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Abstract With the advent of Internet of Things (IoT) devices, their reconfig-
urability, networking, task automation, and control ability have been a boost to
the evolution of traditional industries such as health-care, agriculture, power,
education, and transport. However, the quantum of data produced by the
IoT devices pose serious challenges on its storage, communication, computa-
tion, security, scalability, and system’s energy sustainability. To address these
challenges, the concept of green sensing and communication has gained im-
portance. This article surveys the existing green sensing and communication
approaches to realize sustainable IoT systems for various applications. Fur-
ther, a few case studies are presented that aim to generate sensed traffic data
intelligently as well as prune it efficiently without sacrificing the required ser-
vice quality. Challenges associated with these green techniques, various open
issues, and future research directions for improving the energy efficiency of the
IoT systems are also discussed.

Keywords Internet of Things (IoT) · Green sensing · Green communication ·
Wireless sensor network · Smart grid · Smart meter · Energy efficiency

This work has been partly supported by the Department of Telecommunication, Government
of India, under the Grant No. 4− 23/5G test bed/2017-NT, for building end to end 5G test
bed and TCS RSP fellowship.

V. Gupta
E-mail: vini.gupta@ee.iitd.ac.in
S. Tripathi
E-mail: sharda.tripathi@ee.iitd.ac.in
S. De
E-mail: swadesd@ee.iitd.ac.in

Department of Electrical Engineering and Bharti School of Telecom
IIT Delhi, New Delhi, India



2 Vini Gupta et al.

Fig. 1 IoT applications.

1 Introduction

The Internet of Things (IoT) is vital for realization of a multitude of appli-
cations across various industries, such as smart homes [56], smart city [32],
smart health-care [1], environment sensing [53], smart agriculture [47], and
border surveillance [34], as illustrated in Fig. 1. IoT devices (namely sensors,
wearables, smart meters) used in these applications produce high-volume of
data that is difficult to store, process, and communicate in real time. It is
estimated that 20 to 40 billion IoT devices will be connected to the internet
by the year 2020 [20]. An alarming challenge associated with the realization
of these applications is the energy sustainability of the IoT systems. It encom-
passes the energy spent in data sensing/acquisition, communication, storage,
and computation. In addition, scalability, reliability, and latency also play a
significant role in the design of such systems.

To address these challenges, intelligence is imparted in the IoT devices
and systems to acquire and communicate data in an energy-efficient manner
[10,11,23, 63]. Centralized as well as decentralized implementation of the IoT
systems [28], design of low-latency reliable communication systems [39], and
energy-harvesting IoT systems [24] have gained significant research interest.
Cloud computing, fog computing, and edge computing are looked upon to
address the scalability and latency issues. In this context, a new approach,
known as Multi-access edge computing (MEC) [2,5], has gained popularity due
to its shorter response time, reduced energy consumption, network bandwidth
saving, and data privacy. Recently, the problem of green communication is
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addressed from wireless channel variations perspective in works [43, 44]. In
these papers, energy-efficient link-layer re-transmission strategies suitable for
the IoT devices are developed using temporal characteristics of the wireless
channel.

The primary focus of this article is to provide insights on energy-efficient
IoT data acquisition and communication schemes.

The paper is organized as follows: Section 2 gives an overview of green
sensing and communication techniques along with their applications and chal-
lenges. Section 3 presents the application of our proposed techniques to the
case studies of lab environment monitoring, smart metering, and smart grid
monitoring using real data-sets. A few open issues and future directions are
discussed in Section 4, followed by conclusion in Section 5.

2 Green Techniques: Literature, Challenges, and Applications

This section outlines a variety of techniques developed to save energy not only
at data generation points (i.e., IoT devices) but also during communication of
the generated data.

2.1 Green Sensing Techniques

Wireless sensor networks (WSNs) are envisaged as a key technology enabling
various monitoring applications of the IoT such as environment monitoring,
remote health-care surveillance, border surveillance, etc. The devices/sensors
used in these applications generate volumes of data which is often redundant
and mutually correlated. A large volume of energy is consumed in these con-
tinuous sensing operations. Further, this streaming data requires reporting to
a central entity for actionable decisions. This communication too consumes
energy. The efficient energy utilization aspect is of utmost importance for
these IoT applications. To cope with the ever-increasing energy demand, a
shift from conventional periodic sensing to intelligent/smart sensing is seen
in recent works. The quantum of data generated at source (i.e., sensors) is
reduced intelligently by exploiting characteristics of the to-be-monitored pro-
cesses. Further, the energy demand is targeted to be met primarily by the
ambient resources, such as solar, wind, radio frequency energy resources. This
approach is coined as green sensing. Although energy is saved in these green Green

sensing:
Intelli-
gently
reducing
volume
of data
generated
at source
to increase
energy ef-
ficiency of
the WSN.

sensing techniques, it should not be at the cost of compromising sensing qual-
ity (quality of service (QoS) measure). Different green sensing techniques are
discussed in the below sub-sections.

