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Abstract—This paper proposes a novel machine learning-based
multivariate real-time data pruning and prediction framework
for smart PMU (phasor measurement unit) communication.
In an Internet-of-Things (IoT) enabled smart grid monitoring
application, the proposed data-driven pruning technique exploits
cross- and auto-correlation in multiple attributes sensed by a
PMU (IoT node). The attributes are classified into base and non-
base groups based on their ability to aid prediction of the re-
maining attributes. The idea of transmitting only base attributes
reduces the data dimensionality significantly. A reconstruction
algorithm is designed for the edge node (local Phasor Data
Concentrator) for efficient data reconstruction. The performance
of the proposed framework is evaluated on large-scale real-time
data from the PMUs. Comparison of the proposed technique
with the closest state-of-the-art multi-threaded uni-variate data
pruning algorithm in literature demonstrates around 40% more
bandwidth saving and ∼ 42% reduction in retraining count.

Index Terms—Smart PMU data communication, learning al-
gorithm, multivariate data pruning, support vector regression,
low latency

I. INTRODUCTION

Internet-of-things (IoT) has seen huge adoption in recent
years for real-time monitoring of high value systems, gen-
erating huge volumes of time critical data [1], [2]. Their
ability to aid real-time decision-making, makes them highly
suitable for time-critical deployments in many diverse fields.
In this infrastructure, the smart phasor measurement units
(PMUs) constantly sample the power system’s data and send
it over wireless communication channel to an edge device.
This communication strategy lacks in few important aspects of
efficient spectral usage and optimized data storage. Moreover,
analyzing such a huge bulk of data is a strenuous task for
the edge node, especially under the hardware computational
constraints. This not only introduces significant computational
delays unsuited to time-critical frameworks, but also makes
the whole process economically heavy. Also, off-loading the
tasks at multiple phasor data concentrators (PDCs) makes the
data more susceptible to breaching. Therefore to make the
whole process more safe and viable, efficient real-time data
pruning and prediction algorithms are required in smart PMU
applications, that not only reduce the data size, but also predict
much of it with high reliability in low latency frameworks, thus
limiting the duration of PMU-to-PDC communication.

A. Literature Review and Motivation

Several approaches [3] have been proposed for compression
of sensor node data to reduce the volume exchanged over the
wireless link. Most of them emphasize on data compression

frameworks that use statistical methods to compress offline or
storage data. The work in [4] applies real-time data pruning
on storage data received by the edge node but does not
compress the data sent over the wireless channel. [5] takes into
account the cross-correlation amongst various attributes but
uses wavelet compression like in [6], [7] and [8] to compress
and reconstruct the transmitted data, introducing significant
delays in the system which is incongruous to smart PMU
application. Principal component analysis is used by [9] for
compression of PDC data and [10] uses a similar approach in
smart meter applications. The work in [11] adds a second-stage
which uses discrete-cosine transform for compression of PMU
data. Such techniques can be efficient in compressing data
but their inability to perform this prune in real-time renders
them inappropriate in delay-sensitive applications. Also, the
approach of sending the model parameters reduces the data
redundancy significantly, leading to higher susceptibility of er-
roneous reconstruction at edge devices (PDCs) in wireless data
communication through highly impulsive smart grid channels.

In [12], the authors use a lossy compression framework to
achieve high compression ratios in the edge node served by a
PDC to control-center data relay, which could be detrimental
in real-time control frameworks. While this approach might
be suitable in particular scenarios, the strategy to send data
only at the occurrence of a disturbance partially solves the
problem loosing to incomplete system observability. Some
works also harness the abilities of probabilistic models to
approximate the data collected and hence minimize the IoT
communication overhead [13] but do not exploit multi-attribute
correlation. Many researchers have proposed machine learning
solutions using decision trees [14] and multi layer perceptron
[15] to save bandwidth while addressing this issue of real-
time data pruning. In [16], a real-time data compression
framework using ε-support vector regression (SVR) to dy-
namically predict the powerline frequency is proposed, but
it fails to meet the real-time sensing and processing constraint
required in the PMU-PDC communication. Moreover, none of
these works consider the cross-correlation amongst multiple
attributes measured by a sensor node.

