3
Verification by model checking

3.1 Motivation for verification

There is a great advantage in being able to verify the correctness of com-
puter systems, whether they are hardware, software, or a combination. This
is most obvious in the case of safety-critical systems, but also applies to
those that are commercially critical, such as mass-produced chips, mission
critical, etc. Formal verification methods have quite recently become usable
by industry and there is a growing demand for professionals able to apply
them. In this chapter, and the next one, we examine two applications of
logics to the question of verifying the correctness of computer systems, or
programs.

Formal verification techniques can be thought of as comprising three parts:

e A framework for modelling systems, typically a description language of
some sort;

e A specification language for describing the properties to be verified;

e A wverification method to establish whether the description of a system
satisfies the specification.

Approaches to wverification can be classified according to the following
criteria:

Proof-based vs. model-based. In a proof-based approach, the system
description is a set of formulas I" (in a suitable logic) and the spec-
ification is another formula ¢. The verification method consists of
trying to find a proof that I' |- ¢. This typically requires guidance
and expertise from the user.

In a model-based approach, the system is represented by a model
M for an appropriate logic. The specification is again represented
by a formula ¢ and the verification method consists of computing

180

3.1 Motivation for verification 181

whether a model M satisfies ¢ (written M E ¢). This computation
is usually automatic for finite models.

In Chapters 1 and 2, we could see that logical proof systems are
often sound and complete, meaning that I' |- ¢ (provability) holds
if, and only if, ' F ¢ (semantic entailment) holds, where the latter
is defined as follows: for all models M, if for all ¢y € T" we have
M E 1, then M E ¢. Thus, we see that the model-based approach
is potentially simpler than the proof-based approach, for it is based
on a single model M rather than a possibly infinite class of them.

Degree of automation. Approaches differ on how automatic the method
is; the extremes are fully automatic and fully manual. Many of the
computer-assisted techniques are somewhere in the middle.

Full- vs. property-verification. The specification may describe a single
property of the system, or it may describe its full behaviour. The
latter is typically expensive to verify.

Intended domain of application, which may be hardware or software;
sequential or concurrent; reactive or terminating; etc. A reactive
system is one which reacts to its environment and is not meant to
terminate (e.g. operating systems, embedded systems and computer
hardware).

Pre- vs. post-development. Verification is of greater advantage if intro-
duced early in the course of system development, because errors
caught earlier in the production cycle are less costly to rectify. (It is
alleged that Intel lost millions of dollars by releasing their Pentium
chip with the FDIV error.)

This chapter concerns a verification method called model checking. In
terms of the above classification, model checking is an automatic, model-
based, property-verification approach. It is intended to be used for concur-
rent, reactive systems and originated as a post-development methodology.
Concurrency bugs are among the most difficult to find by testing (the activ-
ity of running several simulations of important scenarios), since they tend to
be non-reproducible or not covered by test cases, so it is well worth having
a verification technique that can help one to find them.

The Alloy system described in Chapter 2 is also an automatic, model-
based, property-verification approach. The way models are used is slightly
different, however. Alloy finds models which form counterexamples to as-
sertions made by the user. Model checking starts with a model described
by the user, and discovers whether hypotheses asserted by the user are valid
on the model. If they are not, it can produce counterexamples, consisting of

182 Verification by model checking

execution traces. Another difference between Alloy and model checking is
that model checking (unlike Alloy) focusses explicitly on temporal properties
and the temporal evolution of systems.

By contrast, Chapter 4 describes a very different verification technique
which in terms of the above classification is a proof-based, computer-assisted,
property-verification approach. It is intended to be used for programs which
we expect to terminate and produce a result.

Model checking is based on temporal logic. The idea of temporal logic is
that a formula is not statically true or false in a model, as it is in propo-
sitional and predicate logic. Instead, the models of temporal logic contain
several states and a formula can be true in some states and false in others.
Thus, the static notion of truth is replaced by a dynamic one, in which the
formulas may change their truth values as the system evolves from state
to state. In model checking, the models M are transition systems and the
properties ¢ are formulas in temporal logic. To verify that a system satisfies
a property, we must do three things:

e Model the system using the description language of a model checker, ar-
riving at a model M.

e Code the property using the specification language of the model checker,
resulting in a temporal logic formula ¢.

e Run the model checker with inputs M and ¢.

The model checker outputs the answer ‘yes’ if M E ¢ and ‘no’ otherwise; in
the latter case, most model checkers also produce a trace of system behaviour
which causes this failure. This automatic generation of such ‘counter traces’
is an important tool in the design and debugging of systems.

Since model checking is a model-based approach, in terms of the classifica-
tion given earlier, it follows that in this chapter, unlike in the previous two,
we will not be concerned with semantic entailment (I' F ¢), or with proof
theory (I' F ¢), such as the development of a natural deduction calculus for
temporal logic. We will work solely with the notion of satisfaction, i.e. the
satisfaction relation between a model and a formula (M E ¢).

There is a whole zoo of temporal logics that people have proposed and
used for various things. The abundance of such formalisms may be organised
by classifying them according to their particular view of ‘time.” Linear-time
logics think of time as a set of paths, where a path is a sequence of time
instances. Branching-time logics represent time as a tree, rooted at the
present moment and branching out into the future. Branching time appears
to make the non-deterministic nature of the future more explicit. Another
quality of time is whether we think of it as being continuous or discrete.

3.2 Linear-time temporal logic 183

The former would be suggested if we study an analogue computer, the latter
might be preferred for a synchronous network.

Temporal logics have a dynamic aspect to them, since the truth of a for-
mula is not fixed in a model, as it is in predicate or propositional logic, but
depends on the time-point inside the model. In this chapter, we study a
logic where time is linear, called Linear-time Temporal Logic (LTL), and
another where time is branching, namely Computation Tree Logic (CTL).
These logics have proven to be extremely fruitful in verifying hardware and
communication protocols; and people are beginning to apply them to the
verification of software. Model checking is the process of computing an an-
swer to the question of whether M, s E ¢ holds, where ¢ is a formula of
one of these logics, M is an appropriate model of the system under con-
sideration, s is a state of that model and F is the underlying satisfaction
relation.

Models like M should not be confused with an actual physical system.
Models are abstractions that omit lots of real features of a physical system,
which are irrelevant to the checking of ¢. This is similar to the abstractions
that one does in calculus or mechanics. There we talk about straight lines,
perfect circles, or an experiment without friction. These abstractions are
very powerful, for they allow us to focus on the essentials of our particular
concern.

3.2 Linear-time temporal logic

Linear-time temporal logic, or LTL for short, is a temporal logic, with con-
nectives that allow us to refer to the future. It models time as a sequence of
states, extending infinitely into the future. This sequence of states is some-
times called a computation path, or simply a path. In general, the future is
not determined, so we consider several paths, representing different possible
futures, any one of which might be the ‘actual’ path that is realised.

We work with a fixed set Atoms of atomic formulas (such as p,q,r,..., or
P1,P2,---). These atoms stand for atomic facts which may hold of a system,
like ‘Printer Q5 is busy,” or ‘Process 3259 is suspended,” or ‘The content
of register R1 is the integer value 6. The choice of atomic descriptions
obviously depends on our particular interest in a system at hand.

184 Verification by model checking

3.2.1 Syntax of LTL

Definition 3.1 Linear-time temporal logic (LTL) has the following syntax
given in Backus Naur form:

¢ = T|Llp[(=9)[(6A¢)|(dV)| (s~ ¢)
| (Xo) [(FP)[(GP)[(¢UQ)[(@Wh)[(pR¢) (3.1)

where p is any propositional atom from some set Atoms.

Thus, the symbols T and | are LTL formulas, as are all atoms from
Atoms; and —¢ is an LTL formula if ¢ is one, etc. The connectives X, F,
G, U, R, and W are called temporal connectives. X means ‘neXt state,’
F means ‘some Future state,” and G means ‘all future states (Globally).’
The next three, U, W and R are called ‘Until,” ‘Release’ and ‘Weak-until’
respectively. We will look at the precise meaning of all these connectives in
the next section; for now, we concentrate on their syntax.

Here are some examples of LTL formulas:

e (Fp)A(Ga)) = (pWr))

e (F(p— (Gr)) V((—q) U p)), the parse tree of this formula is illustrated
in Figure 3.1.

e (pW(gWr))

e (G(Fp)) = (F(qVs)))-

It’s boring to write all those brackets, and makes the formulas hard to
read. Many of them can be omitted without introducing ambiguities; for
example, (p — (F ¢q)) could be written p — F ¢ without ambiguity. Others,
however, are required to resolve ambiguities. In order to omit some of those,
we assume similar binding priorities for the LTL connectives to those we
assumed for propositional and predicate logic.

Convention 3.2 The unary connectives (consisting of — and the temporal
connectives X, F and G) bind most tightly. Next in the order come U, R
and W; then come A and V; and after that comes —.

These binding priorities allow us to drop some brackets without introduc-
ing ambiguity. The examples above can be written

e FpANGgq—opWr

e F(p—>Gr)Vv—-qUp
o pW(gWr)

e GFp—>F(qVs).

3.2 Linear-time temporal logic 185

> O ®
© © @

Fig. 3.1. The parse tree of (F (p = Gr) V (=q U p)).

The brackets we retained were in order to override the priorities of Conven-
tion 3.2, or to disambiguate cases which the convention does not resolve.
For example, with no brackets at all, the second formula would become
Fp — GrV —q U p, corresponding to the parse tree of Figure 3.2, which is
quite different.

The following are not well-formed formulas:

e Ur — since U is binary, not unary
e p G g — since G is unary, not binary.

Definition 3.3 A subformula of an LTL formula ¢ is any formula 1) whose
parse tree is a subtree of ¢’s parse tree.

The subformulas of p W (¢ U r), e.g., are p, ¢, 7, g Ur and p W (¢ U r).

3.2.2 Semantics of LTL

The kinds of systems we are interested in verifying using LTL may be mod-
elled as transition systems. A transition system models a system by means
of states (static structure) and transitions (dynamic structure). More for-
mally:

186 Verification by model checking

Fig. 3.2. The parse tree of Fp — Gr V =¢ U p, assuming binding priorities of
Convention 3.2.

Definition 3.4 A transition system M = (S,—,L) is a set of states S
endowed with a transition relation — (a binary relation on S), such that
every s € S has some s’ € S with s — ', and a labelling function L: S —
P(Atoms).

Transition systems are also simply called models in this chapter. So a model
has a collection of states S, a relation —, saying how the system can move
from state to state, and, associated with each state s, one has the set of
atomic propositions L(s) which are true at that particular state. We write
P(Atoms) for the power set of Atoms, a collection of atomic descriptions.
For example, the power set of {p,q} is {0, {p}, {q},{p,q}}. A good way of
thinking about L is that it is just an assignment of truth values to all the
propositional atoms, as it was the case for propositional logic (we called that
a valuation). The difference now is that we have more than one state, so
this assignment depends on which state s the system is in: L(s) contains all
atoms which are true in state s.

We may conveniently express all the information about a (finite) transition
system M using directed graphs whose nodes (which we call states) contain
all propositional atoms that are true in that state. For example, if our
system has only three states sp, s1 and ss; if the only possible transitions
between states are sy — s1, Sg — 82, 81 — Sg, S| — S92 and sa — S9; and

3.2 Linear-time temporal logic 187

DN
@ ¥
S1 0.

Fig. 3.3. A concise representation of a transition system M = (S, —, L) as a di-
rected graph. We label state s with [iff [€ L(s).

S1 51

S0 S0

\

S92 52

\ S3 \ S3

S4 S4

Sd

Fig. 3.4. On the left, we have a system with a state s4 that does not have any
further transitions. On the right, we expand that system with a ‘deadlock’ state
sq such that no state can deadlock; of course, it is then our understanding that
reaching the ‘deadlock’ state sq corresponds to deadlock in the original system.

if L(so) = {p, ¢}, L(s1) = {¢,r} and L(s2) = {r}, then we can condense all
this information into Figure 3.3. We prefer to present models by means of
such pictures whenever that is feasible.

The requirement in Definition 3.4 that for every s € S there is at least one
s’ € S such that s — s’ means that no state of the system can ‘deadlock.’
This is a technical convenience, and in fact it does not represent any real
restriction on the systems we can model. If a system did deadlock, we
could always add an extra state s; representing deadlock, together with
new transitions s — s4 for each s which was a deadlock in the old system,
as well as sy — s4. See Figure 3.4 for such an example.

188 Verification by model checking

/50\82\52
/\ @ @

VA \Q

Fig. 3.5. Unwinding the system of Figure 3.3 as an infinite tree of all computation
paths beginning in a particular state.

Definition 3.5 A path in a model M = (S, —, L) is an infinite sequence of
states s1,s2,83,... in S such that, for each ¢ > 1, s; — s;11. We write the
path as s1 — s9 — ...

Consider the path m = s1 — s9 — It represents a possible future of
our system: first it is in state s, then it is in state sg, and so on. We write
7' for the suffix starting at s;, e.g. 7 is 53 — s4 — ...

It is useful to visualise all possible computation paths from a given state s
by unwinding the transition system to obtain an infinite computation tree.
For example, if we unwind the state graph of Figure 3.3 for the designated
starting state sg, then we get the infinite tree in Figure 3.5. The execu-
tion paths of a model M are explicitly represented in the tree obtained by
unwinding the model.

Definition 3.6 Let M = (S,—, L) be a model and # = s; — ... be a path
in M. Whether 7 satisfies an LTL formula is defined by the satisfaction
relation F as follows:

1. tET
2. mH L

3.2 Linear-time temporal logic 189
S0 S1 82 S3 S84 S5 S St S8 S9 S10

~ J

D

q

Fig. 3.6. An illustration of the meaning of Until in the semantics of LTL. Suppose
p is satisfied at (and only at) ss3, s4, s5, S6, 57, 88 and ¢ is satisfied at (and only at)
sg. Only the states s3 to sg each satisfy p U ¢ along the path shown.

3. mEpiff pe L(sy)

4. tE-¢iff mH ¢

5. TEP1 Ao iff TFE ¢1 and 7 F ¢

6. TEP1 Vo iff mE Py or mE ¢

7. mE ¢1 — ¢o iff m E ¢po whenever 7 E ¢

8. TEX¢iff 2 F ¢

9. nEGoiff, foralli>1, 7' F ¢

10. 7 E F ¢ iff there is some i > 1 such that 7° F ¢

11. 7 E ¢ U 4 iff there is some i > 1 such that #* F 4 and for all
j=1,...,i—1 we have 7/ E ¢

12. mFE ¢ W 4 iff either there is some i > 1 such that 7’ F ¢ and for all
j=1,...,i—1 we have 7/ E ¢; or for all k£ > 1 we have 7 E ¢

13. ™ E ¢ R 4 iff either there is some i > 1 such that 7 E ¢ and for all
j=1,...,1 we have 7/ E 4, or for all £ > 1 we have 7% k 4.

Clauses 1 and 2 reflect the facts that T is always true, and L is always false.
Clauses 3—7 are similar to the corresponding clauses we saw in propositional
logic. Clause 8 removes the first state from the path, in order to create a
path starting at the ‘next’ (second) state.

Notice that clause 3 means that atoms are evaluated in the first state along
the path in consideration. However, that doesn’t mean that all the atoms
occuring in an LTL formula refer to the first state of the path; if they are in
the scope of a temporal connective, e.g. in G (p — X g), then the calculation
of satisfaction involves taking suffices of the path in consideration, and the
atoms refer to the first state of those suffices.

Let’s now look at clauses 11-13, which deal with the binary temporal
connectives. U, which stands for ‘until,’ is the most commonly encountered
one of these. The formula ¢1 U ¢ holds on a path if it is the case that ¢
holds continuously until ¢o holds. Moreover, ¢1 U ¢9 actually demands that
¢2 does hold in some future state. See Figure 3.6 for illustration: each of
the states s3 to sg satisfies p U ¢ along the path shown, but sy to s3 don’t.

The other binary connectives are W, standing for ‘weak until,” and R,
standing for ‘release.” Weak-until is just like U, except that ¢ W 1 does not

190 Verification by model checking

require that 1 is eventually satisfied along the path in question, which is
required by ¢ U 1. Release R is the dual of U; that is, ¢ R 1) is equivalent to
—(—=¢ U —p). It is called ‘release’ because clause 11 determines that 1) must
remain true up to and including the moment when ¢ becomes true (if there
is one); ¢ ‘releases’ 1. R and W are actually quite similar; the differences
are that they swap the roles of ¢ and v, and the clause for W has an 7 — 1
where R has ¢. Since they are similar, why do we need both? We don’t; they
are interdefinable, as we will see later. However, it’s useful to have both. R
is useful because it is the dual of U, while W is useful because it is a weak
form of U.

Note that neither the strong version (U) or the weak version (W) of until
says anything about what happens after the until has been realised. This
is in contrast with some of the readings of ‘until’ in natural language. For
example, in the sentence ‘I smoked until I was 22’ it is not only expressed
that the person referred to continually smoked up until he or she was 22
years old, but we also would interpret such a sentence as saying that this
person gave up smoking from that point onwards. This is different from the
semantics of until in temporal logic. We could express the sentence about
smoking by combining U with other connectives; for example, by asserting
that it was once true that s U (¢ A G —s), where s represents ‘I smoke’ and
t represents ‘I am 22.’

Remark 3.7 Notice that, in clauses 9-13 above, the future includes the
present. This means that, when we say ‘in all future states,” we are including
the present state as a future state. It is a matter of convention whether we
do this, or not. As an exercise, you may consider developing a version of
LTL in which the future excludes the present. A consequence of adopting
the convention that the future shall include the present is that the formulas
Gp—p,p— qUpand p— Fp are true in every state of every model.

So far we have defined a satisfaction relation between paths and LTL for-
mulas. However, to verify systems, we would like to say that a model as
a whole satisfies an LTL formula. This is defined to hold whenever every
possible execution path of the model satisfies the formula.

Definition 3.8 Suppose M = (S,—, L) is a model, s € S, and ¢ an LTL
formula. We write M, s F ¢ if, for every execution path m of M starting at
s, we have 7 F ¢.

If M is clear from the context, we may abbreviate M, s E ¢ by s F ¢.

3.2 Linear-time temporal logic 191

It should be clear that we have outlined the formal foundations of a pro-
cedure that, given ¢, M and s, can check whether M, s F ¢ holds. Later
in this chapter, we will examine algorithms which implement this calcula-

tion. Let us now look at some example checks for the system in Figures 3.3
and 3.5.

1.

10.