2.1.1 Duty Cycling

To extend the lifetimes of the energy-constrained sensors and WSNs, one of
the early and widely used techniques is duty cycling [9]. The key idea is to turn
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on and off the mote’s radio to save its energy. This alters the duty cycle (on
time/(off+on time)) of the node’s sensing activity. It could be implemented
randomly or based on a schedule. However, random duty-cycling requires dense
WSNs to guarantee enough active nodes at any point of time to provide the
required quality of sensing. Random asynchronous wakeup (RAW) protocol
developed in the work [46] is one such example. Recently, a machine learning-
based duty cycling scheme for air pollution sensing is proposed in the work [14].
It exploits temporal correlation inherent in the pollutant to decrease the on-
period (or duty cycle) of the node and predicts missing pollutant data during
off-period using support vector regression technique.

In general, the duty cycling approach, especially the scheduled one, is a
trade-off between energy efficiency and latency (i.e. delay in data delivery to
the target node/central entity) [38].

2.1.2 Wake-up Radio

Wake-up radio (WuR) is a promising approach to reduce both energy con-Wake-up
radio: On
demand
activation
of the
radio using
an active
wake-up
signal.

sumption of the node and delay [38] in data delivery to the target node. The
latter one is crucial for delay-sensitive IoT applications. The objective is to
use a low power radio that is active all the time to listen to a wake-up signal
and activate the main radio on demand. This prevents unnecessary periodic
wake-up of the main radio to listen to the channel (i.e., idle listening). The
WuR is categorized as active/passive based on the energy source used for re-
ceiving the wake-up signal. In the active WuR, the energy is drawn from the
node’s battery, while in the passive WuR, it is drawn from the radio frequency
(RF) signal (wake-up signal) itself. Wireless Identification and Sensing Plat-
form (WISP) mote, proposed in [6], is an example of passive WuR. Likewise,
the authors in [36] proposed a low-cost RF energy harvester-based WuR that
performs both the wake-up and energy harvesting functions.

The WuR has potential applicability in industrial wireless networks espe-
cially for time-critical applications such as fault identification, gas pipeline
leakage detection, etc.

2.1.3 Sensor Scheduling

Another well-researched and popular direction to achieve green sensing is sen-
sor selection/scheduling. A subset of sensors/wireless nodes is activated to
perform sensing based on some intelligence, while the remaining sensors/nodes
sleep to save energy. The essence behind this parsimonious sensor selection is
the spatio-temporal correlation inherent in sensor measurements. Sparsity in-
duced in the measurements due to this allows monitoring of the corresponding
underlying process using under-sampled sensor measurements.

In this context, early works [40,70] randomly chose a fixed number of nodes
for activation. However, these works do not guarantee sensing quality and en-
ergy efficiency. Thereafter, research interest shifted to propose schemes that
guarantee energy efficiency and/or sensing quality. For the former one, the
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work [12] proposed a greedy approach of selecting sensors with maximum en-
ergy efficiency index (i.e., the difference between residual energy and transmis-
sion energy of the node). This approach failed to provide good sensing quality.
Subsequently, several works focused on providing certain sensing quality. One
such pioneering work [33] proposed to select linear measurements of k out of
total m sensors by formulating and subsequently solving a convex optimization
problem based on the D-optimality criterion of experimental design. Further,
for the non-linear measurement model, a selection scheme is formulated in
work [13] by employing Cramér-Rao lower bound (CRB) as a sensing perfor-
mance measure. This measure characterizes mean squared error (MSE) in the
estimation of the field signal sensed using a few sensors [65]. Subsequently, the
authors in work [72] developed a field reconstruction algorithm based on spa-
tial linear unbiased estimator (S-BLUE). Using the estimates, a cross-entropy
method-based sensor selection method is proposed for heterogeneous sensor
networks. Such collaboration between the WSNs is extremely beneficial in the
context of realizing the IoT applications. The work [27] advocated a signal’s
correlation to design deterministic node selection strategies and developed a
covariogram-based estimation of signal’s covariance structure. Although, the
schemes in the works [13,27,33,72] save energy, they cannot guarantee the en-
ergy efficiency as they may repeatedly select nodes with low remaining energy
which can create network coverage holes. Thus, to overcome this limitation,
schemes developed in works [10, 11] that ensure both the sensing quality and
energy efficiency of the WSN while selecting a fixed number of sensors. The
measurements of these selected sensors are then utilized to estimate entire
WSN field using the well-known compressed sensing (CS) [18] and Bayesian
learning [67] schemes as outlined in works [10,11,27,72].

The works discussed so far deal with centralized sensor selection strategies
often possess high energy and communication overheads. Poor connectivity be-
tween the central entity (fusion center (FC)) and nodes leads to questions on
the reliability of the centralized architecture. Additionally, these schemes may
not be suitable for delay-constrained scenarios. To surmount these shortcom-
ings, decentralized sensor selection strategies have been developed in recent
studies. Nodes locally exchange information to decide their own or respective
fellow nodes’ activation/sleep state. In this regard, a Bayesian approach is
used to develop iterative centralized and decentralized sensor selection strate-
gies for heterogeneous sensing applications in the work [28]. Subsequently,
the works [30,31] used consensus and double-consensus averaging to solve the
sensor selection problem in a decentralized/distributed manner. These works
suggested the dual sub-gradient method to solve the distributed sensing prob-
lem. Further, the authors in [68] formulated a distributed collaborative sensor
selection approach by combining both the sensor correlation and sensor-target
distance to achieve required sensing accuracy, energy balance among sensors,
and extend the network lifetime.