To this end, none of the existing works provide a real-
time multivariate data pruning framework for smart IoT com-
munication, exploiting the cross-correlation between different
power system attributes measured by the sensing node, without
significant loss of information. The development of such a
real-time framework will help with a significant reduction
in the amount of data transmitted during the PMU-to-PDC



communication, leading to huge amounts of bandwidth sav-
ing and storage optimization. This paper proposes one such
novel multivariate real-time data pruning algorithm that can
efficiently compress and transmit data from the smart PMUs
in real-time, while preserving the important characteristics of
the raw data required in delay-constrained frameworks.

B. Contributions and Significance

The key contributions of this work are as follows: 1) A
cross-correlation aware learning-based real-time data pruning
algorithm is proposed for smart IoT communication. 2) The
proposed approach performs attribute grouping based on their
cross-correlation, and communicates the pruned data for the
base attributes, thus offering substantial dimensional reduction.
3) This strategy performs real-time data pruning in smart
IoT networks without adding any delay to the existing com-
munication delay budget. 4) Results show that the proposed
algorithm achieves significant bandwidth savings and thus
stands out in the present state-of-the art IoT communications
in power system framework. Moreover with reduced data size,
it’s susceptibility to wireless channel noise decreases, and thus
an efficient reconstruction under smart grid wireless channel
noise can be ensured at the edge node. Besides wide area
monitoring systems, the proposed framework can be applied
in other smart IoT applications, namely, wireless body sensor
networks and vehicular communication.

Section II presents the system model, Section III contains
the multi-variate data pruning algorithm, followed by results
and concluding remarks in Sections V and VI, respectively.

II. SYSTEM MODEL

A large amount of data is being exchanged over wireless
channel between the smart IoT devices, and crucial to these
communications is the accuracy and the delay that is experi-
enced in the PMU to PDC communication. Fig. 1 shows the
system model the multivariate pruning algorithm bases on.

The proposed system considers optimal placement of the
sensor nodes in a massive network composed of multiple IoT
sensing nodes [17] and data concentrators (edge nodes) to
ensure complete system monitoring. These IoT nodes generate
data at high frequencies and transmit to the edge node over
a wireless communication channel. The proposed algorithm
prunes raw data at the smart IoT nodes to save bandwidth
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Fig. 1: System model for smart PMU communication.

in low latency frameworks. The edge node works in synchro-
nization with these IoT nodes to receive the pruned data and
reconstruct the original data based on a predictive machine
learning model described next.

III. MULTIVARIATE DATA PRUNING FRAMEWORK

Several approaches were discussed in Section I-A which
compress sensor data exploiting the auto-correlation in a single
attribute. Though these approaches were efficient for data
volumes corresponding to one attribute, they neither take
into account the transmission of multiple attributes in smart
PMU communication, nor account for the cross-correlation
between multiple attributes, which can further be exploited
to reduce bandwidth consumption in multi-attribute transmis-
sion through a wireless communication setup. The proposed
framework exploits both cross-correlation and auto-correlation
and does real-time data prediction using ε-SVR implemented.
ε-SVR maps the input features to a higher-dimensional

space and performs regression to find the best fit on the given
data by creating an ε-tube around it, which is particularly use-
ful in cases where the error in prediction has to be contained
in a particular range. Let Ai = {A1

i , A
2
i , · · · , Ani }T be the

ith sample of n attributes from the sensor data-set and let us
consider estimating l time samples for each of the n attributes
measured by the sensor node, such that i ∈ {1, · · · , l} and
ν ∈ {1, · · · , n}. Then the predictions for the ith sample of
these attributes Âi = {Â1

i , Â
2
i , · · · , Âni }T , is expressed as

Âi = diag
{
ωTAiΦAi

}
+ bi (1)

where v = diag(M) forms a vector from the diagonal
entries of matrix M with their position in the vector v given
by their row or column index in the matrix M , b is the n× 1
attribute bias vector, ωAi and ΦAi , i ∈ {1, 2, · · · , l} are given
as

ωAi =



w1
i−1 · · · w1

i−d1
dmax−d1· · · · · · 0

w2
i−1 · · · · · · w2

i−d2
dmax−d2· · · · · · 0

...
. . .