M, so E p A ¢ holds since the atomic symbols p and ¢ are contained
in the node of sy: ™ E p A q for every path 7 beginning in s.

. M, sg E =r holds since the atomic symbol r is not contained in node

S$0-

. M, s9 E T holds by definition.
. M, sg E Xr holds since all paths from sy have either s; or sy as their

next state, and each of those states satisfies r.

. M, so EX (g Ar) does not hold since we have the rightmost compu-

tation path sy — so — s9 — so — ... in Figure 3.5, whose second
node s contains r, but not q.

. M, s0 E G=(pAr) holds since all computation paths beginning in sg

satisfy G —(p A r), i.e. they satisfy =(p A) in each state along the
path. Notice that G ¢ holds in a state if, and only if, ¢ holds in all
states reachable from the given state.

For similar reasons, M, so E G r holds (note the sy instead of sg).

. For any state s of M, we have M,s E F (=g Ar) — F Gr. This says

that if any path 7 beginning in s gets to a state satisfying (—g A 1),
then the path 7 satisfies F Gr. Indeed this is true, since if the path
has a state satisfying (=g A r) then (since that state must be s3)
the path does satisfy F Gr. Notice what F Gr says about a path:
eventually, you have continuously r.

. The formula G F p expresses that p occurs along the path in question

infinitely often. Intuitively, it’s saying: no matter how far along the
path you go (that’s the G part) you will find you still have a p in front
of you (that’s the F part). For example, the path sy — s; — sg —
s1 — ... satisfies GFp. But the path sp — s9 — s9 — s — ...
doesn’t.

In our model, if a path from sy has infinitely many ps on it then
it must be the path sy — s1 — s — s1 — ..., and in that case
it also has infinitely many rs on it. So, M,s90 F GFp — GFr.
But it is not the case the other way around! It is not the case that
M,so E GFr — GFp, because we can find a path from sy which
has infinitely many rs but only one p.

192 Verification by model checking

3.2.3 Practical patterns of specifications

What kind of practically relevant properties can we check with formulas of
LTL? We list a few of the common patterns. Suppose atomic descriptions
include some words such as busy and requested. We may require some of the
following properties of real systems:

e It is impossible to get to a state where started holds, but ready does not
hold:
G—(started A —ready)
The negation of this formula expresses that it is possible to get to such
a state, but this is only so if interpreted on paths (7 F ¢). We cannot
assert such a possibility if interpreted on states (s F ¢) since we cannot
express the existence of paths; for that interpretation, the negation of the
formula above asserts that all paths will eventually get to such a state.

e For any state, if a request (of some resource) occurs, then it will eventually
be acknowledged:
G (requested — F acknowledged).

e A certain process is enabled infinitely often on every computation path:
G F enabled.

e Whatever happens, a certain process will eventually be permanently dead-
locked:
F G deadlock.

e If the process is enabled infinitely often, then it runs infinitely often.
G F enabled — G F running.

e An upwards travelling elevator at the second floor does not change its
direction when it has passengers wishing to go to the fifth floor:
G (floor=2 A direction=up A ButtonPressed5 — (direction=up U floor=5))
Here, our atomic descriptions are boolean expressions built from system
variables, e.g. floor=2.

There are some things which are not possible to say in LTL, however. One
big class of such things are statements which assert the existence of a path,
such as these ones:

e From any state it is possible to get to a restart state (i.e. there is a path
from all states to a state satisfying restart).

e The elevator can remain idle on the third floor with its doors closed (i.e.
from the state in which it is on the third floor, there is a path along which
it stays there).

3.2 Linear-time temporal logic 193

LTL can’t express these because it cannot directly assert the existence of
paths. In Section 3.4, we look at Computation Tree Logic (CTL) which has
operators for quantifying over paths, and can express these properties.

3.2.4 Important equivalences between LTL formulas

Definition 3.9 We say that two LTL formulas ¢ and ¢ are semantically
equivalent, or simply equivalent, writing ¢ = 1, if for all models M and all
paths min M: 7 E ¢ iff w F 9.

The equivalence of ¢ and 1 means that ¢ and 7 are semantically inter-
changeable. If ¢ is a subformula of some bigger formula x, and ¢ = ¢, then
we can make the substitution of 9 for ¢ in y without changing the meaning
of x. In propositional logic, we saw that A and V are duals of each other,
meaning that if you push a — past a A, it becomes a V, and vice versa:

~(¢AYP) =9V 9 ~(¢VYP)=-d A1

(Because A and V are binary, pushing a negation downwards in the parse
tree past one of them also has the effect of duplicating that negation.)
Similarly, F and G are duals of each other, and X is dual with itself:

Also U and R are duals of each other:
(¢ Uy)=-¢R -9 —(pRY)=—-¢U—p.

We should give formal proofs of these equivalences. But they are easy, so we
leave them as an exercise to the reader. ‘Morally’ there ought to be a dual
for W, and you can invent one if you like. Work out what it might mean,
and then pick a symbol based on the first letter of the meaning. However,
it might not be very useful.

It’s also the case that F distributes over V and G over A, i.e.

F(pvy) = FpVFy
G(pAY) = GHAGY .

Compare this with the quantifier equivalences in Section 2.3.2. But F does
not distribute over A. What this means is that there is a model with a path
which distinguishes F (¢ A ¢) and F ¢ A F 4, for some ¢,1). Take the path
S0 — $1 — Sg — $1 — ... from the system of Figure 3.3, for example; it
satisfies F p A Fr but it doesn’t satisfy F (p A 7).

194 Verification by model checking
Here are two more equivalences in LTL:
Fo=TU¢ Gop=1Ro.

The first one exploits the fact that the clause for Until states two things:
the second formula ¢ must become true; and until then, the first formula T
must hold. So, if we put ‘no constraint’ for the first formula, it boils down
to asking that the second formula holds, which is what F asks. (The formula
T represent ‘no constraint.” If you ask me to bring it about that T holds,
I need do nothing, it enforces no constraint. In the same sense, L is ‘every
constraint.” If you ask me to bring it about that L holds, I'll have to meet
every constraint there is, which is impossible.)

The second formula, that G¢ = L R ¢, can be obtained from the first by
putting a — in front of each side, and applying the duality rules. Another
more intuitive way of seeing this is to recall the meaning of ‘release:’ L
releases ¢, but L will never be true, so ¢ doesn’t get released.

Another pair of equivalences relates the strong and weak versions of Until,
U and W. Strong until may be seen as weak until plus the constraint that
the eventuality must actually occur:

dUP=¢p Wi AFp. (3.2)

To prove equivalence (3.2), suppose first that a path satisfies ¢ U 1. Then,
from clause 11, we have i > 1 such that 7’ E ¢ and forall j =1,...,i —1
we have 7/ E ¢. From clause 12, this proves ¢ W 1, and from clause 10 it
proves F . Thus for all paths 7, if 1 E ¢ U then 1 E ¢ W AF 1. As an
exercise, the reader can prove it the other way around.

Writing W in terms of U is also possible: W is like U but also allows the
possibility of the eventuality never occurring:

dWYp=¢UshpVGs. (3.3)

Inspection of clauses 12 and 13 reveals that R and W are rather similar. The
differences are that they swap the roles of their arguments ¢ and v; and the
clause for W has an ¢ — 1 where R has i. Therefore, it is not surprising that
they are expressible in terms of each other, as follows:

Wy = PpR(VY) (3-4)
¢RY = yW(pAY). (3-5)

3.2.5 Adequate sets of connectives for LTL

Recall that ¢ = v holds iff any path in any transition system which satisfies
¢ also satisfies 1, and vice versa. As in propositional logic, there is some

3.2 Linear-time temporal logic 195

redundancy among the connectives. For example, in Chapter 1 we saw
that the set {1, A, —} forms an adequate set of connectives, since the other
connectives V, —, T, etc., can be written in terms of those three.

Small adequate sets of connectives also exist in LTL. Here is a summary
of the situation.

e X is completely orthogonal to the other connectives. That is to say, its
presence doesn’t help in defining any of the other ones in terms of each
other. Moreover, X cannot be derived from any combination of the others.

e Each of the sets {U, X}, {R, X}, {W, X} is adequate. To see this, we note
that

— R and W may be defined from U, by the duality ¢ R ¢ = —(—¢ U =)
and equivalence (3.4) followed by the duality, respectively.

— U and W may be defined from R, by the duality ¢ U 9 = —(=¢ R =)
and equivalence (3.4), respectively.

— R and U may be defined from W, by equivalence (3.5) and the duality
¢ U =-(-¢ R —) followed by equivalence (3.5).

Sometimes it is useful to look at adequate sets of connectives which do not
rely on the availability of negation. That’s because it is often convenient to
assume formulas are written in negation-normal form, where all the negation
symbols are applied to proposition atoms (i.e. they are near the leaves of the
parse tree). In this case, these sets are adequate for the fragment without
X, and no strict subset is: {U,R}, {U,W}, {U,G}, {R,F}, {W,F}. But
{R,G} and {W, G} are not adequate. Note that one cannot define G with
{U,F}, and one cannot define F with {R,G} or {W,G}.
We finally state and prove a useful equivalence about U.

Theorem 3.10 The equivalence ¢ Uy = (-9 U (mdp A —9)) AF9Y
holds for all LTL formulas ¢ and .

Proof: Take any path sy — s; — sg — ... in any model.

First, suppose sop F ¢ U 1 holds. Let n be the smallest number such that
sn F 1; such a number has to exist since sg F ¢ U 9; then, for each
k < mn, sg F ¢. We immediately have sy F F 4, so it remains to show
80 E =(—=9 U (m¢ A 1)), which, if we expand, means:
() for each i > 0, if s; F —¢ A =1, then there is some j < 7 with

Sj = ’(ﬁ

Take any ¢ > 0 with s; F =¢ A —1); ¢+ > n, so we can take j < n and
have s; F 1.

196 Verification by model checking

Conversely, suppose sg F —(=% U (=¢ A —1p)) A F 1) holds; we prove sg F
¢ U . Since sy F F 1, we have a minimal n as before. We show
that, for any ¢ < n, s; F ¢. Suppose s; E —¢; since n is minimal,
we know s; F =, so by (*) there is some j < i < n with s; F 9,
contradicting the minimality of n. O

3.3 Model checking: systems, tools, properties
3.3.1 Example: mutual exclusion

Let us now look at a larger example of verification using LTL, having to do
with mutual exclusion. When concurrent processes share a resource (such as
a file on a disk or a database entry), it may be necessary to ensure that they
do not have access to it at the same time. Several processes simultaneously
editing the same file would not be desirable.

We therefore identify certain critical sections of each process’ code and
arrange that only one process can be in its critical section at a time. The
critical section should include all the access to the shared resource (though it
should be as small as possible so that no unnecessary exclusion takes place).
The problem we are faced with is to find a protocol for determining which
process is allowed to enter its critical section at which time. Once we have
found one which we think works, we verify our solution by checking that it
has some expected properties, such as the following ones:

Safety: Only one process is in its critical section at any time.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it will
eventually be permitted to do so.
Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the

property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

3.3 Model checking: systems, tools, properties 197

Fig. 3.7. A first-attempt model for mutual exclusion.

3.8.1.1 The first modelling attempt

We will model two processes, each of which is in its non-critical state (n), or
trying to enter its critical state (¢), or in its critical state (c¢). Each individual
process undergoes transitions in the cycle n -t — ¢ — n — ..., but the
two processes interleave with each other. Consider the protocol given by
the transition system M in Figure 3.7. (As usual, we write pips...pn, in a
node s to denote that pi,po,...,p, are the only propositional atoms true
at s.) The two processes start off in their non-critical sections (global state
80). State sg is the only initial state, indicated by the incoming edge with
no source. Kither of them may now move to its trying state, but only one
of them can ever make a transition at a time (asynchronous interleaving).
At each step, an (unspecified) scheduler determines which process may run.
So there is a transition arrow from sy to s; and s5. From s; (i.e. process 1
trying, process 2 non-critical) again two things can happen: either process 1
moves again (we go to s3), or process 2 moves (we go to s3). Notice that
not every process can move in every state. For example, process 1 cannot
move in state s7, since it cannot go into its critical section until process 2
comes out of its critical section.

We would like to check the four properties by first describing them as
temporal logic formulas. Unfortunately, they are not all expressible as LTL
formulas. Let us look at them case-by-case.

Safety: This is expressible in LTL, as G =(c; A ¢2). Clearly, G =(cy A ¢2) is
satisfied in the initial state (indeed, in every state).

198 Verification by model checking

Liveness: This is also expressible: G (1 — F ¢1). However, it is not satis-
fied by the initial state, for we can find path starting at the initial
sate along which there is a state, namely s;, in which ¢; is true
but from there along the path c; is false. The path in question is
S0 — S1 —> 83 — ST — S1 —» 83 — S7... on which c; is always false.

Non-blocking: Let’s just consider process 1. We would like to express
the property as: for every state satisfying nj, there is a successor
satisfying ¢1. Unfortunately, this existence quantifier on paths (‘there
is a successor satisfying ... ’) cannot be expressed in LTL. It can be
expressed in the logic CTL, which we will turn to in the next section
(for the impatient, see page 224).

No strict sequencing: We might consider expressing this as saying: there
is a path with two distinct states satisfying ¢; such that no state in
between them has that property. However, we cannot express ‘there
exists a path,” so let us consider the complement formula instead.
The complement says that all paths having a ¢; period which ends
cannot have a further ¢; state until a ¢y state occurs. We write this
as: G(cg = ¢4 W (=c1 A —c1 W ¢2)). This says that anytime we
get into a c¢; state, either that condition persists indefinitely, or it
ends with a non-c¢; state and in that case there is no further ¢; state
unless and until we obtain a ¢y state.

This formula is false, as exemplified by the path sg — s5 — s3 —
S4 —> 85 —> 83 — S4.... Therefore the original condition expressing
that strict sequencing need not occur, is true.

Before further considering the mutual exclusion example, some comments
about expressing properties in LTL are appropriate. Notice that in the no-
strict-sequencing property, we overcame the problem of not being able to
express the existence of paths by instead expressing the complement prop-
erty, which of course talks about all paths. Then we can perform our check,
and simply reverse the answer; if the complement property is false, we de-
clare our property to be true, and vice versa.

Why was that tactic not available to us to express the non-blocking prop-
erty? The reason is that it says: every path to a n; state may be continued
by a one-step path to a t; state. The presence of both universal and exis-
tential quantifiers is the problem. In the no-strict-sequencing property, we
had only an existential quantifier; thus, taking the complement property
turned it into a universal path quantifier, which can be expressed in LTL.
But where we have alternating quantifiers, taking the complement property
doesn’t help in general.

3.3 Model checking: systems, tools, properties 199

Fig. 3.8. A second-attempt model for mutual exclusion. There are now two states
representing t1ts, namely s3 and sg.

Let’s go back to the mutual exclusion example. The reason liveness failed
in our first attempt at modelling mutual exclusion is that non-determinism
means it might continually favour one process over another. The problem is
that the state s3 does not distinguish between which of the processes first
went into its trying state. We can solve this by splitting s3 into two states.

3.8.1.2 The second modelling attempt

The two states s3 and sg in Figure 3.8 both correspond to the state s3 in
our first modelling attempt. They both record that the two processes are in
their trying states, but in sz it is implicitly recorded that it is process 1’s
turn, whereas in sg it is process 2’s turn. Note that states s3 and sg both
have the labelling ¢;%9; the definition of transition systems does not preclude
this. We can think of there being some other, hidden, variables which are
not part of the initial labelling, which distinguish s3 and sg.

Remark 3.11 The four properties of safety, liveness, non-blocking and no
strict sequencing are satisfied by the model in Figure 3.8. (Since the non-
blocking property has not yet been written in temporal logic, we can only
check it informally.)

In this second modelling attempt, our transition system is still slightly
over-simplified, because we are assuming that it will move to a different
state on every tick of the clock (there are no transitions to the same state).
We may wish to model that a process can stay in its critical state for several

200 Verification by model checking

ticks, but if we include an arrow from sy, or s7, to itself, we will again violate
liveness. This problem will be solved later in this chapter when we consider
‘fairness constraints’ (Section 3.6.2).

3.3.2 The NuSMYV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands
for ‘New Symbolic Model Verifier.” NuSMYV is an Open Source product, is
actively supported and has a substantial user community. For details on
how to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as in-
put a text consisting of a program describing a model and some specifications
(temporal logic formulas). It produces as output either the word ‘true’ if the
specifications hold, or a trace showing why the specification is false for the
model represented by our
program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

The following input to SMV:

MODULE main
VAR
request : boolean;
status : {ready,busy};
ASSIGN
init (status) := ready;
next (status)

case
request : busy;
1 : {ready,busy};

3.3 Model checking: systems, tools, properties 201

Fig. 3.9. The model corresponding to the SMV program in the text.

esac;
LTLSPEC
G(request -> F status=busy)

consists of a program and a specification. The program has two variables,
request of type boolean and status of enumeration type {ready, busy}:
0 denotes ‘false’ and 1 represents ‘true.” The initial and subsequent values
of variable request are not determined within this program; this conserva-
tively models that these values are determined by an external environment.
This under-specification of request implies that the value of variable status
is partially determined: initially, it is ready; and it becomes busy whenever
request is true. If request is false, the next value of status is not deter-
mined.

Note that the case 1: signifies the default case, and that case statements
are evaluated from the top down: if several expressions to the left of a
‘> are true, then the command corresponding to the first, top-most true
expression will be executed. The program therefore denotes the transition
system shown in Figure 3.9; there are four states, each one corresponding
to a possible value of the two binary variables. Note that we wrote ‘busy’
as a shorthand for ‘status=busy’ and ‘req’ for ‘request is true.’

It takes a while to get used to the syntax of SMV and its meaning. Since
variable request functions as a genuine environment in this model, the
program and the transition system are non-deterministic: i.e. the ‘next
state’ is not uniquely defined. Any state transition based on the behaviour
of status comes in a pair: to a successor state where request is false, or
true, respectively. For example, the state ‘—req, busy’ has four states it can
move to (itself and three others).

LTL specifications are introduced by the keyword LTLSPEC and are sim-
ply LTL formulas. Notice that SMV uses &, |, => and ! for A, V, — and

202 Verification by model checking

-, respectively, since they are available on standard keyboards. We may
easily verify that the specification of our module main holds of the model in
Figure 3.9.