Besides sensing quality and energy efficiency, coverage is another impor-
tant, often ignored, QoS measure of the WSNs. In a recent work [42], a dis-
tributed solution for coverage control is proposed by the application of game
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theory in the active sensor selection problem. The work too aimed to extend
both coverage and network lifetime.

Sensor selection based green techniques has utility in a variety of IoT appli-
cations such as water quality monitoring, intrusion detection, border surveil-
lance, health monitoring, agriculture/soil monitoring, avalanche detection, pol-
lution monitoring, target tracking, etc.

Major drawbacks associated with the above-mentioned centralized and dis-
tributed sensor selection schemes are:

1. A spatio-temporally varying signal is sensed by fixing one of the two per-
formance measures, namely, sensing quality and number of active nodes.

2. Unequal remaining energy associated with different nodes is ignored, which
may result in network coverage outage.

3. Iterative local information exchange in distributed settings consume a lot of
energy and increases the delay. However, none of the proposed distributed
approaches considered energy consumption.

2.1.4 Adaptive Sampling

A more practical approach to green sensing is adaptive sampling whereinAdaptive
sampling:
Adapt the
number of
nodes to
be acti-
vated as
per the
dynamics
of the
observed
process.

the sampling rate (i.e., the number of active nodes/total number of nodes) is
adapted as per the dynamics of the monitored process. Intuitively, a low (high)
sampling rate suffices for sensing a slowly (rapidly) varying process. In this re-
gard, a principal component analysis and CS-based sensing, compression, and
recovery (SCoRe) framework is proposed for WSNs in the work [49]. Adapta-
tion occurs by exponentially increasing (linearly decreasing) the sampling rate
when process variations increases (decreases). Another approach [25] built a
hash table capturing the sampling rate corresponding to different variations
of the process and used it as a lookup during the sensing process. Recently, an
adaptive sensing framework was proposed in work [23] that adapts sensing as
per the process dynamics. A multi-objective optimization problem is proposed
therein that jointly optimizes the sensing quality and energy efficiency of the
WSN. The authors in the work [26] proposed three adaptive data acquisition
approaches for industrial process monitoring applications. In that work, energy
management is primarily considered along with sampling rate adaptation of
the sensors. Likewise, a correlation-based adaptive measurement technique is
developed in work [54] that collects data from a subset of dynamically chosen
nodes and use them for inference of measurements across remaining sleeping
nodes.

Most of the IoT applications require multi-sensing, i.e. sensing multiple
signals/parameters simultaneously, which is a relatively new and less explored
approach to sensing. In this context, multi-sensing platforms have been de-
signed in works [4, 8]. The authors in the work [50] developed a threshold-
based energy-efficient multi-sensing protocol for landslide monitoring appli-
cations. Subsequently, adaptive and hierarchical context-aware multi-sensing
schemes are proposed in the work [48]. Recently, an adaptive and optimized
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multi-sensing approach is developed for smart environment application in the
work [24]. It collectively considers the sensing quality, energy efficiency, and
multiple signals’ dynamics in the sensor selection process.

2.1.5 Comparison of the above mentioned green-sensing technique

The duty cycling technique is energy-efficient compared to the conventional
exhaustive sensing technique which do not have off period. However, it con-
sumes energy in idle listening and comes at the price of high latency. These
shortcomings are overcome by wake-up radio (WuR). The WuR has poten-
tial applicability in industrial wireless networks. The duty cycling and WuR
techniques do not depend on the type of data/signals being sensed. Exploiting
characteristics of the signals being monitored (such as temporal and spatial
correlation, its variations) can also play a significant role in saving energy
spent in sensing. For instance, the redundancy due to the correlation(s) in the
signal can be intelligently minimized by data-driven techniques such as sensor
scheduling and adaptive sampling. Adaptive sampling is more energy-efficient
compared to non-adaptive sensor selection (such as fixed rate sampling). These
data-driven techniques can be used for applications such as environment mon-
itoring, avalanche monitoring, health monitoring, wildlife habitat surveillance,
etc. Among these applications, some are time-critical and some are not. If the
adaptive sampling frameworks [23], [24] comprise a mobile data collector/robot
that collects sensed data from the active nodes and sends it to the FC, then
these are suitable for non real-time applications. For time-critical applications,
these frameworks require the active nodes to send the sensed data directly to
the FC.

2.2 Green Communication Techniques

In addition to green sensing, green communication is another key enabler for
energy efficiency and sustainability in IoT. Particularly, in the sensor networks
where sampling rate is pre-defined and sensing energy is not of much concern,
green communication is of interest to optimize the resource utilization (es-
pecially bandwidth) for transmission and archival of IoT big data. Here, two
green communication scenarios pertaining to the emerging smart grid IoT net-
works, namely, advanced metering and wide area monitoring and control, are
presented. In this context, the smart meters and phasor measurement units
(PMUs) behave as sensors and generate volumes of fine grained data from elec-
tricity distribution networks. Though acquisition and analysis of this massive
data imparts intelligence to the conventional analytical framework to adapt to
the dynamics of real world systems, its efficient communication and storage is
a challenge.