...
. . . 0

wni−1 · · · · · · · · · wni−dn
dmax−dn· · · · · · 0



T

n×dmax

ΦAi =



φ1(A1
i−1) φ2(A2

i−1) · · · φn(Ani−1)

...
...

. . .
...

φ1(A1
i−d1) φ2(A2

i−d1) · · · φn(Ani−d1)

...
...

. . .
...

0 φ2(A2
i−d2) · · · φn(Ani−d2)

...
...

. . .
...

0 0 · · · φn(Ani−dn)


dmax×n

are the weight matrix for different attributes and the non-
linear mapping from input to feature space for the estimate



of ith attribute sample measured by the IoT node. wνi−f is
the weight of (i− f)th lag value in the auto-regressive model
for the νth attribute estimation from the attribute set Ai and
φν(Aνi−f ) = {φν(Aνi−1), φν(Aνi−2), · · · , φν(Aνi−dν )} is the
feature mapping for the ith sample estimation of the νth

element in the attribute set Ai, and f ∈ {1, · · · , dν}, with
dν being the optimum number of lag samples required for
estimation of attribute Aν and is based on the variation, im-
portance and tolerance that can be permitted in the estimation
of that attribute. All the rows and columns in ωTAi and ΦAi
are appropriately zero padded with the number of zeros (noz)
appended in them being equal to noz = dmax − dp, where
dp is the number of elements in that row or column and
dmax = max{d1, d2, · · · , dν}. The values of weights can be
obtained by optimizing the problem (2)

.

P1: minimize

{
1

2
||wAνi ||

2 + Υν
l∑
i=1

(θνi + θ∗νi )

}
s.t. C1: Aνi − Âνi ≤ ε+ ξνi

C2: Âνi −Aνi ≤ ε+ ξ∗νi ; ξνi , ξ
∗ν
i ≥ 0

(2)

for n values of attributes, where ωAνi is the weight of dν
lag samples used in the estimation of the ith sample for
νth attribute in Ai, θνi s are the slack variables ensuring the
feasibility of constraints C1 and C2, and Υν is the trade-off
factor in the curvature of ωAνi to θi for the νth attribute in Ai.
Forming the Lagrangian L for (2) using multipliers πνi , π∗νi ,
υνi , υ∗νi and taking its partial derivative with respect to ω, bνi
(offset bias for the νth attribute of Ai), θνi and θ∗νi , we get
the dual as,

P2: maximize

−1

2

l∑
i,j=1

(πνi − π∗νi )(πνj − π∗νj )

〈φν(Aνi , φ
ν(Aνj )〉 − ε

l∑
i=1

(πνi + π∗νi ) +

l∑
i=1

Aνi (πνi − π∗νi )

}

s.t., C4:
l∑
i=1

(πνi − π∗νi ) = 0;πνi , π
∗ν
i ∈ [0,Υν ].

The inner product 〈φν(Aνi , φ
ν(Aνj )〉 can be replaced with a

kernel in input space. Therefore the attribute estimates can be
generalized as

Âνi =

l∑
i,j=1

(πνi − π∗νi )Kν(Aνi , A
ν
j ) + bνi (3)

In this work, we have used a radial basis kernel function given
by, Kν(Aνi , A

ν
j ) = exp(−β||Aνi −Aνj ||)2 ∀i, j ∈ {1, · · · , l}.

