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Channel-Adaptive Transmission Protocols for
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Abstract—This article presents a new paradigm for channel1

dynamics adaptive transmission of intermittent data in smart grid2

IoT communication networks, wherein novel channel prediction3

frameworks using stochastic modeling as well as data-driven4

learning of channel variability are proposed. A probing-based5

transmission is also proposed as a benchmark. These prediction6

frameworks are complemented with an adaptive channel coding7

scheme to increase the transmission reliability of time-critical8

grid monitoring data over a wireless channel. Through analyz-9

ing the prediction and packet loss performance at varying SNR10

and fading conditions, it is noted that the stochastic modeling11

framework is efficient when the fading correlation in the chan-12

nel is high while the learning-based approach is more adaptive13

to channel dynamics as the correlation reduces. The proposed14

frameworks are easily implementable on low-cost end nodes,15

owing to the optimal selection of parameters for low runtime16

complexity. When compared to probing-based data transmission17

for a given fading in the channel, the packet loss probability18

of the learning-based transmission closely matches while with19

stochastic model loss probability is found to be 12.3% higher.20

However, their respective signaling overheads are 38% and 98%21

lower with respect to the probing-based approach, which is a22

significant gain at the cost of marginally additional computation23

complexity.24

Index Terms—Adaptive coding, Gaussian process regression,25

IoT data communication protocols, resource efficiency, smart grid26

communication, wireless channel prediction.27

I. INTRODUCTION28

INFORMATION and communication technology has a piv-29

otal role to play in efficiency and reliability enhancement of30

the IoT networks. A pertinent emerging application is of wide-31

area situational awareness in the smart grid. It is supported by32

a pervasive monitoring system comprising of advanced sensing33

equipment such as phasor measurement units (PMUs), which34

facilitate real-time collection and exchange of synchrophasor35

data over the communication network for gridwise protec-36

tion and control [1]. In the existing literature, several wired37
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(power line and fiber optic) and wireless (3G cellular, IP- 38

based, ZigBee, Wi-Fi, Z-wave, WiMAX, 3GPP LTE, LoRa, 39

and NB-IoT) communication networking technologies are sug- 40

gested for smart grid data communication [2], [3]. However, 41

considering the development of dynamic network architec- 42

ture and intelligent algorithms that cater to the data flow 43

requirements of advanced smart grid features, particularly, 44

self-healing, consumer friendliness, optimal resource usage, 45

and resilience to cyber attacks, it is likely that future smart 46

grid communication will evolve as a hybrid of contemporary 47

protocols and technologies. 48

A. Related Works and Motivation 49

In recent years, power utility vendors have been densely 50

deploying PMUs as IoT devices which generate data streams 51

of multiple parameters for complete observability of the grid. It 52

has been noted that even in the current deployment regime, the 53

annual data volume generated by PMUs is in peta-Bytes [4]. 54

Conventionally, the transmission of PMU data for real- 55

time wide-area monitoring and control is periodic, with the 56

streaming rate of each node on the order of a few tens of 57

kb/s. However, as an emerging IoT application, data commu- 58

nication protocols in wide-area monitoring are continuously 59

evolving to meet the grid-level QoS requirements in a more 60

dynamic environment. Also, as suggested in [5], higher rate 61

synchrophasors are necessary for precise power grid system 62

monitoring and control. For handling massive data gener- 63

ated by a multitude of such IoT devices, intelligent data 64

pruning without sacrificing on the information content, at 65

the device level, network level, as well as in the cloud, for 66

optimal utilization of resources (e.g., transmission energy, 67

communication bandwidth, and cloud storage space) is of 68

contemporary research interest [6]–[8]. A study in [9] has 69

proposed a paradigm for 5G intelligent Internet of Things to 70

process big data intelligently and optimize the usage of com- 71

munication channels. Specifically, for communication of PMU 72

data in a smart grid IoT network, a few recent works have 73

studied intelligent data pruning at the PMU level [10], [11] 74

as well as at the PDC level [12]–[14]. Similar observations 75

have been made in [15] and [16] on the data generated 76

from smart electric meters, which indicate that even low rate 77

telemetry data generated from a large number of such IoT 78

devices would lead to a massive requirement of communi- 79

cation bandwidth for transmission. Although smart metering 80

is a less time-critical application, concern on the aggregated 81
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data transmission bandwidth requirement calls for a similar82