The proposed green initiative in these applications is to intelligently prune
the amount of generated data at the edge node itself, such that first level
data reduction is achieved well before millions of IoT devices try to access the
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wireless network for transmission. It may be noted here that, prior to pruning,
it is essential to study the characteristics of the data so as to preserve the useful
information in the process of data compression and reconstruction. Two kinds
of approaches are typically seen in the research literature for data pruning in
IoT networks. These are compression based and prediction based, for delay
tolerant and delay sensitive scenarios, respectively.

2.2.1 Data Pruning by Compression

For delay tolerant applications such as advanced metering, data can be pruned
by applying compression algorithms on the appliance level as well as house-
hold level data. This data can have a high or a low data resolution. In state-of-
the-art, it is observed that the data compression algorithms operating at the
aggregation points generally work on low resolution data which is on the order
of 1 sample per several minutes. These studies are based on signal process-
ing algorithms such as singular value decomposition [55], load features based
compression [61], dictionary learning and sparse encoding [66], and entropy
coding [3] that exploit the temporal and spatial attributes of the data streams
collected from different sensors. However, a limitation of data pruning at the
collection points is that they do not address the issue of data reduction at
the sensor nodes, and thus are less useful for reduction in amount of data
transmitted in near-real time applications.

Since modern day smart meters can capture average power consumption
data at a rate as high as 1 sample per second, compression of high granularity
data at the meter level is of current research interest. In such cases, due to
high sampling frequency of the smart meter data, the variations observed in
load patterns are not significant. Thus, the redundancy in the data provides
an opportunity to compress it before transmission. The algorithms proposed
in literature for the pruning of high resolution smart meter data are based on
exploitation of correlation in consecutive data samples. For instance, a lossy
compression method [19] controls the amount of generated smart meter data
by using piece-wise approximation of original sample pattern. Besides, loss-less
compression algorithms using Huffman coding, Markov chain variants [51],
and differential coding [64] are also proposed for compression of household
level as well as appliance level data. It is seen that the performance of these
algorithms is sensitive to sampling frequency, decimal precision of the meter
reading as well as noise in the communication channel. More robust frameworks
for effective characterization and reduction of high frequency smart meter data
using adaptive compressive sampling are proposed in [63] and [52], respectively
for single-variate and multivariate data samples, based on adaptive sparsity
selection over optimum batch size before data transmission. It may be noted
that since smart meters are connected to continuous power supply, extra energy
overhead in implementing the data pruning algorithms is of not much interest.
From green communications perspective, in this case, only the optimization of
bandwidth requirement and storage space for transmission and archival of big
data from smart meter to the data collection points is discussed.
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2.2.2 Data Pruning by Prediction

Unlike data pruning by compression, data pruning by prediction is more suited
to delay sensitive data in order to avert the requirement of buffering time for
data compression. A pertinent IoT application in this context is of wide area
monitoring and control in smart grids. In the research literature offline dimen-
sionality reduction of PMU data is proposed using linear principal component
analysis [69], wavelet packet decomposition [21,37], and lossless encoding [60].
These algorithms are proposed to operate at the receiver for archiving the data
using minimal storage while preserving the data characteristics.

A few studies based on least square curve fitting [22], and compressive
sampling [17] are also proposed for real-time reduction of PMU data. The
standard reporting rate from PMU to the control center is currently fixed
at 25 samples/s. However, this fixed-rate data transmission may not be very
useful in terms of resource utilization since transient occurrences in the power
grid are sporadic and much of the sampled PMU data is redundant. Also,
non-stationarity of the data has been largely ignored during data reduction
approaches proposed so far leading to inefficient compression. To address this,
a novel learning-based framework based on ε− support vector regression [62] is
proposed to dynamically prune the PMU data before transmission. Parameters
of the learning algorithm are recomputed as necessary to take care of non-
stationarity and maintain the accuracy and robustness of the predictions.

2.3 Energy-Harvesting Techniques

The finite battery capacity of the nodes serves as a major bottleneck of the
WSNs. Available solutions such as battery replacement, using large batter-
ies and low power hardware, etc. do not guarantee perpetual operation of
these nodes. Green sensing and communication techniques alone cannot elim-
inate energy outage problem completely. In this regard, energy harvesting is
envisioned as a potential solution and its applicability is widely researched
nowadays. The energy can be harnessed from ambient sources as well as from
dedicated sources. To do so, the wireless nodes are equipped with a harvester
module and a rechargeable battery or a super-capacitor to store the harvested
energy.

Recently, solar energy harvesting capability of the nodes [35, 57] is inte-
grated with a multi-sensing framework for a heterogeneous WSN [24]. The
authors in [29] suggested an idea of employing a few nodes for data aggrega-
tion and the remaining nodes for harvesting energy from the sensed electric
signal. Further, an optimal sampling policy is designed in work [71] that mini-
mizes the sensing error under stochastic energy constraints which arise due to
random energy arrivals.

Continuous network operation still cannot be guaranteed by harvesting
energy from ambient sources due to their uncertain nature. An approach for
dedicated (on-demand) wireless energy transfer from a radio frequency (RF)
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source, known as RFET, is proposed in [41] to provide sustainable network op-
erations. In this regard, the work in [36] investigated the possibility of building
a WuR using an RF energy harvester available at the WSN node. Likewise,
the works in [58, 59] presented a framework for an unmanned aerial vehicle
(UAV)-based wireless charging of sensor nodes using RFET.

2.4 Challenges

Major challenges associated with reducing the energy consumption of the IoT
applications are discussed in the below sections.