3.3.2.1 Modules in SMV

SMYV supports breaking a system description into several modules, to aid
readability and to verify interaction properties. A module is instantiated
when a variable having that module name as its type is declared. This
defines a set of variables, one for each one declared in the module description.
In the example below, which is one of the ones distributed with SMV, a
counter which repeatedly counts from 000 through to 111 is described by
three single-bit counters. The module counter_cell is instantiated three
times, with the names bit0, bit1l and bit2. The counter module has one
formal parameter, carry_in, which is given the actual value 1 in bit0, and
bit0.carry_out in the instance bit1l. Hence, the carry_in of module bit1
is the carry_out of module bit0. Note that we use the period ‘.” in m.v to
access the variable v in module m. This notation is also used by Alloy (see
Chapter 2) and a host of programming languages to access fields in record
structures, or methods in objects. The keyword DEFINE is used to assign the
expression value & carry_in to the symbol carry_out (such definitions are
just a means for referring to the current value of a certain expression).

MODULE main
VAR
bit0 : counter_cell(1);
bitl : counter_cell(bit0O.carry_out);
bit2 : counter_cell(bitl.carry_out);
LTLSPEC
G F bit2.carry_out

MODULE counter_cell(carry_in)
VAR
value : boolean;
ASSIGN
init(value)

03
(value + carry_in) mod 2;

next (value)
DEFINE
carry_out := value & carry_in;

The effect of the DEFINE statement could have been obtained by declaring
a new variable and assigning its value thus:

3.3 Model checking: systems, tools, properties 203

VAR
carry_out : boolean;
ASSIGN
carry_out := value & carry_in;

Notice that, in this assignment, the current value of the variable is assigned.
Defined symbols are usually preferable to variables, since they don’t increase
the state space by declaring new variables. However, they cannot be assigned
non-deterministically since they refer only to another expression.

3.8.2.2 Synchronous and asynchronous composition

By default, modules in SMV are composed synchronously: this means that
there is a global clock and, each time it ticks, each of the modules executes in
parallel. By use of the process keyword, it is possible to compose the mod-
ules asynchronously. In that case, they run at different ‘speeds,’ interleaving
arbitrarily. At each tick of the clock, one of them is non-deterministically
chosen and executed for one cycle. Asynchronous interleaving composition
is useful for describing communication protocols, asynchronous circuits and
other systems whose actions are not synchronised to a global clock.

The bit counter above is synchronous, whereas the examples below of
mutual exclusion and the alternating bit protocol are asynchronous.

3.3.3 Running NuSMV

The normal use of NuSMYV is to run it in batch mode, from a Unix shell or
command prompt in Windows. The command line

NuSMV counter3.smv

will analyse the code in the file counter3.smv and report on the specifica-
tions it contains. One can also run NuSMYV interactively. In that case, the
command line

NuSMV -int counter3.smv

enters NuSMV’s command-line interpreter. From there, there is a variety
of commands you can use which allow you to compile the description and
run the specification checks, as well as inspect partial results and set various
parameters. See the NuSMV user manual for more details.

NuSMYV also supports bounded model checking, invoked by the command-
line option -bmc. Bounded model checking looks for counterexamples in
order of size, starting with counterexamples of length 1, then 2, etc., up
to a given threshold (10 by default). Note that bounded model checking

204 Verification by model checking

is incomplete: failure to find a counterexample does not mean that there
is none, but only that there is none of length up to the threshold. For
related reasons, this incompleteness features also in Alloy and its constraint
analyzer. Thus, while a negative answer can be relied on (if NuSMV finds a
counterexample, it is valid), a positive one cannot. References on bounded
model checking can be found in the bibliographic notes on page 264. Later
on, we use bounded model checking to prove the optimality of a scheduler.

3.3.4 Mutual exclusion revisited

Figure 3.10 gives the SMV code for a mutual exclusion protocol. This code
consists of two modules, main and prc. The module main has the vari-
able turn, which determines whose turn it is to enter the critical section if
both are trying to enter (recall the discussion about the states s3 and sg in
Section 3.3.1.2).

The module main also has two instantiations of prc. In each of these
instantiations, st is the status of a process (saying whether it is in its critical
section, or not, or trying) and other-st is the status of the other process
(notice how this is passed as a parameter in the third and fourth lines of
main).

The value of st evolves in the way described in a previous section: when it
is m, it may stay as n or move to t. When it is £, if the other one is n, it will
go straight to ¢, but if the other one is ¢, it will check whose turn it is before
going to ¢. Then, when it is ¢, it may move back to n. Each instantiation
of prc gives the turn to the other one when it gets to its critical section.

An important feature of SMV is that we can restrict its search tree to
execution paths along which an arbitrary boolean formula about the state
¢ is true infinitely often. Because this is often used to model fair access to
resources, it is called a fairness constraint and introduced by the keyword
FAIRNESS. Thus, the occurrence of FAIRNESS ¢ means that SMV, when
checking a specification 1, will ignore any path along which ¢ is not satisfied
infinitely often.

In the module prc, we restrict model checks to computation paths along
which st is infinitely often not equal to c. This is because our code allows
the process to stay in its critical section as long as it likes. Thus, there
is another opportunity for liveness to fail: if process 2 stays in its critical
section forever, process 1 will never be able to enter. Again, we ought not
to take this kind of violation into account, since it is patently unfair if a
process is allowed to stay in its critical section for ever. We are looking for

3.3 Model checking: systems, tools, properties

MODULE main
VAR
prl: process prc(pr2.st, turn, 0);
pr2: process prc(prl.st, turn, 1);
turn: boolean;

ASSIGN
init(turn) := 0;
-— safety
LTLSPEC G!((prl.st = c) & (pr2.st = c))
-- liveness

LTLSPEC G((prl.st = t) —> F (prl.st = c))

LTLSPEC G((pr2.st = t) —> F (pr2.st = c))

-- ‘negation’ of strict sequencing (desired to be false)
LTLSPEC G(prl.st=c -> (G prl.st=c | (prl.st=c U

205

(!pril.st=c & G !pril.st=c | ((!prl.st=c) U pr2.st=c)))))

MODULE prc(other-st, turn, myturn)

VAR
st: {n, t, c};

ASSIGN
init(st)
next(st)

case
(st = n) : {t,n};
(st t) & (other-st = n) 1 c;
(st = t) & (other-st = t) & (turn = myturn): c;
(st = ¢) : {c,n};
1 : st;
esac;

next (turn) :=

case
turn = myturn & st = ¢ : !turn;
1 : turn;
esac;
FAIRNESS running
FAIRNESS !(st = c)

n;

Fig. 3.10. SMV code for mutual exclusion. Because W is not supported by SMV,
we had to make use of equivalence (3.3) to write the no-strict-sequencing formula

as an equivalent but longer formula involving U.

206 Verification by model checking

more subtle violations of the specifications, if there are any. To avoid the
one above, we stipulate the fairness constraint ! (st=c).

If the module in question has been declared with the process keyword,
then at each time point SMV will non-deterministically decide whether or
not to select it for execution, as explained earlier. We may wish to ignore
paths in which a module is starved of processor time. The reserved word
running can be used instead of a formula in a fairness constraint: writing
FAIRNESS running restricts attention to execution paths along which the
module in which it appears is selected for execution infinitely often.

In prc, we restrict ourselves to such paths, since, without this restriction,
it would be easy to violate the liveness constraint if an instance of prc
were never selected for execution. We assume the scheduler is fair; this
assumption is codified by two FAIRNESS clauses. We return to the issue of
fairness, and the question of how our model-checking algorithm copes with
it, in the next section.

Please run this program in NuSMYV to see which specifications hold for it.

The transition system corresponding to this program is shown in Fig-
ure 3.11. Each state shows the values of the variables; for example, ctl
is the state in which process 1 and 2 are critical and trying, respectively,
and turn=1. The labels on the transitions show which process was selected
for execution. In general, each state has several transitions, some in which
process 1 moves and others in which process 2 moves.

This model is a bit different from the previous model given for mutual
exclusion in Figure 3.8, for these two reasons:

e Because the boolean variable turn has been explicitly introduced to distin-
guish between states s3 and sg of Figure 3.8, we now distinguish between
certain states (for example, ct0 and ct1) which were identical before. How-
ever, these states are not distinguished if you look just at the transitions
from them. Therefore, they satisfy the same LTL formulas which don’t
mention turn. Those states are distinguished only by the way they can
arise.

e We have eliminated an over-simplification made in the model of Figure 3.8.
Recall that we assumed the system would move to a different state on
every tick of the clock (there were no transitions from a state to itself).
In Figure 3.11, we allow transitions from each state to itself, representing
that a process was chosen for execution and did some private computation,
but did not move in or out of its critical section. Of course, by doing this
we have introduced paths in which one process gets stuck in its critical

3.3 Model checking: systems, tools, properties 207

section, whence the need to invoke a fairness constraint to eliminate such
paths.

3.3.5 The ferry-man

You may recall the puzzle of a ferryman, goat, cabbage, and wolf all on one
side of a river. The ferryman can cross the river with at most one passenger
in his boat. There is a behavioral conflict between

1. the goat and the cabbage; and
2. the goat and the wolf;

if they are on the same river bank but the ferryman crosses the river or stays
on the other bank.

Can the ferryman transport all goods to the other side, without any con-
flicts occurring? This is a planning problem, but it can be solved by model
checking. We describe a transition system in which the states represent
which goods are at which side of the river. Then we ask if the goal state is
reachable from the initial state: Is there a path from the initial state such
that it has a state along it at which all the goods are on the other side, and
during the transitions to that state the goods are never left in an unsafe,
conflicting situation?

We model all possible behavior (including that which results in conflicts)
as a NuSMV program (Figure 3.12). The location of each agent is modelled
as a boolean variable. 0 denotes that the agent is on the initial bank, and
1 the destination bank. Thus, ferryman = 0 means that the ferryman is
on the initial bank, ferryman = 1 that he is on the destination bank, and
similarly for the variables goat, cabbage and wolf.

The variable carry takes a value indicating whether the goat, cabbage,
wolf or nothing is carried by the ferryman. The definition of next (carry)
works as follows. It is non-deterministic, but the set from which a value is
non-deterministically chosen is determined by the values of ferryman, goat,
etc. If ferryman = goat (i.e. they are on the same side) then g is a member
of the set from which next (carry) is chosen. The situation for cabbage and
wolf is similar. Thus, if ferryman = goat = wolf # cabbage then that set
is {g,w,0}. The next value assigned to ferryman is non-deterministic: he
can choose to cross or not to cross the river. But the next values of goat,
cabbage and wolf are deterministic, since whether they are carried or not is
determined by the ferryman’s choice, represented by the non-deterministic
assignment to carry; these values follow the same pattern.

208 Verification by model checking

12

H
—

Fig. 3.11. The transition system corresponding to the SMV code in Figure 3.10.
The labels on the transitions denote the process which makes the move. The label
1,2 means that either process could make that move.

3.3 Model checking: systems, tools, properties

MODULE main
VAR
ferryman : boolean;
goat : boolean;
cabbage : boolean;
wolf : boolean;
carry : {g,c,w,O};
ASSIGN
init(ferryman) := 0; init(goat) = 0;
init(cabbage) := 0; init(wolf) := 0;

init(carry)

next (ferryman) :

0;

{0,1};

next(carry) := case
ferryman=goat : g;
1 : 0;
esac union
case
ferryman=cabbage : c;
1 : 0;
esac union
case
ferryman=wolf : w;
1 : 0;
esac union 0;
next (goat) := case
ferryman=goat & next(carry)=g : next(ferryman);
1 : goat;
esac;
next (cabbage) := case
ferryman=cabbage & next(carry)=c : next(ferryman);
1 : cabbage;
esac;
next (wolf) := case
ferryman=wolf & next(carry)=w : next(ferryman);
1 : wolf;
esac;

LTLSPEC !(((goat=cabbage | goat=wolf) -> goat=ferryman)

U (cabbage & goat & wolf & ferryman))

Fig. 3.12. NuSMV code for the ferry-man planning problem.

209

210 Verification by model checking

Note how the boolean guards refer to state bits at the next state. The
SMV compiler does a dependency analysis and rejects circular dependencies
on next values. (The dependency analysis is rather pesimistic: sometimes
NuSMYV complains of circularity even in situations when it could be resolved.
The original CMU-SMV is more liberal in this respect.)

3.8.5.1 Running NuSMV

We seek a path satisfying ¢ U 1), where 9 asserts the final goal state, and ¢
expresses the safety condition (if the goat is with the cabbage or the wolf,
then the ferryman is there, too, to prevent any untoward behaviour). Thus,
we assert that all paths satisfy —(¢ U 1), i.e. no path satisfies ¢ U 1. We
hope this is not the case, and NuSMV will give us an example path which
does satisfy ¢ U 9. Indeed, running NuSMYV gives us the path of Figure 3.13,
which represents a solution to the puzzle.

The beginning of the generated path represents the usual solution to this
puzzle: the ferryman takes the goat first, then goes back for the cabbage. To
avoid leaving the goat and the cabbage together, he takes the goat back, and
picks up the wolf. Now the wolf and the cabbage are on the destination side,
and he goes back again to get the goat. This brings us to State 1.9, where
the ferryman appears to take a well-earned break. But the path continues.
States 1.10 to 1.15 show that he takes his charges back to the original side
of the bank; first the cabbage, then the wolf, then the goat. Unfortunately
it appears that the ferryman’s clever plan up to state 1.9 is now spoiled,
because the goat meets an unhappy end in state 1.11.

What went wrong? Nothing, actually. NuSMV has given us an infinite
path, which loops around the 15 illustrated states. Along the infinite path,
the ferryman repeatedly takes his goods across (safely), and then back again
(unsafely). This path does indeed satisfy the specification ¢ U 1), which as-
serts the safety of the forward journey but says nothing about what happens
after that. In other words, the path is correct; it satisfies ¢ U 9 (with 1 oc-
curring at state 8). What happens along the path after that has no bearing
on ¢ U 1.

Invoking bounded model checking will produce the shortest possible path
to violate the property; in this case, it is states 1.1 to 1.8 of the illustrated
path. It is the shortest, optimal solution to our planning problem since
the model check NuSMV -bmc 7 ferryman.smv shows that the LTL formula
holds in that model, meaning that no solution of length < 7 is possible.

One might wish to verify whether there is a solution which involves three
journeys for the goat. This can be done by altering the LTL formula. Instead
of seeking a path satisfying ¢ U 1), where ¢ equals (goat = cabbageVgoat =

3.3 Model checking: systems, tools, properties 211
acws-0116%, nusmv ferryman.smv
x%x This is NuSMV 2.1.2 (compiled 2002-11-22 12:00:00)
*x*x For more information of NuSMV see <http://nusmv.irst.itc.it>
*** or email to <nusmv-users@irst.itc.it>.
*** Please report bugs to <nusmv-users@irst.itc.it>.
-- specification !(((goat = cabbage | goat = wolf) -> goat = ferryman)

U (((cabbage & goat) & wolf) & ferryman)) is false
as demonstrated by the following execution sequence
loop starts here --

-> State 1.1 <-
ferryman = 0 -> State 1.8 <-
goat = 0 ferryman = 1
cabbage = 0 goat =1
wolf = 0 carry = g
carry = 0 -> State 1.9 <-

-> State 1.2 <- -> State 1.10 <-
ferryman = 1 ferryman = 0
goat = 1 cabbage = 0
carry = g carry = c

-> State 1.3 <- -> State 1.11 <-
ferryman = 0 ferryman = 1
carry = 0 carry = 0

-> State 1.4 <- -> State 1.12 <-
ferryman = 1 ferryman = 0
cabbage = 1 wolf = 0
carry = c carry = w

-> State 1.5 <- -> State 1.13 <-
ferryman = 0 ferryman = 1
goat = 0 carry = 0
carry = g -> State 1.14 <-

-> State 1.6 <- ferryman = 0
ferryman = 1 goat = 0
wolf = 1 carry = g
carry = w -> State 1.15 <-

-> State 1.7 <- carry = 0
ferryman = 0

carry = 0

Fig. 3.13. A solution path to the ferryman puzzle. It is unnecessarily long. Using
bounded model checking will refine it into an optimal solution.

wolf) — goat = ferryman and v equals cabbage A goat Awolf Aferryman,
we now seek a path satisfying (¢ U ¢) A G (goat — G goat). The last bit
says that once the goat has crossed, he remains across; otherwise, the goat
makes at least three trips. NuSMV verifies that the negation of this formula
is true, confirming that there is no such solution.

212 Verification by model checking

3.3.6 The alternating bit protocol

The ABP (alternating bit protocol) is a protocol for transmitting messages
along a ‘lossy line,’ i.e. a line which may lose or duplicate messages. The
protocol guarantees that, providing the line doesn’t lose infinitely many mes-
sages, communication between the sender and the receiver will be successful.
(We allow the line to lose or duplicate messages, but it may not corrupt mes-
sages; however, there is no way of guaranteeing successful transmission along
a line which can corrupt.)

The ABP works as follows. There are four entities, or agents: the sender,
the receiver, the message channel and the acknowledgement channel. The
sender transmits the first part of the message together with the ‘control’
bit 0. If, and when, the receiver receives a message with the control bit 0,
it sends 0 along the acknowledgement channel. When the sender receives
this acknowledgement, it sends the next packet with the control bit 1. If
and when the receiver receives this, it acknowledges by sending a 1 on the
acknowledgement channel. By alternating the control bit, both receiver and
sender can guard against duplicating messages and losing messages (i.e. they
ignore messages that have the unexpected control bit).

If the sender doesn’t get the expected acknowledgement, it continually
resends the message, until the acknowledgement arrives. If the receiver
doesn’t get a message with the expected control bit, it continually resends
the previous acknowledgement.

Fairness is also important for the ABP. It comes in because, although
we want to model the fact that the channel can lose messages, we want to
assume that, if we send a message often enough, eventually it will arrive.
In other words, the channel cannot lose an infinite sequence of messages. If
we did not make this assumption, then the channels could lose all messages
and, in that case, the ABP would not work.