measure of data pruning at the source.83

It is notable from the works in [10]–[14] that the device-84

level intelligent processing before transmission benefits in85

not only reduced data processing at the PDC level but also86

optimizing the device-level and channel resources. Intelligent87

processing at the source also relaxes the necessity of88

streaming-based reporting the PMU data to the PDC. To this89

end, Das and Sidhu [10] proposed the sparse data reporting90

rate by a compressive sampling of the available PMU data.91

Likewise, in [11], a learning-based online pruning is employed92

on the sampled data at the PMU before transmission. In this93

approach, data transmission from a smart PMU is initiated94

on “event-driven” basis, only when there is a need to retrain95

the support vector regression model at the PDC for interpolat-96

ing the missing (not transmitted) samples and this is largely97

governed by the underlying power-grid dynamics. As a conse-98

quence of intelligent processing before transmission, although99

the data generation process at the PMU is a regular (periodic)100

event, a sparse/sporadic PMU data transmission behavior is101

observed.102

Intuitively, in such a scenario with smart IoT devices with103

sparse/sporadic data transmission requirements, conventional104

link layer strategies would be inefficient because it is difficult105

to characterize the data arrival process. Besides, the response106

of the wireless channel to the dynamic data flow may not be107

a known distribution. Thus, for a sporadic IoT data commu-108

nication, novel techniques are required to be devised that are109

application aware and yet independent of the channel dynam-110

ics. The proposed channel-aware data transmission schemes in111

this article are targeted to address reliable data transmission112

while meeting the time-criticality constraints in such cases.113

To enhance the reliability of transmission as well as the114

efficiency of radio resource allocation, knowledge of the wire-115

less channel state (CS) at the packet transmission instant is116

of paramount interest in the sporadic IoT data communica-117

tion. Though early works do not clearly address sporadic118

data communication, approaches for prediction of CSs for119

continuous data availability were widely investigated. These120

primarily include autoregressive (AR) model-based linear121

prediction algorithms [17] and channel prediction in short-term122

fading [18]. The AR model was also used in [19] and [20]123

for channel prediction in vehicular ad hoc networks and124

millimeter-wave MIMO OFDM systems. Though AR model-125

based prediction has better performance, it assumes channel126

variations to be wide-sense stationery, which may not be true127

in reality.128

To track the variability of channel coefficients, adaptive129

Kalman filter [21] and spatiotemporal AR models [22] were130

suggested for enhanced prediction quality. In [23], reduced-131

rank channel prediction was proposed for limited feedback132

time-variant channels. Although prediction accuracy in these133

works is better in comparison to linear predictors, they require134

the knowledge of channel statistics as additional overhead. To135

address this, a polynomial fitting-based predictor using chan-136

nel measurements was considered in [24] for future channel137