2.4.1 Sensing Quality and Energy Efficiency Trade-off

There are two conflicting design goals of the WSN-based IoT systems, namely,
lifetime and sensing quality. Improving one hurts other. Thus, suitably han-
dling trade-off between the sensing quality and energy efficiency (or network
lifetime) is a big challenge that depends on the type of application being pur-
sued and its requirement.

2.4.2 Coverage and Energy Efficiency Trade-off

It is important to provide coverage of the observing field in applications such as
gas-leakage monitoring, chemical hazards detection, intrusion detection, etc.
especially when only a few devices/nodes are activated to save energy. Thus,
another challenge is to strike a balance between coverage and energy saving in
the WSN-based applications.

2.4.3 Latency/Bandwidth (BW)/Energy versus Sensing Reliability

Time-critical applications such as tele-surgery, smart grid monitoring, etc. de-
mand low latency (i.e. fast data delivery) which is often achieved either by
sparse monitoring or data pruning before transmission. This saves communica-
tion BW and energy at the cost of sensing reliability (i.e. quality of information
provided by the IoT devices).

2.4.4 Energy-Efficient Data Computation

Processing high volume IoT data at the device (node)-level in distributed
architecture too consumes large amounts of energy. Thus, data processing is
another challenge due to limited battery operated nodes.

3 Case Studies

This section discusses green schemes developed by us in previous works [23]
[24], [62], [63] for three IoT applications, namely, lab environment monitoring,
smart grid monitoring, and smart metering.
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Fig. 2 Generalized monolithic-sensing scenario.

Fig. 3 Generalized multi-sensing scenario.

3.1 Lab Environment Monitoring

To reduce data volume at the generation points (i.e. IoT devices/nodes) itself,
a few sensors/nodes are activated to monitor a WSN field, while the remaining
ones are allowed to sleep. The spatial and temporal correlations of observed
signals are used to decide the activation/sleep pattern of sensors of the WSN.

An adaptive sensor selection framework proposed in work [23] is applied
on temperature data produced by a WSN deployed in Intel Berkeley lab [7]
to verify its energy efficacy in performing monolithic sensing. Similarly, to
simultaneously sense two parameters of the lab environment, namely, temper-
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ature and humidity, a multi-sensing framework proposed in recent work [24] is
applied. This work considered the solar energy harvesting aspect as well. Ad-
ditionally, detection limit constraint imposed by heterogeneous sensors is also
integrated into sensor selection and signal estimation processes. Sensor selec-
tion in the monolithic [23] and multi-sensing [24] cases for a general application
can be better visualized from Figs. 2 and 3 respectively.

In the adaptive monolithic [23] (multi [24])-sensing scheme, the FC solves
multi-objective optimization problem(s) that find active sensor(s) set(s) by
jointly optimizing the sensing quality and network energy efficiency in each
measurement cycle. In the process, it is ensured that a required performance
criterion (Bayesian CRB (BCRB) window [α, β]) does not get violated. Fur-
ther, the measured signal(s) variations are estimated and the size of the sen-
sor(s) set(s) for next measurement cycle is appropriately adapted. Next, the
FC conveys active sensor(s) schedule to the nodes. The active sensors of the
nodes then sense respective monitoring parameters and nodes convey these
measured signals back to the FC via a robot. The FC then iterates the same
process for the next measurement cycle. Note that in multi-sensing, the FC
carries out sensor selection and adaptation process for each sensor/signal type
in parallel. These works assume slowly varying process(es) which enable com-
putation of the measure BCRB using recent past signal estimates of these pro-
cess(es). This knowledge is used to drive the sensor selection task in the current
measurement cycle. For more details, please refer the works [23] and [24].

Figs. 4 and 5 compare performance of the adaptive optimized monolithic
sensing framework proposed in work [23] with optimized subset selection scheme
proposed by Chen et al. in [10,11] and an adaptive sensing framework SCoRe
proposed by Quer et al. in [49] using real data-set of temperature signal [7] as
mentioned above. It can be observed that adaptive and optimized sensing of a
spatio-temporally varying process increases energy efficiency of the WSN with-
out compromising the sensing quality. Gain in energy efficiency is tabulated
in Table 1. The adaptive optimized sensing scheme is respectively ∼ 67% and
∼ 30% more energy-efficient than the Chen’s and Quer’s scheme. Note that,
the simulation parameters are set as proposed in work [23] (Sec. V-F) except
the BCRB window [α, β], threshold δth, and node’s initial energy η1 (n) which
are respectively set as =

[
1.215× 10−5, 0.0306

]
and =

[
8.7731× 10−6, 0.008

]
(for comparison with Chen’s and Quer’s schemes), 0.051, and 1400 units. The
parameters- threshold δth and BCRB depend on the signal being observed.
These are set in the current work as per the considered temperature data-set
and in the work [23] as per humidity data-set considered there. The choice of
the BCRB window affects the sensing quality and the threshold value is meant
for capturing signal variations effectively. Likewise, a node’s initial energy gov-
erns its remaining energy after execution of measurement cycle. Simulations
are carried out in Matlab and optimization problems are solved using CVX [15]
tool.

