynamic type systems make it easier to 
prototype; static type systems have fewer 
bugs.

● Strongly-typed languages are more 
robust, weakly-typed systems are often 
faster.

● I'm staying out of this!



  

Our Focus

● Decaf is typed statically and weakly:
● Type-checking occurs at compile-time.
● Runtime errors like dereferencing null or an 

invalid object are allowed.

● Decaf uses class-based inheritance.
● Decaf distinguishes primitive types and 

classes.



  

Typing in Decaf



  

Static Typing in Decaf

● Static type checking in Decaf consists of 
two separate processes:
● Inferring the type of each expression from 

the types of its components.
● Confirming that the types of expressions in 

certain contexts matches what is expected.

● Logically two steps, but you will probably 
combine into one pass.



  

An Example

while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* … */
    }

    while (5 == null) {
        /* … */
    }

}



  

An Example

while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* … */
    }

    while (5 == null) {
        /* … */
    }

}



  

An Example

while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* … */
    }

    while (5 == null) {
        /* … */
    }

}



  

An Example

while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* … */
    }

    while (5 == null) {
        /* … */
    }

}

Well-typed 
expression with 
wrong type.



  

An Example

while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* … */
    }

    while (5 == null) {
        /* … */
    }

}



  

An Example

while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* … */
    }

    while (5 == null) {
        /* … */
    }

} Expression with 
type error



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.

+

IntConstant IntConstant

137 42



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.

+

IntConstant IntConstant

137 42

int



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.

+

IntConstant IntConstant

137 42

int int



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.

+

IntConstant IntConstant

137 42

int int

int



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.

=

Identifierx =

Identifiery BoolConstanttruebool bool

bool



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.

=

Identifierx =

Identifiery BoolConstanttruebool bool

boolbool



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.

=

Identifierx =

Identifiery BoolConstanttruebool bool

boolbool

bool



  

Type Checking as Proofs

● We can think of syntax analysis as 
proving claims about the types of 
expressions.

● We begin with a set of axioms, then 
apply our inference rules to determine 
the types of expressions.

● Many type systems can be thought of as 
proof systems.



  

Sample Inference Rules

● “If x is an identifier that refers to an 
object of type t, the expression x has 
type t.”

● “If e is an integer constant, e has type 
int.”

● “If the operands e1 and e2 of e1 + e2 are 
known to have types int and int, then
e1 + e2 has type int.”