predictions, however, it has limited prediction range espe-138

cially in MIMO channels. Consequently, the sum-of-sinusoids139

method was proposed in [25] and [26] to reliably predict 140

channel over a long prediction range. For the fast-varying 141

nonstationary channel, the first-order Taylor expansion-based 142

model [27] was shown to predict reliably with marginally 143

increased complexity in comparison to traditional channel 144

prediction approaches. 145

Another more efficient category of channel prediction meth- 146

ods is based on nonlinear transformations. These include 147

the use of discrete cosine transforms [28], compressed 148

sensing [26], neural networks [29], [30], and deep learn- 149

ing [31]–[33]. Compared to neural networks, learning-based 150

prediction methods exhibit faster learning speed and higher 151

convergence precision. The approach in [34] proposed to 152

train the echo state network for short-term prediction of the 153

Ricean-fading scenarios, and it was shown to perform better in 154

comparison to AR and signal processing approaches. It may be 155

noted that transform-based approaches require complex matrix 156

operations which are high in computational complexity. The 157

deep learning networks proposed so far also have complex 158

structures with multiple layers and require extensive training 159

data in terms of volume, granularity, and feature set. Besides, 160

unlike continuous data availability, channel prediction for spo- 161

radic smart grid data communication is challenging owing to 162

uncertainty about the underlying temporal process during blind 163

intervals due to the sparsity of channel gain observations. 164

As the 5G-IoT communication systems are evolving, smart 165

PMUs (smart IoT devices)1 will support intelligent processing 166

in addition to sensing and transmission of data in a dynamic 167

environment. In view of limited applicability of the existing 168

methodologies to smart IoT networks, in this article, channel- 169

adaptive transmission based on simple yet efficient channel 170

prediction frameworks using stochastic modeling, data-driven 171

learning, and probing of wireless channel are proposed for 172

reliable transmission of sporadic but time-critical PMU data. 173

B. Main Contributions 174

In this article, novel protocols are proposed for channel- 175

adaptive transmission of sporadic but time-critical smart IoT 176

data using stochastic modeling, learning, and probing-based 177

estimate of CS. The main contributions of this article are as 178

follows. 179

1) A novel stochastic modeling framework based on the 180

characterization of rate of change of wireless fading 181

channel is proposed to estimate the CS for transmission 182

of sporadically available smart PMU data. 183

2) A novel data-driven framework based on the Gaussian 184

process regression is also proposed to dynamically learn 185

the CS in desired transmission slots using channel gains 186

from previous packet transmission slots. 187

3) An adaptive transmission scheme for time-critical PMU 188

data is introduced based on the proposed channel 189

prediction frameworks and using adaptive channel 190

coding. 191

1Hereafter, “smart PMU” and “PMU” are used interchangeably throughout
this article.
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4) A probing-based transmission is also proposed which is192