A. Set Allocation

Disjoint sets comprising of various sensor data attributes are
constructed such that each set has attributes that are highly
correlated and has one base attribute which can be used to
predict all other attributes in that set. A set allocation algorithm
is put in place that uses the correlation matrix, Ml×l, which

is computed for all the attributes using initial data that is
exchanged between the smart PMU and PDC. Two groups
G1 and G2 are formed to segregate these attributes, with all
base attributes in set G1 and the rest in G2. All attributes are
initially kept in set G2 and have two parameters associated
with them, ρνi representing the value of maximum correlation
of the νth element in G2 for ith sample estimate with the
elements in set G1, and δνi is the position index of that
attribute in set G1, exhibiting maximum correlation with an
attribute in set G2. At the beginning, these parameters are set
to 0 and −1, since G1 is empty. A cross-correlation threshold,
ct is defined using the Pearson’s correlation coefficient for
a data in a frame width of time T to generate the couple
attributes with highest correlation. Using this threshold, we
iterate through G2 and find the distance (dνi ) of ρν for ith

attribute from ct defined as, di = ρνi − ct. Attributes having
dνi < 0 are the candidate attributes which can be shifted to
set G1. A transfer score (κ) for each candidate attribute is
calculated as κνi =

∑
Aj∈G2||mkj − ρj ||, where mkj is an

element of the matrix Ml×l. Therefore, one with the maximum
score is shifted to G1. Values of ρ and νM are then updated
for all the attributes in G2. This process is repeated till all
the attributes in G2 validate ρ > ct. After the formation of
groups, we form sets Sl, l ∈ {1, 2, · · · , P}, with P

def.
= |G1|.

Each attribute of G1 is allotted a different set and each
attribute of G2 is added to the set corresponding to its position
index δνi .

B. Dynamic Prediction

Two types of SVR models are maintained at both nodes
for each set. An auto-regressive model for the base attribute
which uses its self-predicted values for subsequent predictions,
and a separate regression model for each remaining attribute,
using the base attribute for prediction of the other non-base
attributes. We define run-time prediction errors in base and
non-base attributes as eB and eNB respectively. Predictions are
carried out for each of these attributes using their respective
models and a flag based on their respective errors is compared
against the error threshold εth,ν . The error flag (Fe) is set to
0 until one the following event triggers:

1) eB > εth,ν: In this case, the SVR model for this base
attribute is retrained on both the nodes using the recently
predicted good samples from the model. Since both the models
will train on previously predicted data which is available
at both the nodes, no data is sent over the communication
channel. If the error for the next prediction using the retrained
models still exceeds the maximum error limit at the PMU,
fresh retraining samples that are recorded at the PMU are sent
to the PDC and are then used to retrain both the models. These
new models are then used to make the subsequent predictions.

2) eNB > εth,ν: In this case, if the base attribute is not
predicting values within the range, it corrects itself using the
method defined in the previous case. Since the attributes of a
set are highly correlated, a failing base attribute model fails
the non-base attribute model too. Rather than training both the
SVR models, training only the base attribute model would lead



Algorithm 1: Pruning algorithm at smart PMU
Result: Pruned data
Ml×l = Correlation Matrix for l attributes
Initialize set G1 = {}: Empty set
Initialize set G2: Attribute set
ρνi = 0 and δνi = −1 ∀ ν ∈ G2
Initialize ct: Correlation threshold
while dνi (∀ν ∈ G2) ≤ 0 do

for ν ∈ G2 do
if dνi > 0 then

continue
κνi =

∑
ν∈G2||mνj − ρj ||

{G1(ν)→ G2[·] : ρνi > ρνj∀i 6= j}
for each ν ∈ G2 do

Update ρνi = maxν∈G2{mνj}
Update δνi = ν 3 ν ∈ G2,mνj = ρj

Form sets, Sv , where v ∈ {1, 2, · · · , P};P = |G1|
Allot each attribute of G1 to different sets
for ∀ν ∈ G2 do

Allocate ν → Sk 3 ρνi ∈ Sv
for Sv;∀v ∈ {1, 2, · · · , P} do

Define ε-SVR model for base attribute ∈ Sv
Define ε-SVR model for non-base attributes ∈ Sv
Define ενi for each attribute

while True do
Predict value of each attribute
if Prediction error ∀ν < εth,ν then

Continue
if eB > εth,ν then

Retrain ε− SVR using good predicted samples
Send updated flags to PDC
if Error still persists then

Send updated flags at edge node
Retrain ε−SVR using fresh samples
Send model parameters to PDC

if eNB > εth,ν then
Retrain using good predicted samples
if Error still persists then

Reform the sets, Sv , for v ∈ {1, 2, · · · , P}
Send updated flags at PDC
Send sets and model parameters to PDC
Retrain ε−SVR using fresh samples

to an automatic correction in the predictions of the non-base
model rendering higher bandwidth saving. If the base model
is predicting the values within the error bound, the regression
SVR model for the non-base attribute is retrained using the
recently predicted good samples of the base attribute. If the
error is still greater than the threshold, then we recalculate the
correlation matrix and check if it still belongs to its current
set. If not, we update it to the correct set and use the actual
values to retrain the SVR model on both the nodes.