Likewise, performance of the multi-sensing framework proposed in work
[24] and Chen’s scheme [10, 11] are compared for simultaneously sensing the
above-mentioned two lab parameters (temperature and humidity). It is evident
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Fig. 4 Network residual energy and NMSE comparison of the adaptive and optimized
monolithic sensing scheme [23] with Chen’s scheme [10,11].
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Fig. 5 Network residual energy and NMSE comparison of the adaptive and optimized
monolithic sensing scheme [23] with Quer’s scheme [49].

Table 1 Energy efficiency comparison for monolithic sensing case

Monolithic sensing scheme
Node energy

consumption per cycle
(J)

Energy efficiency gain

Chen-based [10,11] 220.83 -
Adaptive & optimized [23] 71.875 67.45% (w.r.t. Chen)

Quer-based [49] 168.3594 -
Adaptive & optimized [23] 116.7969 30.6264% (w.r.t Quer)

from Figs. 6, 7 and Table 2 that energy-efficient smart environment sensing
without sacrificing the accuracy is achievable using the adaptive multi-sensing
scheme [24], with energy efficiency of ∼ 15% with respect to the comparing
scheme [10,11]. In Fig. 6, increase in energy consumption is seen beyond ∼ 25th

measurement cycle. Reason being due to increase in variations of the monitored
signal during these cycles, the adaptation mechanism increases the number of
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Fig. 6 Network energy consumption per cycle comparison of the adaptive and optimized
multi-sensing scheme [24] with Chen’s scheme [10,11].

Measurement cycles
0 10 20 30 40 50

Se
ns

in
g 

er
ro

r (
NM

SE
)

10-6

10-5

10-4

10-3

10-2 Adaptive and optimized multi-sensing
Chen-based optimized multi-sensing

Fig. 7 Sensing quality (NMSE) comparison of the adaptive and optimized multi-sensing
scheme [24] with Chen’s scheme [10,11].

active nodes (or sampling rate). This increases the energy consumption. The
framework increases (decreases) the sampling rate when the variations in the
signal increases (decreases). For simulations, number of nodes considered are
N = 30, initial energy as 6 units, harvested energy as in work [24], noise vari-
ance σ2 ∼ 10−6, number of parameters/signals to be observed as P = 2, sens-
ing energy of temperature and humidity sensors as

{
E1
s , E

2
s

}
= {0.2, 1.0315}
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Table 2 Energy efficiency comparison for multi-sensing case

Multi-sensing scheme
Network energy

consumption per cycle
(J)

Energy efficiency gain

Chen-based [10,11] 16.04606 -
Adaptive & optimized [23] 13.52912 15.6857% (w.r.t. Chen)

units, their detection limits as
{
ρ1, ρ2

}
= {14.4, 38.6}, Bayesian CRB windows[

α1, β1
]

=
[
1.1× 10−6, 0.06

]
,
[
α2, β2

]
=
[
3.1× 10−6, 0.06

]
, and thresholds as{

δ1th, δ
2
th

}
= {0.05, 0.06} ,

{
ε1th, ε

2
th

}
= {0.5, 0.5}. For Chen’s scheme, number

of temperature and humidity sensors to be activated are respectively fixed as
15 and 16.

Note that the sensing quality is determined by normalized mean squared
error (NMSE) performance measure which depends on actual signal (NMSE =
1
N ‖actual signal vector - estimated signal vector‖2

1
N ‖actual signal vector‖2

)
. However, the actual signal is un-

known and needs to be estimated. Thus, the above adaptive monolithic and
multi-sensing frameworks uses BCRB as the measure to optimize sensing qual-
ity instead of the NMSE as done in several existing works [10,13]. The NMSE
is plotted to show the achieved sensing quality by using the BCRB measure
in the sensing frameworks. The NMSE values obtained are within the accept-
able range as suggested in the work [23] (reference 45). Further, as the name
suggests, the NMSE averages error obtained in estimates of signal across all
sensors. It gauges energy in error signal against that in signal. In Figs. 4, 5,
and 7, the sensing quality is an average entity. Network residual energy is not
averaged because it is sum of remaining energy of all the nodes in the network.

Applications in IoT deployment may have specific needs related to the
range where it is expected to deliver sensed data. In this regard, in the future
work, it will be interesting to investigate the maximum distance up to which
the signal can be detected by the sensors to maintain a desired QoS.

3.2 Automated Metering in Smart Cities

As discussed in Section 2.2, compression techniques are preferred for data
pruning at edge devices in the IoT networks where latency is not a constraint.
Here, resource savings via green communication of smart meter data is in-
vestigated by testing the performance of adaptive compressive sampling algo-
rithm [63] on real smart meter data sampled at the rate of 1 per 30 seconds.

It is observed that though high resolution smart meter data has a rapidly
fluctuating and spiky pattern indicating incoherence in time domain, it can
be reasonably sparsified using discrete Fourier transform. Further, if sparsity
selection is adapted to the variation of data in the compression window, op-
timal data reduction without much loss of information can be achieved. Also,
the size of compression window is a function of temporal correlation in the
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consecutive data samples which is governed by the sampling frequency of the
smart meter. The optimum size of compression window is evaluated based on
the trade-off between bandwidth saving and reconstruction accuracy, which in
turn is a function of temporal correlation in the consecutive data samples and
the sampling frequency of the smart meter. In [63], it is observed that with
the increase in number of samples in the compression window, bandwidth sav-
ing reduces, while the reconstruction accuracy increases. However, beyond an
optimum number of samples, the nRMSE nearly saturates. This point is con-
sidered as the optimum size of the compression window. For data sampled at
the rate of 1 per 30 seconds, this interval was found to be 60 seconds. Once
the data is buffered to form optimally-sized compression window, sparsity for
each window is decided by estimating the number of discrete Fourier coeffi-
cients containing 99.99% energy of samples in the compression window. The
samples to be transmitted are then selected using a sensing matrix. At the
receiver, reconstruction of compressed samples is performed using subspace
pursuit [16] algorithm. Thus, substantial reduction in data volume is achieved
by adaptively compressing high resolution smart meter data over successive
optimally sized windows and accordingly transmitting only minimum required
number of samples.