considered as the benchmark for comparing the stochas-193

tic model-based and learning-based approaches. The194

results demonstrate that the stochastic modeling frame-195

work is efficient when the fading correlation in the chan-196

nel is high, while the learning-based approach is more197

adaptive to channel dynamics as the correlation reduces.198

Furthermore, for a given channel fading condition, the199

packet loss probability of the learning-based transmis-200

sion closely matches with the benchmark scheme, while201

with the stochastic model-based prediction, the loss202

probability is found to be 12.3% higher. However, the203

respective signaling overheads are 38% and 98% lower204

with respect to the benchmark.205

Unlike the state of the art, the proposed channel-adaptive206

sporadic data transmission schemes are independent of chan-207

nel stationarity and do not require the knowledge of fading208

distribution. Temporal channel variability is exploited in the209

proposed schemes to predict CS for increasing the through-210

put with optimal resource usage. Furthermore, training length211

and the number of CSs can be optimally chosen for reduced212

runtime complexity, thereby enabling implementability in low-213

cost IoT end nodes such as PMUs. To the best of our214

knowledge, such a comprehensive framework keen on reliable215

data transmission in the emerging smart IoT communication216

context has not been studied so far.217

C. Paper Organization218

The remainder of this article is organized as follows. In219

Section II, the system model and protocol description are220

presented. Stochastic, learning, and probing-based framework221

for channel prediction are proposed in Section III, followed222

by an elaboration of the proposed channel-aware data trans-223

mission scheme in Section IV. The numerical results based on224

large-scale simulations are discussed in Section V. Finally, this225

article is concluded in Section VI.226

II. SYSTEM MODEL AND PROTOCOL DESCRIPTION227

A. System Model228

A wide area smart grid communication network deals with229

time-critical health parameters that are monitored and hierar-230

chically transmitted from the PMUs to the remotely located231

phasor data concentrator (called super PDC) via local PDC for232

fast decision/actuation capability. The access network archi-233

tecture of a wide-area situational awareness system shown234

in Fig. 1 resembles a typical IoT network wherein the235

PMUs are the end nodes. Motivated by the studies in [10]236

and [11], the PMUs are considered to have some intelli-237

gence whereby the redundant sampled data are pruned before238

transmitting over the communication channel. Thus, instead239

of periodic/streaming-based transmission (as in conventional240

PMUs), the smart PMUs communicate sporadically to the local241

PDC in an event-driven mode, thereby reducing the communi-242

cation bandwidth as well as node-level energy requirements.243

PMU to the data network connectivity is considered to be244

over a wireless link. Appropriate multiaccess protocols, such245

Fig. 1. Wireless IoT network with smart PMUs (smart IoT nodes) for smart
grid monitoring and control.

as beaconing or polling-based approach, are considered for 246

many such PMUs to communicate to the local PDC. 247

In this article, a point-to-point communication scenario is 248

considered where sporadically available data from a PMU 249

is transmitted over the fading wireless channel. Specifically, 250

efficient channel prediction strategies that complement the 251

channel encoding and physical transmission are sought for 252

sporadic data transmission over dynamic communication. The 253

temporal channel variations are characterized by the product 254

fDTs [35], where fD is the Doppler frequency corresponding to 255

the relative velocity of the receiver and Ts is the symbol dura- 256

tion. For a slow-fading scenario, the process is very correlated 257

(fDTs < 0.1), while fast fading corresponds to consecutive 258

channel samples being almost independent (fDTs > 0.2). It 259

is assumed that the communication process is slotted. The 260

slot size is of one symbol duration, over which the channel 261

is considered to remain invariant. However, a PMU packet 262

transmission may comprise of several symbols during which 263

the channel gain may vary. Also the transmitter-to-receiver 264

propagation delay is assumed to be negligibly small. 265

B. Protocol Description 266

The CS information (CSI) is primarily required at the instant 267

when a PMU packet is available for transmission. With inter- 268

mittently available PMU data, the interval between one batch 269

of packets to the next is random. Therefore, the channel knowl- 270

edge from the last transmitted batch is not applicable for the 271

next batch of transmission. To this end, three approaches are 272

proposed. The first two approaches estimate the CS, respec- 273

tively, using stochastic and learning-based models, whereas in 274

the third approach CSI is collected by probing the channel 275

immediately before the transmission. Due to the time-critical 276

nature of the PMU data, a CSI-aware forward error correc- 277

tion (FEC) mechanism using Reed–Soloman (RS) codes is 278

introduced for appropriately protecting the PMU data from 279

prospective errors. Note that retransmission of unsuccessful 280

packets is considered impractical, as smart grid monitoring 281

data have strict latency constraints. The proposed adaptive 282

coding assigns redundant symbols to the packet in accordance 283

with the current CS such that any packet transmitted during 284

a given estimated channel condition is provided with suffi- 285

cient redundancy for its successful delivery at the receiver. 286
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Furthermore, based on the received signal quality, the receiver287