Algorithm 2: Reconstruction algorithm at PDC
Result: Reconstructed data
Receive initial data points from smart PMU
Receive set information and error thresholds
for Each Sv; ∀v ∈ {1, 2, · · · , P} do

Define ε-SVR model for base attribute ∈ Sv
Define ε-SVR models for non-base attributes∈ Sv

while True do
Predict value of each attribute
if Flags received from smart PMU then

if Self-retraining flag received then
Retrain ε-SVR on good predicted samples

if Data or model parameters received then
if For base attribute then

Retrain respective model
if For non-base attribute then

Update sets
Retrain respective model

This casts a trade-off between sending only model parame-
ters leading to more bandwidth saving at the cost of less data
redundancy and more prone to wireless channel errors, over
sending the retraining data, enhancing the reliability of the
wireless transmission scenario. The latter helps in reducing
the retransmission counts significantly, and helps to adhere
with the ultra reliable low latency communication constraints,
however, at the cost of a higher spectral usage. A detailed
description of the proposed multivariate algorithm involved in
the data pruning and reconstruction is outlined in Algorithm
1 and 2 for the PMU and PDC respectively.

Remark 1. It is worth understanding here that when the SVR
model is being trained, retrained or attributes are regrouped
at the receiver IoT node (PDC) owing to the predictions
going out of error bound, we keep transmitting the actual
data. Therefore, the receiver always has system information
congruous to any real-time application.

IV. PERFORMANCE INDICES

For the performance analysis of the proposed algorithm,
following indices are defined:

1) Retraining count (RC): It is the number of times the
model had to be retrained to keep the prediction error bounded
by εth. We have used same %εth for all the attributes in
Fig. 4. We define a new performance parameter called effective
retraining count η, for analyzing the run-time complexity of
the proposed multivariate data pruning algorithm over the
state-of-the-art. Mathematically,

η =

∑n
ν=1 tνRCν∑n
ν=1 tν

where tν is the average duration observed in the training of
the νth attribute including all the retraining instances for a
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Fig. 2: Comparison of actual versus predicted samples: (a) phase current; (b) frequency; (c) phase voltage.
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Fig. 3: (a) Training time per attribute vs. tube width; (b) effective retraining count vs. tolerance; (c) bandwidth saving vs. correlation threshold.

given tube width and RCν is the total retraining suffered by
the attribute.

2) Normalized root mean square error (nRMSE): nRMSE
for the νth attribute in εν = Aνi − Âνi for the proposed
algorithm is defined as,

nRMSE =

∑n
ν=1||εν/

√
l||

n

3) Bandwidth saving: It is defined as the percentage of
actual data that were not transmitted and were predicted within
a predefined tolerance ε constrained by the SVR tube.

V. RESULTS AND DISCUSSIONS

A. Experimental Setup for Testing of Proposed Multivariate
Data Pruning Algorithm

The proposed algorithm in Section III is implemented and
validated on the data measured by a PMU (IoT node) installed
at the IIT Delhi MSB substation, reporting data over a wireless
channel to a system within a radius of 1 km, behaving as a
PDC (edge node). The PMU is connected to the incomer bay
of the 11 kV/440 V, 50 Hz substation with maximum load
current rating of 600 A. The PMU in its default configuration
without the installation of the pruning framework reported data
at 25 Hz. The performance of this algorithm is compared to a n
single-variate data pruning scenario for a closest fit manifested
from literature as explained in following subsections.