Let us see this in the concrete setting of SMV. We may assume that the
text to be sent is divided up into single-bit messages, which are sent sequen-
tially. The variable messagel is the current bit of the message being sent,
whereas message? is the control bit. The definition of the module sender is
given in Figure 3.14. This module spends most of its time in st=sending,
going only briefly to st=sent when it receives an acknowledgement corre-
sponding to the control bit of the message it has been sending. The variables
messagel and message2 represent the actual data being sent and the con-
trol bit, respectively. On successful transmission, the module obtains a new
message to send and returns to st=sending. The new messagel is obtained
non-deterministically (i.e. from the environment); message2 alternates in

3.3 Model checking: systems, tools, properties 213

MODULE sender (ack)
VAR
st : {sending,sent};
messagel : boolean;
message2 : boolean;
ASSIGN
init(st) := sending;
next(st) := case
ack = message2 & !(st=sent) : sent;
1 : sending;
esac;
next (messagel) :=
case
st = sent : {0,1};
1 : messagel;
esac;
next (message2) :=
case
st = sent : !message2;
1 . message2;
esac;
FAIRNESS running
LTLSPEC G F st=sent

Fig. 3.14. The ABP sender in SMV.

value. We impose FAIRNESS running, i.e. the sender must be selected to
run infinitely often. The LTLSPEC tests that we can always succeed in send-
ing the current message. The module receiver is programmed in a similar
way, in Figure 3.15.

We also need to describe the two channels, in Figure 3.16. The acknowl-
edgement channel is an instance of the one-bit channel one-bit-chan be-
low. Tts lossy character is specified by the non-deterministic assignment: the
input may be transmitted to the output, but it need not (in which case out-
put retains its old value). However, the second fairness constraint ensures
that the channel doesn’t continually lose the same message: eventually, a
bit will get through (so if input is 1, then eventually output will be 1 t00).

The two-bit channel two-bit-chan, used to send messages, is similar.
The non-deterministic variable forget determines whether the current bit
is lost or not. Either both parts of the message get through, or neither of
them does (the channel is assumed not to corrupt messages).

A fairness constraint models the fact that, although channels can lose
messages, even infinitely often, we assume that they infinitely often transmit

214 Verification by model checking

MODULE receiver(messagel,message2)

VAR
st : {receiving,received};
ack : boolean;
expected : boolean;
ASSIGN
init(st) := receiving;
next(st) := case
message2=expected & ! (st=received) : received;
1 : receiving;
esac;
next(ack) :=
case
st = received : message2;
1 : ack;
esac;
next (expected) :=
case
st = received : !expected;
1 : expected;
esac;

FAIRNESS running
LTLSPEC G F st=received

Fig. 3.15. The ABP receiver in SMV.

the message correctly. (If this were not the case, then we could find an
uninteresting violation of the liveness constraint, for example a path along
which all messages from a certain time onwards get lost.)

Finally, we tie it all together with the module main (Figure 3.17). Its
role is to connect together the components of the system, which it does by
instantiating the four processes. It also specifies the initial values. Since the
first control bit is 0, we also initialise the receiver to expect a 0. The receiver
should start off by sending 1 as its acknowledgement, so that sender does
not think that its very first message is being acknowledged before anything
has happened. For the same reason, the output of the channels is initialised
to 1.

The specifications for ABP. Our SMV program satisfies the following
specifications:

Safety: If the message bit 1 has been sent and the correct acknowledge-
ment has been returned, then a 1 was received by the receiver: G
(S.st=sent & S.messagel=1 -> msg_chan.outputl=1).

3.3 Model checking: systems, tools, properties 215
MODULE one-bit-chan(input)

VAR
output : boolean;
ASSIGN
next (output) := {input,output};

FAIRNESS running
FAIRNESS (input=0 -> AF output=0) & (input=1 -> AF output=1)

MODULE two-bit-chan(inputl,input2)
VAR

forget : boolean;

outputl : boolean;

output2 : boolean;

ASSIGN

next (outputl) := case
forget : outputil;
1: inputl;

esac;

next (output2) := case
forget : output?2;
1: input2;

esac;

FAIRNESS running
FAIRNESS !forget

Fig. 3.16. The two modules for the two ABP channels in SMV.

MODULE main

VAR
S : process sender(ack_chan.output);

R : process receiver (msg_chan.outputl,msg_chan.output2);
msg_chan : process two-bit-chan(S.messagel,S.message?2);
ack_chan : process one-bit-chan(R.ack);

ASSIGN
init(S.message2) :=
init(R.expected) :
init (R.ack) = 1;
init(msg_chan.output2) := 1;
init(ack_chan.output) := 1;

0;
0;

LTLSPEC G (S.st=sent & S.messagel=1 -> msg_chan.outputi=1)

Fig. 3.17. The main ABP module.

216 Verification by model checking

Liveness: Messages get through eventually. Thus, for any state there is in-
evitably a future state in which the current message has got through.
In the module sender, we specified G F st=sent. (This specifica-
tion could equivalently have been written in the main module, as G
F S.st=sent.)
Similarly, acknowledgements get through eventually. In the mod-
ule receiver, we write G F st=received.

3.4 Branching-time logic

In our analysis of LTL (linear-time temporal logic) in the preceding sections,
we noted that LTL formulas are evaluated on paths. We defined that a state
of a system satisfies an LTL formula if all paths from the given state satisfy
it. Thus, LTL implicitly quantifies universally over paths. Therefore, prop-
erties which assert the existence of a path cannot be expressed in LTL. This
problem can partly be alleviated by considering the negation of the prop-
erty in question, and interpreting the result accordingly. To check whether
there exists a path from s satisfying the LTL formula ¢, we check whether
all paths satisfy —¢; a positive answer to this is a negative answer to our
original question, and vice versa. We used this approach when analysing the
ferryman puzzle in the previous section. However, as already noted, proper-
ties which miz universal and existential path quantifiers cannot in general
be model checked using this approach, because the complement formula still
has a mix.

Branching-time logics solve this problem by allowing us to quantify ex-
plicitly over paths. We will examine a logic known as Computation Tree
Logic, or CTL. In CTL, as well as the temporal operators U, F, G and X of
LTL we also have quantifiers A and E which express ‘all paths’ and ‘exists
a path’ respectively. For example, we can write

e There is a reachable state satisfying ¢: this is written EF ¢

e From all reachable states satisfying p, it is possible to maintain p continu-
ously until reaching a state satisfying ¢: this is written AG (p — E[p U ¢]).

e Whenever a state satisfying p is reached, the system can exhibit ¢ contin-
uously forevermore: AG (p — EGgq).

e There is a reachable state from which all reachable states satisfy p: EF AG p.

3.4.1 Syntax of CTL

Computation tree logic, or CTL for short, is a branching-time logic, meaning

3.4 Branching-time logic 217

that its model of time is a tree-like structure in which the future is not
determined; there are different paths in the future, any one of which might
be the ‘actual’ path that is realised.

As before, we work with a fixed set of atomic formulas/descriptions (such

as Py Gy Ty ..., OF P1,P2, ...).

Definition 3.12 We define CTL formulas inductively via a Backus Naur
form as done for LTL:

pu= L[TIp|l(=9) | (Ad)[(¢V)| (—¢)|AXd|EXS]
AF ¢ |EF¢ | AG¢ [EG4 | Alp U ¢] | E[¢ U ¢

where p ranges over a set of atomic formulas.

Notice that each of the CTL temporal connectives is a pair of symbols.
The first of the pair is one of A and E. A means ‘along All paths’ (inevitably)
and E means ‘along at least (there Exists) one path’ (possibly). The second
one of the pair is X, F, G, or U, meaning ‘neXt state,” ‘some Future state,’
‘all future states (Globally)’ and Until, respectively. The pair of symbols
in E[¢1 U ¢, for example, is EU. In CTL, pairs of symbols like EU are
indivisible. Notice that AU and EU are binary. The symbols X, F, G and
U cannot occur without being preceded by an A or an E; similarly, every A
or E must have one of X, F, G and U to accompany it.

Usually weak-until (W) and release (R) are not included in CTL, but they
are derivable (see Section 3.4.5).

Convention 3.13 We assume similar binding priorities for the CTL con-
nectives to what we did for propositional and predicate logic. The unary
connectives (consisting of — and the temporal connectives AG, EG, AF, EF,
AX and EX) bind most tightly. Next in the order come A and V; and after
that come —, AU and EU.

Naturally, we can use brackets in order to override these priorities. Let us
see some examples of well-formed CTL formulas and some examples which
are not well-formed, in order to understand the syntax. Suppose that p, ¢
and r are atomic formulas. The following are well-formed CTL formulas:

e AG (¢ — EGr), note that this is not the same as AGqg — EGr, for
according to Convention 3.13, the latter formula means (AG q) — (EGr)

e EFE[r U ¢

o A[p UEF1]

218 Verification by model checking

e EFEGp — AFr, again, note that this binds as (EF EGp) — AFr, not
EF (EGp — AFr) or EFEG (p — AFr)

e Alp1 U Alps U p3]]

e E[A[p1 U ps] U ps]

¢ AG(p = Alp U (=p A A[=p U g])]).

It is worth spending some time seeing how the syntax rules allow us to
construct each of these. The following are not well-formed formulas:

e EFGr

e A-G—p

FlrUq]

EF (r Ug)

e AEFTr

A[(rUg) A(pUr)].

It is especially worth understanding why the syntax rules don’t allow us to
construct these. For example, take EF (r U q). The problem with this string
is that U can occur only when paired with an A or an E. The E we have is
paired with the F. To make this into a well-formed CTL formula, we would
have to write EF E[r U ¢] or EF A[r U q].

Notice that we use square brackets after the A or E, when the paired
operator is a U. There is no strong reason for this; you could use ordinary
round brackets instead. However, it often helps one to read the formula
(because we can more easily spot where the corresponding close bracket is).
Another reason for using the square brackets is that SMV insists on it.

The reason A[(r U ¢) A (p U r)] is not a well-formed formula is that
the syntax does not allow us to put a boolean connective (like A) directly
inside A[] or E[]. Occurrences of A or E must be followed by one of G,
F, X or U; when they are followed by U, it must be in the form A[¢ U 9.
Now, the ¢ and the 1 may contain A, since they are arbitrary formulas; so
Al(p A q) U (=r — q)] is a well-formed formula.

Observe that AU and EU are binary connectives which mix infix and
prefix notation. In pure infix, we would write ¢y AU ¢o, whereas in pure
prefix we would write AU(¢1, ¢2).

As with any formal language, and as we did in the previous two chapters,
it is useful to draw parse trees for well-formed formulas. The parse tree for
A[AX —p UE[EX (p A q) U —p]] is shown in Figure 3.18.

Definition 3.14 A subformula of a CTL formula ¢ is any formula 1/ whose
parse tree is a subtree of ¢’s parse tree.

3.4 Branching-time logic 219

A

AX /

O &

OREONNO
OO

Fig. 3.18. The parse tree of a CTL formula without infix notation.

3.4.2 Semantics of computation tree logic

CTL formulas are interpreted over transition systems (Definition 3.4). Let
M = (S,—, L) be such a model, s € S and ¢ a CTL formula. The definition
of whether M, s E ¢ holds is recursive on the structure of ¢, and can be
roughly understood as follows:

If ¢ is atomic, satisfaction is determined by L.

If the top-level connective of ¢ (i.e. the connective occurring top-most in
the parse tree of ¢) is a boolean connective (A, V, =, T etc.) then the
satisfaction question is answered by the usual truth-table definition and
further recursion down ¢.

If the top level connective is an operator beginning A, then satisfaction
holds if all paths from s satisfy the ‘LTL formula’ resulting from removing
the A symbol.

Similarly, if the top level connective begins with E, then satisfaction holds
if some path from s satisfy the ‘LTL formula’ resulting from removing the
E.

In the last two cases, the result of removing A or E is not strictly an LTL
formula, for it may contain further As or Es below. However, these will be

dealt with by the recursion.

The formal definition of M, s E ¢ is a bit more verbose:

220

Verification by model checking

Definition 3.15 Let M = (S,—, L) be a model for CTL, s in S, ¢ a CTL
formula. The relation M, s F ¢ is defined by structural induction on ¢:

NS oR e

10.

11.

12.

13.

14.

M,sET and M,s i L.

M,sEpiff p € L(s).

M,sE =g iff M,sH ¢.

M, s E ¢1 A ¢y iff M,sE ¢y and M, s E ¢o.

M,sE 1V oo iff M,sE ¢ or M, s E ¢a.

M,sE 1 — ¢o it M,sH ¢ or M, s E ¢po.

M, s E AX ¢ iff for all s; such that s — s; we have M, s1 F ¢. Thus,
AX says: ‘in every next state.’

M, s E EX ¢ iff for some s; such that s — s; we have M,s1 F ¢.
Thus, EX says: ‘in some next state.” E is dual to A — in exactly the
same way that 3 is dual to V in predicate logic.

. M, s E AG ¢ holds iff for all paths s; — so — s3 — ..., where s1

equals s, and all s; along the path, we have M, s; F ¢. Mnemoni-
cally: for All computation paths beginning in s the property ¢ holds
Globally. Note that ‘along the path’ includes the path’s initial state
S.
M, s E EG ¢ holds iff there is a path s; — so — s3 — ..., where s1
equals s, and for all s; along the path, we have M, s; F ¢. Mnemon-
ically: there Exists a path beginning in s such that ¢ holds Globally
along the path.

M, s E AF ¢ holds iff for all paths sy — so — ..., where s1 equals
s, there is some s; such that M,s; F ¢. Mnemonically: for All
computation paths beginning in s there will be some Future state
where ¢ holds.

M, s E EF ¢ holds iff there is a path s; — s9 — s3 — ..., where
s1 equals s, and for some s; along the path, we have M,s; F ¢.
Mnemonically: there Exists a computation path beginning in s such
that ¢ holds in some Future state;

M, s E Alp1 U ¢o] holds iff for all paths s; — so — s3 — ..., where
s1 equals s, that path satisfies ¢1 U ¢o, i.e. there is some s; along the
path, such that M, s; F ¢2, and, for each j < i, we have M, s; F ¢1.
Mnemonically: All computation paths beginning in s satisfy that ¢
Until ¢o holds on it.

M, s E E[¢p1 U ¢9] holds iff there is a path s; — so = s3 — ...,
where s equals s, and that path satisfies ¢1 U ¢o as specified in 13.
Mnemonically: there Exists a computation path beginning in s such
that ¢; Until ¢2 holds on it.

3.4 Branching-time logic 221

@

Fig. 3.19. A system whose starting state satisfies EF ¢.

Clauses 8-14 above refer to computation paths in models. It is there-
fore useful to visualise all possible computation paths from a given state s

by unwinding the transition system to obtain an infinite computation tree,

whence ‘computation tree logic.” The diagrams in Figures 3.19-3.22 show

schematically systems whose starting states satisfy the formulas EF ¢, EG ¢,
AG ¢ and AF ¢, respectively. Of course, we could add more ¢ to any of these
diagrams and still preserve the satisfaction — although there is nothing to
add for AG . The diagrams illustrate a ‘least’ way of satisfying the formulas.

Recall the transition system of Figure 3.3 (page 187) for the designated
starting state sg, and the infinite tree illustrated in Figure 3.5. Let us now
look at some example checks for this system.

1.

M, sp E p A ¢q holds since the atomic symbols p and ¢ are contained
in the node of s.

. M, sp E —r holds since the atomic symbol r is not contained in node

50-

. M, sp E T holds by definition.
. M,sp E EX (¢ A r) holds since we have the leftmost computation

path sg — s1 — sg — s1 — ... in Figure 3.5, whose second node s;
contains ¢ and r.

. M, so E =AX (g Ar) holds since we have the rightmost computation

path sg — sa — s9 — s9 — ... in Figure 3.5, whose second node so
only contains r, but not q.

222 Verification by model checking

Q/E

Fig. 3.20. A system whose starting state satisfies EG ¢.

Fig. 3.21. A system whose starting state satisfies AG ¢.

6. M,so F —EF (p A7) holds since there is no computation path begin-
ning in sg such that we could reach a state where p A r would hold.
This is so, because there is simply no state whatsoever in this system,
where p and r hold at the same time.

7. M, sy E EGr holds since there is a computation path so — s9 —
89 — ... beginning in sy such that r holds in all future states of

3.4 Branching-time logic 223

Fig. 3.22. A system whose starting state satisfies AF ¢.

that path; this is the only computation path beginning at se and so
M, s9 E AGr holds as well.

8. M, sg E AF r holds since, for all computation paths beginning in s,
the system reaches a state (s; or s2) such that r holds.

9. M, so F E[(pAg) U r] holds since we have the rightmost computation

path sg — so — s3 = so — ... in Figure 3.5, whose second node s9
(1 = 1) satisfies 7, but all previous nodes (only j = 0, i.e. node sg)
satisfy p A q.

10. M, so E A[p U r] holds since p holds at sy and r holds in any possible
successor state of sg, so p U r is true for all computation paths
beginning in sy (so we may choose i = 1 independently of the path).

11. M,s0 E AG (pVgVr — EF EG r) holds since in all states reachable
from sy and satisfying p V ¢ V r (all states in this case) the system
can reach a state satisfying EG r (in this case state s2).

3.4.3 Practical patterns of specifications

It’s useful to look at some typical examples of formulas, and compare the
situation with LTL (Section 3.2.3). Suppose atomic descriptions include
some words such as busy and requested.

e It is possible to get to a state where started holds, but ready doesn’t:
EF (started A —ready). To express impossibility, we simply negate the
formula.

224 Verification by model checking

e For any state, if a request (of some resource) occurs, then it will eventually
be acknowledged:

AG (requested — AF acknowledged).

e The property that if the process is enabled infinitely often, then it runs
infinitely often, is not expressible in CTL. In particular, it is not expressed
by AG AF enabled — AG AF running, or indeed any other insertion of A
or E into the corresponding LTL formula. The CTL formula just given
expresses that if every path has infinitely often enabled, then every path
is infinitely often taken; this is much weaker than asserting that every
path which has infinitely often enabled is infinitely often taken.

e A certain process is enabled infinitely often on every computation path:
AG (AF enabled).

e Whatever happens, a certain process will eventually be permanently dead-
locked:

AF (AG deadlock).

e From any state it is possible to get to a restart state:
AG (EF restart).

e An upwards travelling elevator at the second floor does not change its
direction when it has passengers wishing to go to the fifth floor:

AG (floor=2 A direction=up A ButtonPressed5 —

Aldirection=up U floor=5])
Here, our atomic descriptions are boolean expressions built from system
variables, e.g. floor=2.

e The elevator can remain idle on the third floor with its doors closed:

AG (floor=3 A idle A door=closed — EG (floor=3 A idle A door=closed)).

e A process can always request to enter its critical section. Recall that this
was not expressible in LTL. Using the propositions of Figure 3.8, this may
be written AG (ny — EXt;) in CTL.

e Processes need not enter their critical section in strict sequence. This
was also not expressible in LTL, though we expressed its negation. CTL
allows us to express it directly: EF (¢c; A E[c1 U (=e1 A E[-ea U ¢1])]).