The performance of adaptive compressive sampling algorithm is measured
in terms of bandwidth saving, normalized root mean square error (nRMSE),
and Hellinger’s distance. If n and m, respectively, be the number of sam-
ples in the data window before and after compression, then (n − m)/n is
used as a measure of bandwidth saving. nRMSE quantifies the accuracy of
prediction, while Hellinger’s distance validates the acceptability of nRMSE
value for the required quality of service. For discrete probability distributions
P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qn}, Hellinger’s distance between

them is defined as H(P,Q) = 1√
2

√
n∑
i=1

(
√
p
i
−√q

i
)2. For this application,

Hellinger’s distance ≤ 0.05 is considered tolerable [45]. In Fig. 8, reconstruc-
tion performance of adaptive compressive sampling algorithm at the receiver
using subspace pursuit algorithm is presented. The reconstructed data is ob-
served to to be closely following the actual data, and the estimated nRMSE is
4.4 × 10−4. Further the performance of adaptive compressive sampling algo-
rithm is tested on data-sets from smart meters at 4 different locations in our
university campus having sufficient pattern diversity. In Table 3, the respec-
tive performance indices at each of these locations are presented. It is observed
that Hellinger’s distance corresponding to nRMSE at each of the locations is
well below the acceptable threshold. Thus, a mean reduction of around 37%
is achieved in the bandwidth requirement for transmission of high resolution
smart meter data with minimum loss of information.

A comparison of adaptive compressive sampling algorithm with the closest
competitive technique based on resumable data compression [64] is presented
in [63]. From the simulations, it is found that with respect to resumable data
compression, bandwidth saving in the proposed adaptive compressive sam-
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Table 3 Performance of adaptive compressive sampling algorithm at 4 different locations

Dataset Bandwidth saving (%) nRMSE Hellinger’s distance

Location #1 38.59 4.42 × 10−4 0.0195
Location #2 34.91 3.38 × 10−4 0.0153
Location #3 43.19 3.37 × 10−4 0.0319
Location #4 33.38 3.07 × 10−4 0.0237

pling technique is 12.8% and 7.4% higher, respectively, for data granularity
of 1 s and 30 s at a comparable reconstruction accuracy. Additionally, it is
also observed that the noise robustness of the proposed adaptive compressive
sampling algorithm is significantly higher.

3.3 Smart Grid Health Monitoring

In this section, performance of dynamic prediction algorithm [62] is tested on
different variables measured by the PMU during a real tripping event in the
power grid. Each variable considered in this study has a different temporal
correlation coefficient governed by the underlying process dynamics.

To handle huge data volume generated during the health monitoring in
smart grid IoT network, the dynamic prediction algorithm judiciously elim-
inates redundant data before transmission using ε-support vector regression
model. Flow of the algorithm comprises of training a prediction model through
configuring hyperparameters and making successive one-step ahead prediction
of variable samples using the prediction model. It may be noted that due to
non-stationarity of PMU data, retraining of the regression model is required
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Table 4 Performance of dynamic prediction algorithm for different variables measured by
the PMU

Variable Correlation BWS (%) RC DI RMSE

Frequency 0.9993 85.2 0.04 1 0.0087
Angle Separation 0.9987 80.5 0.04 1 0.008
Voltage Phase A 0.9658 81.9 0.08 0.99 0.0473
Voltage Phase B 0.9504 82.2 0.1 0.98 0.0490
Voltage Phase C 0.9421 82.4 0.09 0.99 0.0483

Rate of Change of Frequency 0.8230 85.08 0.15 1 0.0048

once the predicted sample deviates from actual value by a margin greater than
predefined threshold ε. Hyperparameters of the learning algorithm are esti-
mated using cross-validation optimization error. The algorithm is proposed to
operate simultaneously at the PMU (i.e the edge node) and the control center.
At the PMU, the learning-based model identifies and eliminates the superflu-
ous samples, while at the control center, its counterpart estimates the omitted
samples within a given error threshold.