B. Determining Optimal Hyper-parameters

Correlation threshold corresponding to the maximum band-
width saving is used as its optimum value. From Fig. 3, the

maximum bandwidth saving is achieved at ct = 0.7 under
the considerations of other parameters used in our algorithm.
ct = 1 corresponds to the case where no set formation happens
and each attribute is therefore a base attribute for the PMU
data. Hence, with ct = 1 cross-correlation between the at-
tributes is not exploited, which is analogous to n single-variate
data pruning algorithm, and therefore this case gives a valuable
insight into the validity as well as strength of the proposed
algorithm in pruning the highly sensitive power systems’ data.
Table I shows the values of the hyper-parameters used in
the validation of the proposed algorithm and the performance
indices obtained as a by-product. The proposed multivariate
algorithm is able to achieve 40% more bandwidth savings than
the n single-variate data pruning algorithm (marked with a
black hollow dot in Fig. 3) by not transmitting 94.45% of the
sampled data to the PDC.

C. Performance of Multivariate Data Pruning Algorithm

Predictions for all the attributes using the algorithm de-
scribed in section III was tested on the setup in Fig. 4. Upon

Wireless channel

IoT node (PMU) Edge node (PDC)

Fig. 4: Experimental setup for validation of the proposed multivariate
data pruning algorithm.



TABLE I: Performance indices for experimental setup in Fig. 4
Parameter Value

Tube width, ε 10−3

Tolerance, εth 10−1

Correlation threshold, ct 0.7
Training length 50

Lag, d 5
nRMSE 4.34× 10−5

Bandwidth saving 40%
Retraining count saving 42.22%

a closer inspection of the actual current samples in Fig. 2(a)
(plotted with fat line), we notice small spikes in the data. These
spikes last for only one or two samples within 5% of nominal
value, accounting for only ∼ 0.04-0.08 seconds, at the PMU’s
default reporting rate (25 Hz). By definition, these can not
be considered to constitute a fault [18], owing to a very small
power in these impulses. Moreover, these spikes dying quickly
do not change the attribute average till the instant, rendering
retraining the model unnecessary at such instances. The same
inference can be drawn for the zoomed region c-1 in Fig. 2(c).

Algorithm in 1 was run on a Broadcom BCM2837 64-bit
quad core processor. The plot in Fig. 3(a) shows the training
time for various attributes measured by the PMU. It can be
inferred from the plot that the training time for all tolerance
values stays below 0.04 seconds, which is less than the report-
ing rate (25 Hz) used by the PMUs and therefore does not add
any delay to the real-time data sensing and communication.
Using the defined performance indices in Section IV and the
plot in Fig. 3(a), we can infer from Figs. 3(b) and (c) that the
proposed algorithm performs much better than the n single-
variate real-time data pruning algorithm manifested from ex-
isting literature in terms of bandwidth saving (∼ 40%) and
effective retraining count reduction (42.22%). The algorithm is
applied to the window-averaged data which takes the average
of the last 20-25 samples to smoothen the estimated curve.
This reduces the retraining count significantly (cf. Fig. 3(b)),
while ensuring no exclusion of any critical retraining.

Remark 2. It must be noted here that due to unavailability of
any mutlivariate real-time data pruning strategies in context
to fog and edge node data processing, this paper compares the
performance of the proposed algorithm with a n single-variate
real-time data pruning scenario manifested from the existing
literature. We apply real-time single-variate data pruning on
n-data streams corresponding to n attributes sensed by the
fog node, corresponding to ct = 1.

VI. CONCLUSION

This paper proposed a novel learning-based multivariate
data pruning algorithm for real-time smart IoT communication
scenarios. The framework aims at reducing the data volume
to be transmitted in PMU-to-PDC (IoT node to edge node)
communication. It performs a channel-aware transmission of
data and limits the prediction error within an ε tube using ε-
SVR. The various attributes sensed by the IoT node are placed

in different sets based on their cross-correlation and its pre-
defined thresholds. The ones exhibiting maximum correlation
with others are taken as base attributes and contribute to the
estimation of other non-base parameters. The comparison of
the algorithm with the closest state-of-the-art on a PMU-to-
PDC communication test setup clearly illustrated a superior
performance of this algorithm rendering better bandwidth
saving with a reduced effective retraining count.
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