3.4.4 Important equivalences between CTL formulas

Definition 3.16 Two CTL formulas ¢ and 1 are said to be semantically
equivalent if any state in any model which satisfies one of them also satisfies
the other; we denote this by ¢ = 1.

We have already noticed that A is a universal quantifier on paths and E
is the corresponding existential quantifier. Moreover, G and F are also uni-

3.4 Branching-time logic 225

versal and existential quantifiers, ranging over the states along a particular
path. In view of these facts, it is not surprising to find that de Morgan rules
exist:

—AF ¢ EG —¢ (3.6)
—lEF ¢ AG _|¢
-AX ¢ = EX —|¢ .

We also have the equivalences
AF ¢ = A[T U ¢] EF¢ = E[T U ¢]

which are similar to the corresponding equivalences in LTL.

3.4.5 Adequate sets of CTL connectives

As in propositional logic and in LTL, there is some redundancy among the
CTL connectives. For example, the connective AX can be written —EX —;
and AG, AF, EG and EF can be written in terms of AU and EU as follows:
first, write AG ¢ as -EF —¢ and EG ¢ as =AF —¢, using (3.6), and then use
AF¢ = A[T U ¢] and EF¢ = E[T U ¢|. Therefore AU, EU and EX
form an adequate set of temporal connectives.

Also EG, EU, and EX form an adequate set, for we have the equivalence

AlpUy] = =(E[-9 U (=¢ A =¢)] VEG —) (3.7)
which can be proved as follows:
Alp Uyl = Al=(=p U (m¢ A —¢)) AF 9]
= —E-[~(-% U (¢ A =) AF 9]
—E[(-¢ U (= A =¢)) V G)]
= ~(E[-9 U (¢ A—¢)]VEG) .

The first line is by Theorem 3.10, and the remainder by elementary ma-

nipulation. (This proof involves intermediate formulas which violate the
syntactic formation rules of CTL; however, it is valid in the logic CTL*
introduced in the next section.) More generally, we have:

Theorem 3.17 A set of temporal connectives in CTL is adequate if, and
only if, it contains at least one of {AX ,EX }, at least one of {EG,AF,AU }
and EU.

226 Verification by model checking

This theorem is proved in a paper referenced in the bibliographic notes at
the end of the chapter. The connective EU plays a special role in that
theorem because neither weak-until W nor release R are primitive in CTL
(Definition 3.12). The temporal connectives AR, ER, AW and EW are all
definable in CTL:

* AlpRy] = -E[-¢ U 9]

e E[p R 9] = -A[-¢ U —9)]

e Alp W)] = A[¢p R (¢ V 9)], and then use the first equation above
e E[¢ W] =E[¢) R (¢ V)], and then use the second one.

These definitions are justified by LTL equivalences in Sections 3.2.4 and 3.2.5.
Some other noteworthy equivalences in CTL are the following:

AGd = $AAXAG ¢

EG¢ = ¢ AEXEG ¢

AF¢ = ¢VAXAF ¢

EF¢ = ¢VEXEF ¢
Alp U] = 9V ($AAXA[SU ¢))
El¢ Uyl = %V (6 AEXE[Ud)) .

For example, the intuition for the third one is the following: in order to have
AF ¢ in a particular state, ¢ must be true at some point along each path
from that state. To achieve this, we either have ¢ true now, in the current
state; or we postpone it, in which case we must have AF ¢ in each of the next
states. Notice how this equivalence appears to define AF in terms of AX
and AF itself, an apparently circular definition. In fact, these equivalences
can be used to define the six connectives on the left in terms of AX and
EX, in a non-circular way. This is called the fixed-point characterisation of
CTL; it is the mathematical foundation for the model-checking algorithm
developed in Section 3.6.1; and we return to it later (Section 3.7).

3.5 CTL* and the expressive powers of LTL and CTL

CTL allows explicit quantification over paths, and in this respect it is more
expressive than LTL, as we have seen. However, it does not allow one to
select a range of paths by describing them with a formula, as LTL does.
In that respect, LTL is more expressive. For example, in LTL we can say
‘all paths which have a p along them also have a ¢ along them,’ by writing
Fp — Fgq. It is not possible to write this in CTL because of the constraint
that every F has an associated A or E. The formula AF p — AF ¢ means
something quite different: it says ‘if all paths have a p along them, then

3.5 CTL* and the expressive powers of LTL and CTL 227

all paths have a ¢ along them.” One might write AG (p — AF g¢), which is
closer, since it says that every way of extending every path to a p eventually
meets a ¢, but that is still not capturing the meaning of Fp — Fgq.

CTL* is a logic which combines the expressive powers of LTL and CTL,
by dropping the CTL constraint that every temporal operator (X, U, F, G)
has to be associated with a unique path quantifier (A, E). It allows us to
write formulas such as

e Al(p Ur) V(g U r)]: along all paths, either p is true until r, or ¢ is true
until 7.

e A[X pVXXp]: along all paths, p is true in the next state, or the next but
one.

e E[GFp|: there is a path along which p is infinitely often true.

These formulas are not equivalent to, respectively, A[(pV ¢) U r)], AXpV
AX AXp and EG EF p. It turns out that the first of them can be written
as a (rather long) CTL formula. The second and third do not have a CTL
equivalent.

The syntax of CTL* involves two classes of formulas:

e state formulas, which are evaluated in states:

¢p==TI[p[(=9) [(#Ad)]Ale]|E[a]

where p is any atomic formula and « any path formula; and
e path formulas, which are evaluated along paths:

az=¢|(ma)[(aAha)|(aUa)|(Ga)[(Fa)|(Xa)

where ¢ is any state formula. This is an example of an inductive definition
which is mutually recursive: the definition of each class depends upon the
definition of the other, with base cases p and T.

3.5.0.1 LTL and CTL as subsets of CTL*

Although the syntax of LTL does not include A and E, the semantic view-
point of LTL is that we consider all paths. Therefore, the LTL formula « is
equivalent to the CTL* formula A[a]. Thus, LTL can be viewed as a subset
of CTL*.

CTL is also a subset of CTL*, since it is the fragment of CTL* in which
we restrict the form of path formulas to

a:=(pU¢)|(Go)|(Fg)|(Xe)

228 Verification by model checking

CTL*

LTL

CTL Pa

Fig. 3.23. The expressive powers of CTL, LTL and CTL*.

Figure 3.23 shows the relationship among the expressive powers of CTL,
LTL and CTL*. Here are some examples of formulas in each of the subsets
shown:

def

In CTL but not in LTL: 9, = AGEF p. This expresses: wherever we
have got to, we can always get to a state in which p is true. This is
also useful, e.g. in finding deadlocks in protocols.

The proof that AG EF p is not expressible in LTL is as follows.
Let ¢ be an LTL formula such that A[¢] is allegedly equivalent to
AGEFp. Since M,s E AGEF p in the left-hand diagram below,
we have M, s E A[¢]. Now let M’ be as shown in the right-hand
diagram. The paths from s in M’ are a subset of those from s in M,
so we have M’ s E A[4]. Yet, it is not the case that M', s E AG EF p;

a contradiction.

VY i

-p p -p
In CTL*, but neither in CTL nor in LTL: ¢4 & E[GF p|, saying that
there is a path with infinitely many p.
The proof that this is not expressible in CTL is quite complex
and may be found in the papers co-authored by E. A. Emerson with

others, given in the references. (Why is it not expressible in LTL?)
def

In LTL but not in CTL: 93 = A[GFp — F¢|, saying that if there are
infinitely many p along the path, then there is an occurrence of
g. This is an interesting thing to be able to say; for example, many
fairness constraints are of the form ‘infinitely often requested implies
eventually acknowledged.’

3.5 CTL* and the expressive powers of LTL and CTL 229

def

In LTL and CTL: ¢, = AG(p —» AF¢q) in CTL, or G(p — Fgq) in LTL:
any p is eventually followed by a gq.

Remark 3.18 We just saw that some (but not all) LTL formulas can be
converted into CTL formulas by adding an A to each temporal operator.
For a positive example, the LTL formula G (p — F¢) is equivalent to the
CTL formula AG (p — AF gq). We discuss two more negative examples:

e FGp and AF AG p are not equivalent, since F G p is satisfied, whereas
AF AG p is not satisfied, in the model

Y

p -p p

In fact, AF AG p is strictly stronger than F G p.

e While the LTL formulas XFp and F Xp are equivalent, and they are
equivalent to the CTL formula AX AF p, they are not equivalent to
AF AX p. The latter is strictly stronger, and has quite a strange meaning
(try working it out).

Remark 3.19 There is a considerable literature comparing linear-time and
branching-time logics. The question of which one is ‘better’ has been de-
bated for about 20 years. We have seen that they have incomparable ex-
pressive powers. CTL* is more expressive than either of them, but is com-
putationally much more expensive (as will be seen in Section 3.6). The
choice between LTL and CTL depends on the application at hand, and on
personal preference. LTL lacks CTL’s ability to quantify over paths, and
CTL lacks LTL’s finer-grained ability to describe individual paths. To many
people, LTL appears to be more straightforward to use; as noted above, CTL
formulas like AF AX p seem hard to understand.

3.5.1 Boolean combinations of temporal formulas in CTL

Compared with CTL*, the syntax of CTL is restricted in two ways: it
does not allow boolean combinations of path formulas and it does not allow
nesting of the path modalities X, F and G. Indeed, we have already seen
examples of the inexpressibility in CTL of nesting of path modalities, namely
the formulas 13 and 14 above.

In this section, we see that the first of these restrictions is only apparent;
we can find equivalents in CTL for formulas having boolean combinations

230 Verification by model checking

of path formulas. The idea is to translate any CTL formula having boolean
combinations of path formulas into a CTL formula that doesn’t. For exam-
ple, we may see that E[F pAFq] = EF [pAEF ¢]VEF [¢ AEF p| since, if we
have F p A F ¢ along any path, then either the p must come before the g, or
the other way around, corresponding to the two disjuncts on the right. (If
the p and ¢ occur simultaneously, then both disjuncts are true.)

Since U is like F (only with the extra complication of its first argument),
we find the following equivalence:

El(pr Ua)A(p2Ug)] = E[(p1Ap2) U (g1 AE[p2 U go])]
VE[(p1 Ap2) U (2 AE[p1 U q1])] -

And from the CTL equivalence A[p U g] = —(E[-q U (=p A =q)] V EG —q)
(see Theorem 3.10) we can obtain E[—(p U q)] = E[-q U (=pA—¢q)]VEG —gq.
Other identities we need in this translation include E[-Xp] = EX -p.

3.5.2 Past operators in LTL

The temporal operators X, U, F, etc. which we have seen so far refer to the
future. Sometimes we want to encode properties that refer to the past, such
as: ‘whenever g occurs, then there was some p in the past.” To do this, we
may add the operators Y, S, O, H. They stand for yesterday, since, once, and
historically, and are the past analogues of X, U, F, G, respectively. Thus,
the example formula may be written G (¢ — O p).

NuSMYV supports past operators in LTL. One could also add past opera-
tors to CTL (AY, ES etc.) but NuSMV does not support them.

Somewhat counter-intuitively, past operators do not increase the expres-
sive power of LTL. That is to say, every LTL formula with past operators
can be written equivalently without them. The example formula above can
be written —p W ¢, or equivalently —(—¢ U (p A —q)) if one wants to avoid
W. This result is surprising, because it seems that being able to talk about
the past as well as the future allows more expressivity than talking about
the future alone. However, recall that LTL equivalence is quite crude: it
says that the two formulas are satisfied by exactly the same set of paths.
The past operators allow us to travel backwards along the path, but only
to reach points we could have reached by travelling forwards from its begin-
ning. In contrast, adding past operators to CTL does increase its expressive
power, because they can allow us to examine states not forward-reachable
from the present one.

3.6 Model checking algorithms 231

3.6 Model checking algorithms

The semantic definitions for LTL and CTL presented in Sections 3.2 and 3.4
allow us to test whether the initial states of a given system satisfy an LTL
or CTL formula. This is the basic model-checking question. In general,
interesting transition systems will have a huge number of states and the
formula we are interested in checking may be quite long. It is therefore well
worth trying to find efficient algorithms.

Although LTL is generally preferred by specifiers, as already noted, we
start with CTL model checking because its algorithm is simpler.

3.6.1 The CTL model-checking algorithm

Humans may find it easier to do model checks on the unwindings of models
into infinite trees, given a designated initial state, for then all possible paths
are plainly visible. However, if we think of implementing a model checker
on a computer, we certainly cannot unwind transition systems into infinite
trees. We need to do checks on finite data structures. For this reason, we
now have to develop new insights into the semantics of CTL. Such a deeper
understanding will provide the basis for an efficient algorithm which, given
M, s € § and ¢, computes whether M, s F ¢ holds. In the case that ¢ is not
satisfied, such an algorithm can be augmented to produce an actual path
(= run) of the system demonstrating that M cannot satisfy ¢. That way,
we may debug a system by trying to fix what enables runs which refute ¢.
There are various ways in which one could consider

M, s0E ¢

as a computational problem. For example, one could have the model M, the
formula ¢ and a state sg as input; one would then expect a reply of the form
‘yes’ (M, sg9 F ¢ holds), or ‘no’ (M, sy E ¢ does not hold). Alternatively,
the inputs could be just M and ¢, where the output would be all states s
of the model M which satisfy ¢.

It turns out that it is easier to provide an algorithm for solving the second
of these two problems. This automatically gives us a solution to the first
one, since we can simply check whether s(is an element of the output set.

3.6.1.1 The labelling algorithm

We present an algorithm which, given a model and a CTL formula, outputs
the set of states of the model that satisfy the formula. The algorithm does
not need to be able to handle every CTL connective explicitly, since we have

232 Verification by model checking

already seen that the connectives |, — and A form an adequate set as far as
the propositional connectives are concerned; and AF, EU and EX form an
adequate set of temporal connectives. Given an arbitrary CTL formula ¢,
we would simply pre-process ¢ in order to write it in an equivalent form in
terms of the adequate set of connectives, and then call the model-checking
algorithm. Here is the algorithm:

INPUT: a CTL model M = (S,—, L) and a CTL formula ¢.
OUTPUT: the set of states of M which satisfy ¢.

First, change ¢ to the output of TRANSLATE (¢), i.e. we write ¢ in terms
of the connectives AF, EU, EX, A, = and L using the equivalences given
earlier in the chapter. Next, label the states of M with the subformulas of ¢
that are satisfied there, starting with the smallest subformulas and working
outwards towards ¢.

Suppose 9 is a subformula of ¢ and states satisfying all the immediate sub-

formulas of 9 have already been labelled. We determine by a case analysis
which states to label with . If 1) is

L: then no states are labelled with L.

p: then label s with p if p € L(s).

1 A o: label s with 91 A 19 if s is already labelled both with 7 and

with .

—1p1: label s with =) if s is not already labelled with 1);.

AF ¢1:

— If any state s is labelled with 1)1, label it with AF ;.

— Repeat: label any state with AF 1 if all successor states are labelled
with AF 41, until there is no change. This step is illustrated in Fig-
ure 3.24.

E[t1 U tho]:

— If any state s is labelled with 1), label it with E[¢ U 45).

— Repeat: label any state with E[1; U 4] if it is labelled with 4, and at
least one of its successors is labelled with E[¢; U], until there is no
change. This step is illustrated in Figure 3.25.

e EX 1 label any state with EX ¢; if one of its successors is labelled with

Y1

Having performed the labelling for all the subformulas of ¢ (including ¢
itself), we output the states which are labelled ¢.

The complexity of this algorithm is O(f - V - (V + E)), where f is the
number of connectives in the formula, V' is the number of states and F is

3.6 Model checking algorithms 233
Repeat ...

/
= G —
\

b

until no change.

Fig. 3.24. The iteration step of the procedure for labelling states with subformulas
of the form AF .

/
= @w—C D
\

M
JUG

Fig. 3.25. The iteration step of the procedure for labelling states with subformulas
of the form E[’Lﬁl U 'sz]

the number of transitions; the algorithm is linear in the size of the formula
and quadratic in the size of the model.

3.6.1.2 Handling EG directly

Instead of using a minimal adequate set of connectives, it would have been
possible to write similar routines for the other connectives. Indeed, this
would probably be more efficient. The connectives AG and EG require a
slightly different approach from that for the others, however. Here is the
algorithm to deal with EG 1)y directly:

e EG:

— Label all the states with EG ;.

— If any state s is not labelled with 1, delete the label EG ;.

— Repeat: delete the label EG 1, from any state if none of its successors
is labelled with EG 4)1; until there is no change.

Here, we label all the states with the subformula EG1; and then whittle
down this labelled set, instead of building it up from nothing as we did in

234 Verification by model checking
states satisfying 1

hEGw@@

Fig. 3.26. A better way of handling EG.

the case for EU. Actually, there is no real difference between this procedure
for EG 9 and what you would do if you translated it into —AF —1) as far as
the final result is concerned.

3.6.1.8 A variant which is more efficient

We can improve the efficiency of our labelling algorithm by using a cleverer
way of handling EG. Instead of using EX, EU and AF as the adequate set,
we use EX, EU and EG instead. For EX and EU we do as before (but take
care to search the model by backwards breadth-first search, for this ensures
that we won’t have to pass over any node twice). For the EG v case:

e Restrict the graph to states satisfying 1, i.e. delete all other states and
their transitions;

e Find the maximal strongly connected components (SCCs); these are max-
imal regions of the state space in which every state is linked with (= has
a finite path to) every other one in that region.

e Use backwards breadth-first search on the restricted graph to find any
state that can reach an SCC; see Figure 3.26.

The complexity of this algorithm is O(f - (V + E)), i.e. linear both in the
size of the model and in the size of the formula.

Example 3.20 We applied the basic algorithm to our second model of mu-
tual exclusion with the formula E[—cy U ¢1]; see Figure 3.27. The algorithm
labels all states which satisfy ¢; during phase 1 with E[-cz U ¢;]. This
labels so and s4. During phase 2, it labels all states which do not satisfy
c2 and have a successor state that is already labelled. This labels states s;
and s3. During phase 3, we label sy because it does not satisfy co and has
a successor state (s1) which is already labelled. Thereafter, the algorithm
terminates because no additional states get labelled: all unlabelled states
either satisfy co, or must pass through such a state to reach a labelled state.

3.6 Model checking algorithms 235
S0

S1 S5
S
.
S4 S

Fig. 3.27. An example run of the labelling algorithm in our second model of mutual
exclusion applied to the formula E[-¢c; U ¢1].