Accuracy of sample predictions and runtime complexity of the algorithm
are governed by the choice of error threshold ε, and length of the training
set. It is observed that a larger training length does not necessarily guarantee
precise predictions, thus value of optimum training length is also considered
a hyperparameter and is parsimoniously selected based on the variations in
the dataset. Likewise error threshold ε is application domain specific. Its value
depends on the sensitivity of different variables measured by the PMU. Per-
formance of the algorithm is measured in terms of bandwidth saving (BWS),
retraining count(RC), disturbance identification index (DI), and root mean
square error (RMSE), which signify the reduction in amount of resource re-
quirements, runtime complexity, satisfaction of QoS, and accuracy of predic-
tions, respectively. Bandwidth saving is the percentage of PMU data samples
that are not transmitted. These are essentially the samples which are suc-
cessfully predicted within the error bound ε at the PDC. If l is the length of
powerline frequency sequence measured by PMU over a sufficiently large time
interval ∆, then, BWS = liml→∞(Successful predictions by PMU/l) × 100.
DI is a measure of goodness of the model in identifying a fault scenario. Over
a large interval ∆, let ldist and l̂dist be respectively the actual and the esti-
mated number of frequency samples designated to be in disturbed states. Then,
DI = lim∆→∞(l̂dist/ldist) [62]. The indices RC and DI are upper bounded by
value 1, and their higher values indicate high runtime complexity and better
QoS satisfaction, respectively. A comparison of performance of dynamic pre-
diction algorithm for different variables measured by the PMU is presented in
Table 4. It is observed that around 80% saving in bandwidth requirement is
attained for various parameters without any degradation in QoS satisfaction,
though runtime complexity for the variables having lower temporal correlation
is slightly higher.
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4 Avenues for Future Research

The case studies presented in the previous section clearly indicate that by the
application of green techniques, substantial resource savings can be achieved
in terms of energy efficiency, bandwidth, and storage space optimization in
transmission and archival of massive IoT data. In this section, a few pertinent
research issues and directions open for future investigation and realization of
the green sensing and communication techniques are discussed.

– With large scale deployment of IoT nodes, a primary challenge has been
in powering these nodes, and to externalize their lifetime. Though conven-
tional literature suggests battery-powered operations, battery replacement
can be arduous and expensive, especially when the nodes are deployed in
inaccessible terrains. To this end, energy harvesting techniques from am-
bient sources for sustainable operation of IoT nodes such as use of solar
energy, radio-frequency, and unmanned aerial vehicles assisted sensor node
charging has emerged as a new research direction.

– The design of strategies that jointly optimize/handle various trade-offs
discussed in Section 2.4 is the need of the hour. Multi-objective optimiza-
tion and multi-interval hybrid approaches are looked upon as prospective
solutions. In multi-interval hybrid approach, different optimization frame-
works are employed at different energy/performance intervals which are
often governed by nature of application.

– Scalability is an important practical issue in most of the IoT applications
due to the involvement of multiple devices and networks. In this context,
the design of distributed and hybrid schemes for sensing/monitoring is an-
other interesting research direction. Further, existing distributed sensor se-
lection strategies are non-adaptive to the dynamic signals being monitored.
Design of adaptive distributed monolithic and multi-sensing strategies and
their contribution to energy saving is another dimension to work upon.

– Integration of various system-level constraints, imposed by exhausted en-
ergy of nodes, detection limits of different sensors in heterogeneous sensing
environment, is often overlooked in the green sensing techniques. To bridge
the gap between theoretical and practical implementation of the IoT sys-
tems, it is vital to consider these constraints.

– Another research direction pertaining to green communication of massive
IoT data is effective characterization of wireless channel for its energy-
efficient usage, and design of wireless channel adaptive communication
strategies to meet the QoS requirements of the respective IoT applica-
tions. A few existing schemes exploit temporal variations of the channel
for enhancing its utilization as well as energy efficiency, however their ap-
plicability to IoT networks where edge devices have limited computational
resources needs to be well investigated. In this context, development of
simple yet efficient wireless channel prediction frameworks and protocols
to facilitate reliable transmission of IoT data holds a significant research
potential.
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– Further, energy consumption at different layers (MAC, network, and phys-
ical layers) is handled separately in the existing literature. A cross-layer
solution that jointly exploits techniques used at individual layers to save
energy such as sensor management/selection, cluster formation, and power
control, etc., is required to be developed to ameliorate energy efficiency of
frameworks designed for the IoT applications.

– To prevent networks and sensitive information against various security at-
tacks and eavesdropping, it is important to impart security and privacy in a
network. However, relevant operations such as data encryption/decryption,
attack detection, etc. consume significant amount of computation energy,
while transmission of secured data incurs communication overhead. Thus,
reducing energy cost while ensuring certain quality of protection (QoP) is
another challenging research direction.

5 Conclusion

In this paper, a comprehensive overview of current green techniques for the
IoT systems along-with their merits and demerits has been presented. Twofold
benefits of the green techniques are extending the system’s lifetime and achiev-
ing environmental sustainability. Various challenges and critical trade-offs as-
sociated with simultaneously balancing the system’s performance and energy
efficiency have been identified. Performance of data-driven green sensing and
communication schemes for realizing three pertinent IoT applications, namely,
lab environment monitoring, smart grid health monitoring, and smart meter-
ing, have been analyzed. It can be concluded that exploiting machine learning,
multi-objective optimization, Bayesian learning, compressed sensing, etc. in
data-driven green schemes significantly aid in incorporating necessary intelli-
gence at sensing, communication, and computation levels. Around 15% more
energy efficiency is achieved in adaptive and optimized multi-sensing based
lab monitoring application, and 80% and 37% bandwidth saving is achieved in
smart grid monitoring and smart metering applications, respectively, without
degrading the required quality of service. Several open issues vital for improv-
ing energy efficiency and practical realization of the IoT applications have been
identified for future research.
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