S6

3.6.1.4 The pseudo-code of the CTL model checking algorithm

We present the pseudo-code for the basic labelling algorithm. The main
function SAT (for ‘satisfies’) takes as input a CTL formula. The program
SAT expects a parse tree of some CTL formula constructed by means of
the grammar in Definition 3.12. This expectation reflects an important
precondition on the correctness of the algorithm SAT. For example, the
program simply would not know what to do with an input of the form
X (T AEF p3), since this is not a CTL formula.

The pseudo-code we write for SAT looks a bit like fragments of C or Java
code; we use functions with a keyword return that indicates which result
the function should return. We will also use natural language to indicate
the case analysis over the root node of the parse tree of ¢. The declara-
tion local var declares some fresh variables local to the current instance
of the procedure in question, whereas repeat until executes the command
which follows it repeatedly, until the condition becomes true. Additionally,
we employ suggestive notation for the operations on sets, like intersection,
set complement and so forth. In reality we would need an abstract data
type, together with implementations of these operations, but for now we

236 Verification by model checking

function SAT (¢)

/* determines the set of states satisfying ¢ */

begin

case
¢is T : return S
¢is L : return ()
¢ is atomic: return {s € S| ¢ € L(s)}
¢ is ¢y : return S — SAT (¢1)
@ is @1 A ¢o : Teturn SAT (¢1) N SAT (¢2)
¢ is @1 V ¢a : return SAT (¢p1) U SAT (¢2)
@ is 1 — ¢o : return SAT (- V ¢s)
¢ is AX ¢y : return SAT (-EX —¢;)
¢ is EX ¢ : return SATex(¢)
¢ is Algp1 U ¢s] : return SAT(—(E[-¢2 U (=1 A ¢2)] V EG —¢2))
¢ is E[¢1 U ¢2] : return SATey(¢1, ¢2)
¢ is EF ¢1 : return SAT (E(T U ¢1))
¢ is EG ¢ : return SAT(—AF —¢,)
¢ is AF ¢y : return SATr (¢1)
¢ is AG ¢ : return SAT (—EF —¢,)
end case
end function

Fig. 3.28. The function SAT. It takes a CTL formula as input and returns the
set of states satisfying the formula. It calls the functions SATgx, SATgy and SATyF,
respectively, if EX |, EU or AF is the root of the input’s parse tree.

function SATgx (¢)
/* determines the set of states satisfying EX ¢ */
local var X,Y

begin
X := SAT (¢);
Y := pres(X);
return Y
end

Fig. 3.29. The function SATgy. It computes the states satisfying ¢ by calling SAT.
Then, it looks backwards along — to find the states satisfying EX ¢.

are interested only in the mechanism in principle of the algorithm for SAT;
any (correct and efficient) implementation of sets would do and we study
such an implementation in Chapter 6. We assume that SAT has access to all
the relevant parts of the model: S, — and L. In particular, we ignore the
fact that SAT would require a description of M as input as well. We simply
assume that SAT operates directly on any such given model. Note how SAT
translates ¢ into an equivalent formula of the adequate set chosen.

The algorithm is presented in Figure 3.28 and its subfunctions in Fig-

3.6 Model checking algorithms 237

function SAT,r (¢)
/* determines the set of states satisfying AF ¢ */
local var X,Y
begin
X :=85;
Y :=SAT (¢);
repeat until X =Y
begin
X :=Y;
Y :=Y Uprey(Y)
end
return Y
end

Fig. 3.30. The function SAT,r. It computes the states satisfying ¢ by calling SAT.
Then, it accumulates states satisfying AF ¢ in the manner described in the labelling
algorithm.

function SATgy (¢, 1))
/* determines the set of states satisfying E[¢ U ¢] */
local var W, XY
begin
W := SAT (¢);
X:=5;
Y := SAT (v);
repeat until X =Y
begin
X :=Y;
Y :=YU(W npres(Y))
end
return Y
end

Fig. 3.31. The function SATgy. It computes the states satisfying ¢ by calling SAT.
Then, it accumulates states satisfying E[¢ U ¢] in the manner described in the
labelling algorithm.

ures 3.29-3.31. They use program variables X, Y, V and W which are sets
of states. The program for SAT handles the easy cases directly and passes
more complicated cases on to special procedures, which in turn might call
SAT recursively on subexpressions. These special procedures rely on imple-
mentations of the functions

pres(Y) = {s € S |exists ¢, (s > s’ and ' €Y)}
prey(Y) = {s€ S|forall ¢, (s — s implies ' € Y)} .

238 Verification by model checking

‘Pre’ denotes travelling backwards along the transition relation. Both func-
tions compute a pre-image of a set of states. The function pres (instrumental
in SATgx and SATgy) takes a subset Y of states and returns the set of states
which can make a transition into Y. The function prey, used in SAT,g, takes
a set Y and returns the set of states which make transitions only into Y.
Observe that prey can be expressed in terms of complementation and pres,
as follows:

prey(Y) =S — pre3(S —Y) (3.8)

where we write S — Y for the set of all s € § which are not in Y.
The correctness of this pseudocode and the model checking algorithm is
discussed in Section 3.7.

3.6.1.5 The ‘state explosion’ problem

Although the labelling algorithm (with the clever way of handling EG) is
linear in the size of the model, unfortunately the size of the model is itself
more often than not exponential in the number of variables and the number
of components of the system which execute in parallel. This means that,
for example, adding a boolean variable to your program will double the
complexity of verifying a property of it.

The tendency of state spaces to become very large is known as the state
ezplosion problem. A lot of research has gone into finding ways of overcom-
ing it, including the use of:

e Efficient data structures, called ordered binary decision diagrams (OBDDs),
which represent sets of states instead of individual states. We study these
in Chapter 6 in detail. SMV is implemented using OBDDs.

e Abstraction: one may interpret a model abstractly, uniformly or for a
specific property.

e Partial order reduction: for asynchronous systems, several interleavings of
component traces may be equivalent as far as satisfaction of the formula
to be checked is concerned. This can often substantially reduce the size
of the model-checking problem.

e Induction: model-checking systems with (e.g.) large numbers of identical,
or similar, components can often be implemented by ‘induction’ on this
number.

e Composition: break the verification problem down into several simpler
verification problems.

The last four issues are beyond the scope of this book, but references may
be found at the end of this chapter.

3.6 Model checking algorithms 239

3.6.2 CTL model checking with fairness

The verification of M, sy F ¢ might fail because the model M may con-
tain behaviour which is unrealistic, or guaranteed not to occur in the actual
system being analysed. For example, in the mutual exclusion case, we ex-
pressed that the process prc can stay in its critical section (st=c) as long
as it needs. We modelled this by the non-deterministic assignment

next (st)
case

(st = ¢) : {c,n};

esac;

However, if we really allow process 2 to stay in its critical section as
long as it likes, then we have a path which violates the liveness constraint
AG (t1 — AF ¢1), since, if process 2 stays forever in its critical section, 1
can be true without c¢; ever becoming true.

We would like to ignore this path, i.e. we would like to assume that the
process can stay in its critical section as long as it needs, but will eventually
exit from its critical section after some finite time.

In LTL, we could handle this by verifying a formula like FG—cy — ¢, where
¢ is the formula we actually want to verify. This whole formula asserts that
all paths which satisfy infinitely often —co also satisfy ¢. However, we cannot
do this in CTL because we cannot write formulas of the form FG-cy — ¢
in CTL. The logic CTL is not expressive enough to allow us to pick out
the “fair” paths, i.e., those in which process 2 always eventually leaves its
critical section.

It is for that reason that SMV allows us to impose fairness constraints
on top of the transition system it describes. These assumptions state that
a given formula is true infinitely often along every computation path. We
call such paths fair computation paths. The presence of fairness constraints
means that, when evaluating the truth of CTL formulas in specifications,
the connectives A and E range only over fair paths.

We therefore impose the fairness constraint that !'st=c be true infinitely
often. This means that, whatever state the process is in, there will be a
state in the future in which it is not in its critical section. Similar fairness
constraints were used for the Alternating Bit Protocol.

Fairness constraints of the form (where ¢ is a state formula)

Property ¢ is true infinitely often.

240 Verification by model checking

are known as simple fairness constraints. Other types include those of the
form

If ¢ is true infinitely often, then ¢ is also true infinitely often.

SMV can deal only with simple fairness constraints; but how does it do that?
To answer that, we now explain how we may adapt our model-checking
algorithm so that A and E are assumed to range only over fair computation
paths.

def

Definition 3.21 Let C' = {41,2,...,%,} be a set of n fairness constraints.
A computation path sy — s; — ... is fair with respect to these fairness
constraints iff for each 7 there are infinitely many j such that s; F 1);, that
is, each 1; is true infinitely often along the path. Let us write A¢ and E¢
for the operators A and E restricted to fair paths.

For example, M, sy F AcG ¢ iff ¢ is true in every state along all fair
paths; and similarly for AcF, AcU, etc. Notice that these operators explic-
itly depend on the chosen set C' of fairness constraints. We already know
that EcU, EcG and E¢X form an adequate set; this can be shown in the
same manner as was done for the temporal connectives without fairness
constraints (Section 3.4.4). We also have that

Eclp U¢] = E[¢U (¢ AEcGT)]
EcX¢ = EX(¢ANEcGT) .

To see this, observe that a computation path is fair iff any suffix of it is fair.
Therefore, we need only provide an algorithm for EcG ¢. It is similar to
Algorithm 2 for EG, given earlier in this chapter:

e Restrict the graph to states satisfying ¢; of the resulting graph, we want
to know from which states there is a fair path.

¢ Find the maximal strongly connected components (SCCs) of the restricted
graph;

e Remove an SCC if, for some 1;, it does not contain a state satisfying ;.
The resulting SCCs are the fair SCCs. Any state of the restricted graph
that can reach one has a fair path from it.

e Use backwards breadth-first search to find the states on the restricted
graph that can reach a fair SCC.

See Figure 3.32. The complexity of this algorithm is O(n - f - (V + E)), i.e.
still linear in the size of the model and formula.

It should be noted that writing fairness conditions using SMV’s FAIR-
NESS keyword is necessary only for CTL model checking. In the case of LTL,

3.6 Model checking algorithms 241
states satisfying ¢

Fig. 3.32. Computing the states satisfying EcG ¢. A state satisfies E¢G ¢ iff, in
the graph resulting from the restriction to states satisfying ¢, the state has a fair
path from it. A fair path is one which leads to an SCC with a cycle passing through
at least one state that satisfies each fairness constraint; in the example, C' equals

{¢17¢2a¢3}‘

we can assert the fairness condition as part of the formula to be checked.
For example, if we wish to check the LTL formula 1 under the assumption
that ¢ is infinitely often true, we check GF ¢ — 1. This means: all paths
satisfying infinitely often ¢ also satisfy 1. It is not possible to express this
in CTL. In particular, any way of adding As or Es to GF ¢ — 1 will result
in a formula with a different meaning from the intended one. For example,
AG AF ¢ — 1 means that if all paths are fair then v holds, rather than
what was intended: 1 holds along all paths which are fair.

3.6.3 The LTL model checking algorithm

The algorithm presented in the sections above for CTL model checking is
quite intuitive: given a system and a CTL formula, it labels states of the
system with the subformulas of the formula which are satisfied there. The
state-labelling approach is appropriate because subformulas of the formula
may be evaluated in states of the system. This is not the case for LTL:
subformulas of the formula must be evaluated not in states but along paths
of the system. Therefore, LTL model checking has to adopt a different
strategy.

There are several algorithms for LTL model checking described in the lit-
erature. Although they differ in detail, nearly all of them adopt the same
basic strategy. We explain that strategy first; then, we describe some algo-
rithms in more detail.

3.6.3.1 The basic strategy

Let M = (S,—, L) be a model, s € S, and ¢ an LTL formula. We determine
whether M, s E ¢, i.e. whether ¢ is satisfied along all paths of M starting

242 Verification by model checking

q1
init(a) := 1;
init(b) := 0; ab
next(a) := case
ta : 0;
b : 1;
1 : {0,1};
esac;
next(b) := case
a & next(a) : !b;
ta : 1; (ab
1 : {0,1};
esac; q4

Fig. 3.33. An SMV program and its model M.

at s. Almost all LTL model checking algorithms proceed along the following
three steps.

Step 1. Construct an automaton, also known as a tableau, for the formula
—¢. The automaton for 1 is called Ay. Thus, we construct A-4. The
automaton has a notion of accepting a trace. A trace is a sequence of
valuations of the propositional atoms. From a path, we can abstract
its trace. The construction has the property that for all paths
m F 1 iff the trace of m is accepted by Ay. In other words, the
automaton A, encodes precisely the traces which satisfy .

Thus, the automaton A-y which we construct for —¢ has the prop-
erty that it encodes all the traces satisfying —¢; i.e. all the traces
which do not satisfy ¢.

Step 2. Combine the automaton A_4 with the model M of the system. The
combination operation results in a transition system whose paths are
both paths of the automaton and paths of the system.

Step 3. Discover whether there is any path from a state derived from s in
the combined transition system. Such a path, if there is one, can be
interpreted as a path in M beginning at s which does not satisfy ¢.

If there was no such path, then output: ‘Yes, M, s F ¢.” Otherwise,
if there is such a path, output ‘No, M, s ¥ ¢.” In the latter case, the
counterexample can be extracted from the path found.

Let us consider an example. The system is described by the SMV program
and its model M, shown in Figure 3.33. We consider the formula —(a U b).
Since it is not the case that all paths of M satisfy the formula (for example,
the path g3, ¢2,q2 ... does not satisfy it) we expect the model check to fail.

3.6 Model checking algorithms 243

In accordance with Step 1, we construct an automaton A,y; which char-
acterises precisely the traces which satisfy a U b. (We use the fact that
——(a U b) is equivalent to a U b.) Such an automaton is shown in Figure
3.34. We will look at how to construct it later; for now, we just try to
understand how and why it works.

def

Fig. 3.34. Automaton accepting precisely traces satisfying ¢ = a U b. The transi-
tions with no arrows can be taken in either direction. The acceptance condition is
that the path of the automaton cannot loop indefinitely through gs.

A trace t is accepted by an automaton like the one of Figure 3.34 if there
exists a path 7 through the automaton such that:

7 starts in an initial state (i.e. one containing ¢);

it respects the transition relation of the automaton;

t is the trace of 7; matches the corresponding state of m;

the path respects a certain ‘accepting condition.” For the automaton
of Figure 3.34, the accepting condition is that the path should not end
43, 93,43 - - - , indefinitely.

For example, suppose t is ab,ab,ab,ab,ab,@b,ab,ab,..., eventually re-
peating forevermore the state ab. Then we choose the path g3, g3, g3, ¢4, ¢s,
q1,05,d5 - .. We start in g3 because the first state is ab and it is an initial
state. The next states we choose just follow the valuation of the states of
7. For example, at ¢; the next valuation is a b and the transitions allow us
to choose g3 or g5. We choose ¢}, and loop there forevermore. This path
meets the conditions, and therefore the trace ¢ is accepted. Observe that
the definition states ‘there exists a path.” In the example above, there are
also paths which don’t meet the conditions:

244 Verification by model checking

e Any path beginning g3, g5, ... doesn’t meet the condition that we have to
respect the transition relation.

e The path ¢s3,93,93,94,94,91,93, 93 - .. doesn’t meet the condition that we
must not end on a loop of g3.

These paths need not bother us, because it is sufficient to find one which
does meet the conditions in order to declare that = is accepted.

Why does the automaton of Figure 3.34 work as intended? To understand
it, observe that it has enough states to distinguish the values of the propo-
sitions — that is, a state for each of the valuations {@b,@b,ab,ab}, and in
fact two states for the valuation ab. One state for each of {ab,ab,ab} is
intuitively enough, because those valuations determine whether a U b holds.
But a U b could be false or true in ab, so we have to consider the two
cases. The presence of ¢ &' 2 U b in a state indicates that either we are still
expecting ¢ to become true, or we have just obtained it. Whereas ¢ indi-
cates we no longer expect ¢, and have not just obtained it. The transitions
of the automaton are such that the only way out of ¢3 is to obtain b, i.e.
to move to go or q4. Apart from that, the transitions are liberal, allowing
any path to be followed; each of q1,¢o, g3 can transition to any valuation,
and so can g3, g5 taken together, provided we are careful to choose the right
one to enter. The acceptance condition, which allows any path except one
looping indefinitely on g3, guarantees that the promise of a U b to deliver b
is eventually fulfilled.

Using this automaton A,yp, we proceed to step 2. To combine the au-
tomaton A,yp with the model of the system M shown in Figure 3.33, it is
convenient first to redraw M with two versions of g3; see Figure 3.35(left).
It is an equivalent system; all ways into g3 now non-deterministically choose
g3 or g4, and which ever one we choose leads to the same successors. But it
allows us to superimpose it on A,y and select the transitions common to
both, obtaining the combined system of Figure 3.35(right).

Step 3 now asks whether there is a a path from g of the combined automa-
ton. As can be seen, there are two kinds of path in the combined system:
43, (04,43,)*q2, 42 - - -, and g3, qu, (43,94,)* 45, G1, 42, G2, - - - Where (g3, qs)* de-
notes either the empty string or g3, g4 or gs, qs, g3, g4 etc. Thus, according
to Step 3, and as we expected, =(a U b) is not satisfied in all paths of the
original system M.

3.6.3.2 Constructing the automaton

Let us look in more detail at how the automaton is constructed. Given an
LTL formula ¢, we wish to construct an automaton Ay such that A, accepts

3.6 Model checking algorithms 245

q1 g2

Fig. 3.35. Left: the system M of Figure 3.33, redrawn with an expanded state
space; right: the expanded M and A,y combined.

precisely those runs on which ¢ holds. We assume that ¢ contains only the
temporal connectives U and X; recall that the other temporal connectives
can be written in terms of these two.

Define the closure C(¢) of formula ¢ as the set of subformulas of ¢ and
their complements, identifying ——1 and . For example, C(a U b) =
{a,b,—a,=b,a U b,~(a U b)}. The states of Ay, denoted by ¢, ¢’ etc, are the
maximal subsets of C(¢) which satisfy the following conditions:

e For all (non-negated) 9 € C(¢), either ¢ € g or =) € ¢, but not both.
11 V 1he € q holds iff 91 € g or 99 € q, whenever 11 V 1y € C(P).
Conditions for other boolean combinations are similar.

If 41 U p € ¢q, then 9p9 € q or Y1 € q.

If =(¢1 U o) € g, then —¢hy € ¢.

Intuitively, these conditions imply that the states of A4 are capable of saying
which subformulas of ¢ are true.

The initial states of Ay are those states containing ¢. For transition
relation ¢ of A, we have (g,¢') € § iff all of the following conditions hold:

If X1 € g then 9 € ¢’

If =X € q then) € ¢

If 41 U tpo € g and 1o ¢ g then 1 Uy € ¢'.

If =(¢)1 U ths) € g and 91 € g then —(1p1 U 1h9) € ¢'.

246 Verification by model checking

These last two conditions are justified by the recursion laws

Y1 Usps = 9oV (1 AX (31 U o))
(1 Uhe) = 9o A(=th1 VX (th1 Uhe)) .

In particular, they ensure that whenever some state contains 11 U 19, sub-
sequent states contain 1; for as long as they do not contain)s.

As we have defined Ay so far, not all paths through Ay satisfy ¢. We use
additional acceptance conditions to guarantee the ‘eventualities’ 1/ promised
by the formula ¢ U 1), namely that Ay cannot stay for ever in states satis-
fying ¢ without ever obtaining 1. Recall that, for the automaton of Figure
3.34 for a U b, we stipulated the acceptance condition that the path through
the automaton should not end g3, 4¢3,

The acceptance conditions of Ay are defined so that they ensure that
every state containing some formula x U 1 will eventually be followed by
some state containing %. Let x1 U 91, ..., xx U 9 be all subformulas of
this form in C(¢). We stipulate the following acceptance condition: a run
is accepted if, for every i such that 1 < i < k, the run has infinitely many
states satisfying —(x; U 9;) V 9;. To understand why this condition has the
desired effect, imagine the circumstances in which it is false. Suppose we
have a run having only finitely many states satisfying —(x; U ;) V);. Let us
advance through all those finitely many states, taking the suffix of the run
none of whose states satisfies =(x; U ;) V 1, i.e. all of whose states satisfy
(xi U ;) A —1p;. That is precisely the sort of run we want to eliminate.

If we carry out this construction on a U b, we obtain the automaton shown
in Figure 3.34. Another example is shown in Figure 3.36, for the formula
(p U gq)V (=p U gq). Since that formula has two U subformulas, there are
two sets specified in the acceptance condition, namely, the states satisfying
p U ¢ and the states satisfying -p U gq.

3.6.3.3 How LTL model checking is implemented in NuSMV

In the sections above, we described an algorithm for LTL model checking.
Given an LTL formula ¢ and a system M and a state s of M, we may check
whether M, s F ¢ holds by constructing the automaton A-4, combining it
with M, and checking whether there is a path of the resulting system which
satisfies the acceptance condition of A .

It is possible to implement the check for such a path in terms of CTL
model checking, and this is in fact what NuSMV does. The combined system
M x A_4 is represented as the system to be model checked in NuSMV, and
the formula to be checked is simply EGT. Thus, we ask the question:
does the combined system have a path. The acceptance conditions of A

3.7 The fixed-point characterisation of CTL 247

~(pUg),
'('p U q)a
D, _'qa_'¢

q3 g4

Fig. 3.36. Automaton accepting precisely traces satisfying ¢ = (p U ¢) V (—=p U g).
The transitions with no arrows can be taken in either direction. The accep-
tance condition asserts that every run must pass infinitely often through the set

{491, 43,494,95,9 }, and also the set {q1, 92,93, 75,6 }-

are represented as implicit fairness conditions for the CTL model checking
procedure. Explicitly, this amounts to asserting ‘FAIRNESS —(x U) V ¢’
for each formula x U 9 occurring in C(¢).

3.7 The fixed-point characterisation of CTL

On page 236, we presented an algorithm which, given a CTL formula ¢ and
a model M = (S, —, L), computes the set of states s € S satisfying ¢. We
write this set as [¢]. The algorithm works recursively on the structure of
¢. For formulas ¢ of height 1 (L, T or p), [¢] is computed directly. Other
formulas are composed of smaller subformulas combined by a connective of
CTL. For example, if ¢ is 91 V 12, then the algorithm computes the sets
[#1] and [12] and combines them in a certain way (in this case, by taking
the union) in order to obtain [V 12].

The more interesting cases arise when we deal with a formula such as
EX 1), involving a temporal operator. The algorithm computes the set [¢]
and then computes the set of all states which have a transition to a state in
[#]. This is in accord with the semantics of EX ¢: M, s E EX) iff there is
a state s’ with s — s’ and M, s’ E 9.

248 Verification by model checking

function SATgG (@)
/* determines the set of states satisfying EG ¢ */
local var X,Y
begin
Y :=SAT (¢);
X :=0;
repeat until X =Y
begin
X :=Y;
Y :=Y Nnprez(Y)
end
return Y
end

Fig. 3.37. The pseudo-code for SATgG.

For most of these logical operators, we may easily continue this discussion
to see that the algorithms work just as expected. However, the cases EU,
AF and EG (where we needed to iterate a certain labelling policy until it
stabilised) are not so obvious to reason about. The topic of this section
is to develop the semantic insights into these operators that allow us to
provide a complete proof for their termination and correctness. Inspecting
the pseudo-code in Figure 3.28, we see that most of these clauses just do the
obvious and correct thing according to the semantics of CTL. For example,
try out what SAT does when you call it with ¢; — ¢o.

Our aim in this section is to prove the termination and correctness of
SAT,r and SATgy. In fact, we will also write a procedure SATgg and prove its
termination and correctness'. The procedure SATgg is given in Figure 3.37
and based on the intuitions given in Section 3.6.1.2: note how deleting the
label if none of the successor states is labelled is coded as intersecting the
labelled set with the set of states which have a labelled successor.

The semantics of EG ¢ says that sqg F EG ¢ holds iff there exists a com-
putation path sy — s; — so — ... such that s; F ¢ holds for all i > 0. We
could instead express it as follows: EG ¢ holds if ¢ holds and EG ¢ holds
in one of the successor states to the current state. This suggests the equiv-
alence EG ¢ = ¢ A EXEG ¢ which can easily be proved from the semantic
definitions of the connectives.

Observing that [EX 9] = pres([¢]) we see that the equivalence above
can be written as [EG ¢] = [¢] N pre3([EG ¢])). This does not look like a
very promising way of calculating EG ¢, because we need to know EG ¢ in

1 Section 3.6.1.4 handles EG ¢ by translating it into —AF —¢, but we already noted in Sec-
tion 3.6.1.2 that EG could be handled directly.

3.7 The fixed-point characterisation of CTL 249

order to work out the right-hand side. Fortunately, there is a way around
this apparent circularity, known as computing fixed points, and that is the
subject of this section.

3.7.1 Monotone functions

Definition 3.22 Let S be a set of states and F: P(S) — P(S) a function
on the power set of S.

1. We say that F' is monotone iff X C Y implies F'(X) C F(Y) for all
subsets X and Y of S.
2. A subset X of S is called a fixed point of F' iff F(X) = X.

def

For an example, let § & {s0,51} and F(Y) £ Y U {s} for all subsets Y
of S. Since Y C Y’ implies Y U{so} C Y'U{s¢}, we see that F' is monotone.
The fixed points of F' are all subsets of S containing sg. Thus, F' has two
fixed points, the sets {so} and {sg, s1}. Notice that F' has a least (= {so})
and a greatest (= {so,s1}) fixed point.

An example of a function G: P(S) — P(S), which is not monotone, is
given by

G(Y)E if Y = {so} then {s;} else {sq} .

So G maps {so} to {s1} and all other sets to {sp}. The function G is
not monotone since {so} C {so,s1} but G({so}) = {s1} is not a subset of
G({s0,51}) = {s0}- Note that G has no fixed points whatsoever.

The reasons for exploring monotone functions on P(S) in the context of
proving the correctness of SAT are

1. that monotone functions always have a least and a greatest fixed
point,

2. that the meanings of EG, AF and EU can be expressed via greatest,
respectively least, fixed points of monotone functions on P(.S),

3. that these fixed-points can be easily computed and

4. that the procedures SATgy and SAT,r code up such fixed-point com-
putations, and are correct by item 2.

Notation 3.23 F'(X) means

i times

Thus, the function F* is just ‘F applied 4 many times.’

250 Verification by model checking

def

For example, for the function F(Y) = Y U {so}, we obtain F?(Y) =
F(F(Y)) = (YU{so})U{so} =Y U{so} = F(Y). In this case, F? = F and
therefore F* = F for all i > 1. It is not always the case that the sequence of
functions (F', F2, F3,...) stabilises in such a way. For example, this won’t
happen for the function G defined above (see exercise 1(d) on page 263).
The following fact is a special case of a fundamental insight, often referred
to as the Knaster-Tarski Theorem.

Theorem 3.24 Let S be a set {sg,S1,...,5,} with n + 1 elements. If
F: P(S) — P(S) is a monotone function, then F"*1((}) is the least fixed
point of F and F"*1(S) is the greatest fixed point of F.

Proof: Since () C F(0), we get F(0) C F(F(0)), i.e. F*(0) C F?(0), for F is
monotone. We can now use mathematical induction to show that

FH(0) CF*(0) CF*(0) C... C F'(0)

for all 4 > 1. In particular, taking 3 o+ 1, we claim that one of the

expressions F*((})) above is already a fixed point of F. Otherwise, F'(()
needs to contain at least one element (for then § # F(0)). By the same
token, F2(()) needs to have at least two elements since it must be bigger
than F'(()). Continuing this argument, we see that F™2(}}) would have
to contain at least n + 2 many elements. The latter is impossible since
S has only n + 1 elements. Therefore, F(F*(})) = F*(§) for some 0 <
k < n 4+ 1, which readily implies that F"*1(()) is a fixed point of F as
well.

Now suppose that X is another fixed point of F. We need to show that
F™1(0) is a subset of X; but, since § C X, we conclude F(()) C F(X) = X,
for F' is monotone and X a fixed point of F. By induction, we obtain
Fi(0) C X for all i > 0. So, for i & n + 1, we get F"1(0) C X.

The proof of the statements about the greatest fixed point is dual to the
one above. Simply replace C by D, () by S and ‘bigger’ by ‘smaller.’ O

This theorem about the existence of least and greatest fixed points of
monotone functions F': P(S) — P(S) not only asserted the existence of
such fixed points; it also provided a recipe for computing them, and cor-
rectly so. For example, in computing the least fixed point of F', all we have
to do is apply F to the empty set () and keep applying F to the result un-
til the latter becomes invariant under the application of F. The theorem
above further ensures that this process is guaranteed to terminate. More-
over, we can specify an upper bound n + 1 to the worst-case number of

3.7 The fixed-point characterisation of CTL 251

iterations necessary for reaching this fixed point, assuming that S has n+1
elements.

3.7.2 The correctness of SATgg

We saw at the end of the last section that [EG ¢] = [¢]Npre3([EG ¢]). This
implies that EG ¢ is a fixed point of the function F(X) = [¢] Nprez(X). In
fact, F' is monotone, EG ¢ is its greatest fixed point and therefore EG ¢ can
be computed using Theorem 3.24.

Theorem 3.25 Let F' be as defined above and let S have n + 1 elements.
Then F' is monotone, [EG ¢] is the greatest fixed-point of F', and [EG ¢] =
FHL(9).

Proof:

1. In order to show that F' is monotone, we take any two subsets X and
Y of S such that X CY and we need to show that F(X) is a subset
of F(Y). Given sg such that there is some s; € X with s9 — s, we
certainly have sy — s1, where s; € Y, for X is a subset of Y. Thus,
we showed preg(X) C pres(Y) from which we readily conclude that
F(X) = [¢] N pres(X) C [4] N pres(Y) = F(Y).

2. We have already seen that [EG ¢] is a fixed point of F. To show
that it is the greatest fixed point, it suffices to show here that any
set X with F(X) = X has to be contained in [EG ¢]. So let sy be
an element of such a fixed point X. We need to show that sg is in
[EG ¢] as well. For that we use the fact that

so € X = F(X) = [¢] N pres(X)

to infer that sg € [¢] and sy — s; for some s; € X; but, since s;
is in X, we may apply that same argument to s; € X = F(X) =
[¢] Npre3(X) and we get s1 € [¢] and s; — s, for some so € X. By
mathematical induction, we can therefore construct an infinite path
80 —» 81 — +++ —> S — Spy1 — ... such that s; € [#] for all 7 > 0.
By the definition of [EG ¢], this entails sy € [EG ¢].

3. The last item is now immediately accessible from the previous one
and Theorem 3.24.

O
Now we can see that the procedure SATg; is correctly coded and termi-
nates. First, note that the line Y := Y N pre3(Y) in the procedure SATgg

252 Verification by model checking

(Figure 3.37) could be changed to Y := SAT(¢) N pre3(Y) without changing
the effect of the procedure. To see this, note that the first time round the
loop, Y is SAT(¢); and in subsequent loops, Y C SAT(¢), so it doesn’t matter
whether we intersect with Y or SAT(¢)!. With the change, it is clear that
SATgg is calculating the greatest fixed point of F'; therefore its correctness
follows from Theorem 3.25.

3.7.3 The correctness of SATgy

Proving the correctness of SATgy is similar. We start by noting the equiv-
alence E[¢p U ¢] = ¢ V (¢ ANEXE[¢ U 9]) and we write it as [E[¢ U ¢]] =
[#] U ([¢] N pres[E[¢ U 9]]). That tells us that [E[¢ U +]] is a fixed point
of the function G(X) = [¢] U ([¢] N prea(X)). As before, we can prove
that this function is monotone. It turns out that [E[¢ U 4] is its least fixed
point and that the function SATgy is actually computing it in the manner of
Theorem 3.24.

Theorem 3.26 Let G be defined as above and let S have n + 1 elements.
Then G is monotone, [E(¢ U)] is the least fixed-point of G, and we have

[E(¢ U 9)] = G"*1(0).
Proof:

1. Again, we need to show that X C Y implies G(X) C G(Y); but
that is essentially the same argument as for F', since the function

L If you are sceptical, try computing the values Yp, Y1, Y3,..., where Y; represents the value of
Y after ¢ iterations round the loop. The program before the change computes as follows:

Yo = SAT(¢)

Y1 = Yo Nprea(Yop)

Y> = YiNprea(Y1)
= Yo Npreg(Yo) N pre3(Yp N pres(Yo))
= Yo N pres(Yo N pres(Yo)).

The last of these equalities follows from the monotonicity of pres.

Ys = Y2 Npres(Ys)
= Yp N preg (Yo N pre3(Yo)) N preg(Yo N pre3(Yo N pre3(Yo)))
= Yo N preg(Yp N pre3(Yo N pre3(Yo))).

Again the last one follows by monotonicity. Now look at what the program does after the
change:

Yo = SAT(¢)
Y7 = SAT(¢) Npre3(Yo)
= Yo Nprea(Yp)
Yo = Yo Nprea(Yr)
Y3 = Yp Npreg (Y1)
= Yo N pres(Yo N pres(Yo)).

A formal proof would follow by induction on 3.

3.7 The fixed-point characterisation of CTL 253

which sends X to preg(X) is monotone and all that G now does is to
perform the intersection and union of that set with constant sets [¢]
and [¢].

2. If S has n+1 elements, then the least fixed point of G equals G™*1(()
by Theorem 3.24. Therefore it suffices to show that this set equals
[E(¢ U 4)]. Simply observe what kind of states we obtain by it-
erating G on the empty set 0: G'(0) = [¢] U ([¢] N prea([¢])) =
[¥] U ([¢] N ®) = [¢]U® = [¢], which are all states s € [E(¢ U)],

where we chose 7 = 0 according to the definition of Until. Now,

G*(0) = [¥] U ([¢] N pres(G1(9)))

tells us that the elements of G?()) are all those so € [E(¢ U)] where
we chose 4 < 1. By mathematical induction, we see that G¥T1(() is
the set of all states sy for which we chose i < k to secure sy €
[E(¢ U 9)]. Since this holds for all k, we see that [E(¢ U %)] is
nothing but the union of all sets G¥*1() with k& > 0; but, since
G™t1(0) is a fixed point of G, we see that this union is just G™*1(0).

O

The correctness of the coding of SATgy follows similarly to that of SATgg.
We change the line Y := YU(W Npre3(Y)) into Y := SAT(¢)) U(W Npres(Y))
and observe that this does not change the result of the procedure, because
the first time round the loop, Y is SAT(4)); and, since Y is always increasing,
it makes no difference whether we perform a union with Y or with SAT(%).
Having made that change, it is then clear that SATgy is just computing the
least fixed point of G using Theorem 3.24.

We illustrate these results about the functions F' and G above through
an example. Consider the system in Figure 3.38. We begin by comput-
ing the set [EF p]. By the definition of EF this is just [E(T U p)]. So
we have ¢; & T and ¢ & p. From Figure 3.38, we obtain [p] = {s3}
and of course [T] = S. Thus, the function G above equals G(X) =
{s3} U pres(X). Since [E(T U p)] equals the least fixed point of G, we
need to iterate G' on () until this process stabilises. First, G'(f)) = {s3} U
preg(0) = {s3}. Second, G*(0) = G(G'(0)) = {s3} U prea({ss}) = {s1,s3}-
Third, G3(0) = G(G*(0)) = {s3} Upres({s1,s3}) = {s0, 51,52, s3}. Fourth,
G*(0) = G(G*(0)) = {s3} U pres({so, 51, 52,53}) = {s0,51,52,53}. There-
fore, {so, s1, s2, s3} is the least fixed point of G, which equals [E(T U p)] by
Theorem 3.20. But then [E(T U p)] = [EF p] = [EF p].

The other example we study is the computation of the set [EG¢]. By
Theorem 3.25, that set is the greatest fixed point of the function F' above,

254 Verification by model checking

S0

Fig. 3.38. A system for which we compute invariants.

where ¢ & ¢. From Figure 3.38 we see that [¢] = {s0,s4} and so F(X) =
[q] N prea(X) = {so,s4} Npres(X). Since [EG g] equals the greatest fixed
point of F', we need to iterate F on S until this process stabilises. First,
F(S) = {s0,84} N pre3(S) = {s0,54} N S since every s has some s’ with
s — s'. Thus, F1(S) = {s¢, 54}

Second, F%(S) = F(F*(S)) = {s0, 54} N pres({so,s4}) = {s0,s4}. There-
fore, {sg, s4} is the greatest fixed point of F', which equals [EG ¢] by Theo-
rem 3.25.

3.8 Exercises
Exercises 3.1

1. Read Section 2.7 in case you have not yet done so and classify Alloy
and its constraint analyzer according to the classification criteria for
formal methods proposed on page 180.

2. Visit and browse the web sites ! and ? to find formal methods that
interest you for whatever reason. Then classify them according to
the criteria from page 180.

Exercises 3.2
1. Draw parse trees for the LTL formulas:

(a) FpAGg—=pWr
(b) F(p—>Gr)V-qUp
(c) pW (g Wr)
(d) GFp—>F(¢qVs)
2. Consider the system of Figure 3.39. For each of the formulas ¢:

1
2

www.afm.sbu.ac.uk
www.cs.indiana.edu/formal-methods-education/

3.8 Exercises 255

g4

Fig. 3.39. A model M.

)
)

(¢c) aUX(aA-b)
)

(e) X(aAb)AF (—aA-b)

(i) Find a path from the initial state g3 which satisfies ¢.
(ii) Determine whether M, g3 F ¢.

3. Working from the clauses of Definition 3.1 (page 184), prove the
equivalences

dUY = ¢WAFy

dWY = ¢UpVGs
Wy = PR ($VY)
dRY = Yy W (pAY).

4. Prove that ¢ Uy =9 R (¢ V) AF .

. List all subformulas of the LTL formula —p U (FrVG —-q — ¢ W —r).

6. ‘Morally’ there ought to be a dual for W. Work out what it might
mean, and then pick a symbol based on the first letter of the meaning.

7. Prove that for all paths 7 of all models, 7 F ¢ W 9 A F 1 implies
m E ¢ U 1. That is, prove the remaining half of equivalence (3.2) on
page 194.

8. Recall the algorithm NNF on page 64 which computes the negation

ot

normal form of propositional logic formulas. Extend this algorithm to
LTL: you need to add program clauses for the additional connectives

256 Verification by model checking

X, F, G and U, R and W; these clauses have to animate the semantic
equivalences that we presented in this section.

Exercises 3.3
1. Consider the model in Figure 3.9 (page 201).

* (a) Verify that G(req -> F busy) holds in all initial states.

(b) Does —(req U —busy) hold in all initial states of that model?

(¢) NuSMYV has the capability of referring to the next value of a
declared variable v by writing next (v). Consider the model
obtained from Figure 3.9 by removing the self-loop on state
'req & busy. Use the NuSMV feature next(...) to code
that modified model as an NuSMV program with the specifi-
cation G(req -> F busy). Then run it.

2. Verify Remark 3.11 from page 199.
* 3. Draw the transition system described by the ABP program.

Remarks: There are 28 reachable states of the ABP program.
(Looking at the program, you can see that the state is described
by nine boolean variables, namely S.st, S.messagel, S.message2,
R.st, R.ack, R.expected, msg_chan.outputl, msg_chan.output2
and finally ack_chan.output. Therefore, there are 2° = 512 states in
total. However, only 28 of them can be reached from the initial state
by following a finite path.)

If you abstract away from the contents of the message (e.g. by
setting S.messagel and msg_chan.outputl to be constant 0), then
there are only 12 reachable states. This is what you are asked to
draw.

Exercises 3.4
1. Write the parse trees for the following CTL formulas:
*(a) EGr
*(b) AG (¢ — EGr)
*(c) Alp UEFr]
*(d) EFEGp — AF r, recall Convention 3.13
)
)

o,

(e) Alp U AqgUr]]
(f) E[A[p U ¢] Ur]
(&) AG(p—= Alp U (=pAA[-p U g))]).
2. Explain why the following are not well-formed CTL formulas:
*(a) FGr

3.8 Exercises 257

()AFWWMHA@UTH

. State which of the strings below are well-formed CTL formulas. For
those which are well-formed, draw the parse tree. For those which
are not well-formed, explain why not.

@)ﬁ(p) V (rAs)
(b

*(c —|AXq
(

(e E[(AXq) U (=(-=p) V(T As))]

f) (Fr) A (AGg)
(8) ~(AGq) Vv (EGq).
. List all subformulas of the formula AG (p — A[p U (-pAA[—p U q])]).
. Does E[req U —busy] hold in all initial states of the model in Fig-
ure 3.9 on page 2017
. Consider the system M in Figure 3.40.

) X
)
d) pU (AX 1)
)
)

(a) Beginning from state s, unwind this system into an infinite
tree, and draw all computation paths up to length 4 (= the
first four layers of that tree).

(b) Determine whether M, sg F ¢ and M, so F ¢ hold and justify
your answer, where ¢ is the LTL or CTL formula:

258 Verification by model checking

7. Let M = (S, —, L) be any model for CTL and let [¢] denote the set
of all s € S such that M, s E ¢. Prove the following set identities by
inspecting the clauses of Definition 3.15 from page 220.

*(£) [¢1 = ¢2] = (S —[¢1]) Ul
*(g) [AX¢] =S5 - [EX~¢]
(h) [A(g2 U ¢2)] = [-(E(=¢1 U (—¢1 A =¢2)) V EG =¢)].
8. Consider the model M in Figure 3.41. Check whether M, sg E ¢ and
M, s9 E ¢ hold for the CTL formulas ¢:

(a) AFq

(b) AG (BF (pv 1))
(¢) EX(EXT)

(d) AG (AFgq).

*(a) [T] =S5,
(b) [L] =10
(c) [-¢] =S — 1[4l
(d) [¢1 A ¢o] = [¢1] N [¢2]
() [#1V 2] =[¢1] U2l
()
)

*9.

10.

11.

12.

13.
*14.

3.8 Exercises 259

The meaning of the temporal operators F, G and U in LTL and AU,
EU, AG, EG, AF and EF in CTL was defined to be such that ‘the
present includes the future.” For example, EF p is true for a state if
p is true for that state already. Often one would like corresponding
operators such that the future excludes the present. Use suitable
connectives of the grammar on page 217 to define such (six) modified
connectives as derived operators in CTL.

Which of the following pairs of CTL formulas are equivalent? For
those which are not, exhibit a model of one of the pair which is not
a model of the other:

(a) EF ¢ and EG ¢
*(b) EF ¢ VEF ¢ and EF (¢ V 9)
*(c) AF ¢V AF ¢ and AF (¢ V 9)
) AF —¢ and -EG ¢
e) EF ¢ and —AF ¢
f) A1 U Alpz U ¢3]] and A[A[py U 3] U ¢3], hint: it might
make it simpler if you think first about models that have just

C

ol

*

(
(
(
(

one path
(g) T and AG¢p — EG ¢
*(h) T and EG ¢ — AG ¢.
Find operators to replace the 7 marks, to make the following equiv-
alences.

*(a) AG(pANY) = AG¢p 7?7 AG .
(b) EF—¢ = —77¢
State explicitly the meaning of the temporal connectives AR etc., as
defined on page 226.
Prove the equivalences (3.6) on page 225.
Write pseudo-code for a recursive function TRANSLATE which
takes as input an arbitrary CTL formula ¢ and returns as output

an equivalent CTL formula ¢ whose only operators are among the
set {L,-,A\,AF ,EU,EX }.

Exercises 3.5

1.

Express the following properties in CTL and LTL whenever possible.
If neither is possible, try to express the property in CTL*:

* (a) Whenever p is followed by ¢ (after finitely many steps), then
the system enters an ‘interval’ in which no r occurs until £.

260

Verification by model checking

(b) Event p precedes s and ¢ on all computation paths. (You may
find it easier to code the negation of that specification first.)
(c) After p, q is never true. (Where this constraint is meant to
apply on all computation paths.)
(d) Between the events ¢ and r, event p is never true.
(e) Transitions to states satisfying p occur at most twice.
* (f) Property p is true for every second state along a path.

. Explain in detail why the LTL and CTL formulas for the practical

specification patterns of pages 192 and 223 capture the stated ‘infor-
mal’ properties expressed in plain English.

. Consider the set of LTL/CTL formulas ¥ = {Fp — Fq¢,AF p —

AF q,AG (p — AF ¢)}.

(a) Is there a model such that all formulas hold in it?

(b) For each ¢ € F, is there a model such that ¢ is the only
formula in F satisfied in that model?

(¢) Find a model in which no formula of F holds.

. Consider the CTL formula AG (p — AF (s A AX(AFt))). Explain

what exactly it expresses in terms of the order of occurrence of events
p, s and t.

. Extend the algorithm NNF from page 64 which computes the negation

normal form of propositional logic formulas to CTL*. Since CTL*
is defined in terms of two syntactic categories (state formulas and
path formulas), this requires two separate versions of NNF which call
each other in a way that is reflected by the syntax of CTL* given on
page 227.

. Find a transition system which distinguishes the following pairs of

CTL* formulas, i.e. show that they are not equivalent:

(a) AFGp and AF AGp
*(b) AGFp and AGEFp
(©) Al(pUr) v (g U)] and Al(p v) U r)]
*(d) Al XpvXXp]and AXpVAXAXp
(e) E[GF p] and EGEF p.

~— '~

. The translation from CTL with boolean combinations of path formu-

las to plain CTL introduced in Section 3.5.1 is not complete. Invent
CTL equivalents for:

*(a) E[FpA(qUr)]

*(b) E[FpAGgl.

3.8 Exercises 261

In this way, we have dealt with all formulas of the form E[¢ A 1].
Formulas of the form E[¢ V 9] can be rewritten as E[¢] V E[¢] and
A[¢] can be written —E[-d)].

Use this translation to write the following in CTL:

(c) E[(p U q) NFp]
*(d) AllpUgq) AGp]
*(e) AlFp— Fyql.
8. The aim of this exercise is to demonstrate the expansion given for AW
at the end of the last section, i.e. A[p Wgq|] = —-E[-q U —(pV ¢q)].

(a) Show that the following LTL formulas are valid (i.e. true in
any state of any model):

(i) =¢U (=p A —~q) = =Gp
(i) G-gAF-p— =g U (-p A —q).

(b) Expand —((p U ¢q) V G p) using de Morgan rules and the LTL
equivalence =(¢ U ¢) = (= U (=d A —)) V =F 1.

(c) Using your expansion and the facts (i) and (ii) above, show
-((pUq)VGp) = —qU —(pAq) and hence show that the
desired expansion of AW above is correct.

Exercises 3.6
* 1. Verify ¢ to ¢4 for the transition system given in Figure 3.11 on
page 208. Which of them require the fairness constraints of the SMV
program in Figure 3.107
2. Try to write a CTL formula that enforces non-blocking and no strict
sequencing at the same time, for the SMV program in Figure 3.10
(page 205).
* 3. Apply the labelling algorithm to check the formulas ¢1, ¢2, ¢3 and
¢4 of the mutual exclusion model in Figure 3.7 (page 197).
4. Apply the labelling algorithm to check the formulas ¢1, ¢2, ¢3 and
¢4 of the mutual exclusion model in Figure 3.8 (page 199).
5. Prove that (3.8) on page 238 holds in all models. Does your proof
require that for every state s there is some state s’ with s — s'?
6. Inspecting the definition of the labelling algorithm, explain what hap-
pens if you perform it on the formula p A —p (in any state, in any
model).

262 Verification by model checking

7. Modify the pseudo-code for SAT on page 236 by writing a special
procedure for AG 91, without rewriting it in terms of other formulas'.

* 8. Write the pseudo-code for SATgg, based on the description in terms
of deleting labels given in Section 3.6.1.2.

* 9. For mutual exclusion, draw a transition system which forces the two
processes to enter their critical section in strict sequence and show
that ¢4 is false of its initial state.

10. Use the definition of F between states and CTL formulas to explain
why s E AG AF ¢ means that ¢ is true infinitely often along every
path starting at s.

*11. Show that a CTL formula ¢ is true on infinitely many states of a
computation path s3 — s1 — s9 — ... iff for all n > 0 there is some
m > n such that s,, F ¢.

12. Run the NuSMV system on some examples. Try commenting out, or
deleting, some of the fairness constraints, if applicable, and see the
counter examples NuSMV generates. NuSMYV is very easy to run.

13. In the one-bit channel, there are two fairness constraints. We could
have written this as a single one, inserting ‘&’ between running and
the long formula, or we could have separated the long formula into
two and made it into a total of three fairness constraints.

In general, what is the difference between the single fairness con-
straint ¢1 Ada A+ A ¢y, and the n fairness constraints ¢1, ¢2,...,¢n?
Write an SMV program with a fairness constraint a & b which is not
equivalent to the two fairness constraints a and b. (You can actually
do it in four lines of SMV.)

14. Explain the construction of formula ¢4, used to express that the pro-
cesses need not enter their critical section in strict sequence. Does it
rely on the fact that the safety property ¢; holds?

*15. Compute the EcG T labels for Figure 3.11, given the fairness con-
straints of the code in Figure 3.10 on page 205.

Exercises 3.7
1. Consider the functions

H,,H,,H3: P({1,2,3,4,5,6,7,8,9,10}) — P({1,2,3,4,5,6,7,8,9,10})

1 Question: will your routine be more like the routine for AF, or more like that for EG on
page 2337 Why?

3.8 Exercises 263

A

>
O OnOn®
S~

Fig. 3.42. Another system for which we compute invariants.

defined by

H(Y) € Y-{1,47}
Hy(Y) ¥ {2,5,9}-Y
H3(Y) = {1125 3,4, 5} n ({2145 8} U Y)
for all Y C {1,2,3,4,5,6,7,8,9,10}.
* (a) Which of these functions are monotone; which ones aren’t?

Justify your answer in each case.

*(b) Compute the least and greatest fixed points of Hs using the
iterations H§ with ¢ =1,2,... and Theorem 3.24.

(c) Does Hy have any fixed points?
(d) Recall G: P({s0,51}) = P({s0,s1}) with

G(Y) ¥ if Y = {50} then {s;} else {so}.

Use mathematical induction to show that G* equals G for all

odd numbers i > 1. What does G* look like for even numbers
1?7

. Let A and B be two subsets of S and let F': P(S) — P(S) be a
monotone function. Show that

(a) Fi: P(S) — P(S) with Fi(Y) = AN F(Y) is monotone

(b) Fy: P(S) — P(S) with F5(Y) £ AU(BNF(Y)) is monotone.
. Use Theorems 3.25 and 3.26 to compute the following sets (the un-
derlying model is in Figure 3.42):

(a) [EF p]

(b) [EGq].

264 Verification by model checking

4. Using the function F'(X) = [¢] U prey(X) prove that [AF ¢] is the
least fixed point of F'. Hence argue that the procedure SAT,r is correct
and terminates.

* 5. One may also compute AG ¢ directly as a fixed point. Consider the

function H: P(S) — P(S) with H(X) = [¢] N prey(X). Show that
H is monotone and that [AG ¢] is the greatest fixed point of H. Use
that insight to write a procedure SAT .

6. Similarly, one may compute Afp; U ¢] directly as a fixed point,
using K: P(S) — P(S), where K(X) = [¢2] U ([¢1] N prey(X)).
Show that K is monotone and that [A[¢; U ¢2]] is the least fixed
point of K. Use that insight to write a procedure SAT,y. Can you
use that routine to handle all calls of the form AF ¢ as well?

7. Prove that [A[¢1 U ¢2]] = [d2 V (1 A AX (A[¢1 U ¢2]))]-

. Prove that [AG ¢] = [¢ A AX (AG ¢)].

9. Show that the repeat-statements in the code for SATgy and SATgg
always terminate. Use this fact to reason informally that the main
program SAT terminates for all valid CTL formulas ¢. Note that some
subclauses, like the one for AU, call SAT recursively and with a more
complex formula. Why does this not affect termination?

o

3.9 Bibliographic notes

Temporal logic was invented by the philosopher A. Prior in the 1960s; his
logic was similar to what we now call LTL. The first use of temporal logic
for reasoning about concurrent programs was by A. Pnueli [Pnu81]. The
logic CTL was invented by E. Clarke and E. A. Emerson (during the early
1980s); and CTL* was invented by E. A. Emerson and J. Halpern (in 1986)
to unify CTL and LTL.

CTL model checking was invented by E. Clarke and E. A. Emerson [CE81]
and by J. Quielle and J. Sifakis [QS81]. The technique we described for LTL
model checking was invented by M. Vardi and P. Wolper [VW84]. Surveys
of some of these ideas can be found in [CGL93] and [CGP99]. The theorem
about adequate sets of CTL connectives is proved in [Mar01].

The original SMV system was written by K. McMillan [McM93] and is
available with source code from Carnegie Mellon University!. NuSMV? is a
reimplementation, developed in Trento by A. Cimatti, and M. Roveri and
is aimed at being customisable and extensible. Extensive documentation

1
2

www.cs.cmu.edu/ "modelcheck/
nusmv.irst.itc.it

3.9 Bibliographic notes 265

about NuSMV can be found at that site. NuSMV supports essentially the
same system description language as CMU SMV, but it has an improved
user interface and a greater variety of algorithms. For example, whereas
CMU SMYV checks only CTL specification, NuSMV supports LTL and CTL.
NuSMYV implements bounded model checking [BCCZ99]. Cadence SMV? is
an entirely new model checker focused on compositional systems and ab-
straction as ways of addressing the state explosion problem. It was also
developed by K. McMillan and its description language resembles but much
extends the original SMV.

A WWW site which gathers frequently used specification patterns in var-
ious frameworks (such as CTL, LTL and regular expressions) is maintained
by M. Dwyer, G. Avrunin, J. Corbett and L. Dillon®.

Current research in model checking includes attempts to exploit abstrac-
tions, symmetries and compositionality [CGL94, Lon83, Dam96] in order to
reduce the impact of the state explosion problem.

The model checker Spin, which is geared towards asynchronous systems
and is based on the temporal logic LTL, can be found at the Spin website?. A
model checker called FDR2 based on the process algebra CSP is available.
The Edinburgh Concurrency Workbench? and the Concurrency Workbench
of North Carolina® are similar software tools for the design and analysis of
concurrent systems. An example of a customisable and extensible modular
model checking frameworks for the verification of concurrent software is
Bogor®.

There are many textbooks about verification of reactive systems; we men-
tion [MP91, MP95, Ros97, Hol90]. The SMV code contained in this chapter
can be downloaded from www.cs.bham.ac.uk/research/lics/.

www-cad.eecs.berkeley.edu/“kenmcmil/
www.cis.ksu.edu/"dwyer/spec-patterns.html
netlib.bell-labs.com/netlib/spin/whatispin.html
www.formal .demon.co.uk/FDR2.html
www.dcs.ed.ac.uk/home/cwb
www.csc.ncsu.edu/eos/users/r/rance/WWW/cwb-nc.html
http://bogor.projects.cis.ksu.edu/

DA W N =W