sends ACK/NAK along with useful channel information.288

III. PROPOSED CHANNEL STATE PREDICTION ANALYSIS289

Considering a slotted time interval scenario, where due to290

sporadic PMU data for transmission, the interval n between291

a batch of packets to the next is a discrete random variable.292

Owing to time criticality of PMU data, at the beginning of293

a new batch of transmission, i.e., at the end of the nth slot,294

the CS needs to be accurately estimated so that appropriate295

FEC overhead can be incorporated for the successful deliv-296

ery of the packets. In this section, three proposed frameworks297

for the estimation of CS at the transmitter using stochastic,298

learning, and probing-based models are analyzed for channel-299

adaptive data transmission and their respective computation300

complexities are discussed.301

A. Stochastic Modeling Framework302

Let the received complex signal over the wireless communi-303

cation channel at time t be R(t) = RI(t)+ jRQ(t), where RI(t)304

and RQ(t), respectively, represent the in-phase and quadrature305

components, and j = √−1. Then, the received signal enve-306

lope Z(t) � | R(t) |=
√

RI
2 + RQ

2. Following the observation307

in [36], the rate of change of signal envelope with respect308

to time Ż(t) � (d/dt)Z(t) = lim�t→0 [(Z(t + �t)− Z(t))/�t]309

is a zero-mean Gaussian random variable irrespective of the310

underlying distribution of fading channel, i.e., Ż(t) ∼ N (0, σ̇ ).311

This property of ˙Z(t) is used here to estimate the probabil-312

ity distribution of n-slot ahead CS, Z(t + nTs), given that the313

current CS Z(t) is known. Here, Ts is the slot duration.314

Using the Taylor series expansion, signal envelope Z(t+Ts)315

in the next slot is given by316

Z(t + Ts) = Z(t)+ Ż(t) · Ts + Z̈(t) · Ts
2

2!
+ · · · . (1)317

Since Ts � 1, applying the first-order approximation to (1),318

we have319

Z(t + Ts) ≈ Z(t)+ Ż(t) · Ts. (2)320

Denoting Z(t) as the signal envelope in slot 0, i.e., Z(t) ≡ Z(0),321

we have Z(t + nTs) ≡ Z(n). Accordingly, Ż(t) · Ts being the322

temporal variation of Z(t) in the next time slot, it is denoted as323

δZ(1). Following [36], δZ(1) ∼ N (0, σ̇1), where σ̇1 = Ts · σ̇ .324

However, Z(1) = Z(0) + δZ(1) being the signal envelope in325

slot 1, Z(1) ≥ 0. Therefore, δZ(1) ∈ [−Z(0),∞). In other326

words, the distribution of δZ(1) is truncated Gaussian [18],327

which is obtained as328

f
δZ(1) (α) =

⎧
⎪⎨
⎪⎩

1

1−�1

(
− Z(0)

σ̇1

) 1√
2πσ̇1

e

(
−α2

2σ̇1
2

)

, if − Z(0) ≤ α

0, elsewhere

329

(3)330

where �1(β) = ∫ β
−∞(1/

√
2π)e−(t2/2)dt is the cumulative331

distribution function (CDF) of standard univariate normal332

distribution.333

Let the channel fading state be characterized by L amplitude334

levels with boundary values at [Zi,Zi+1) ∀i = 0, . . . ,L − 1.335

With the current time slot, i.e., the last transmission slot of 336

current data batch denoted as slot 0, the probability that the 337

received signal strength in current time slot, Z(0) is in level i 338

is used to estimate the current CS as ψi(0) = Pr{Zi ≤ Z(0) ≤ 339

Zi+1} = Pr{CS(0) = i}. Given that the received signal enve- 340

lope in the current slot is Z(0), the current CS is known, i.e., 341

ψi(0) = 1. The probability that the channel in the next time 342

slot belongs to any state i, ψi(1) = Pr{Z(1) ∈ [Zi,Zi+1)} is 343

Pr{Zi ≤ Z(0)+ δZ(1) ≤ Zi+1} which is evaluated as 344

ψi(1) = p{Zi ≤ Z(0)+ δZ(1) ≤ Zi+1} ∀i = 0, . . . ,L − 1. 345

(4) 346

=
Zi+1−Z(0)∫

Zi−Z(0)

fδZ(1)(α)dα 347

=
�1

(
Zi+1−Z(0)

σ̇1

)
−�1

(
Zi−Z(0)
σ̇1

)

1 −�1

(
−Z(0)

σ̇1

) . (5) 348

Thus, for continuous packet transmission within a batch, (5) 349

gives the probability distribution of CS in the next time slot. 350

With the distribution of CS i in the next time slot known 351

∀i = 0, . . . ,L − 1, the channel is estimated to be in a state 352

having the highest probability in that slot. Mathematically 353

CS(1) = i such that, 354

ψi(1) = max
{
ψj(1) ∀j = 0, . . . ,L − 1

}
. (6) 355

It may be recalled that due to sporadic PMU data, interbatch 356

arrival duration n is blind, where the received signal enve- 357

lope, and hence actual CS, is unknown due to the absence of 358

any transmission. Thus, it is required to estimate n slot ahead 359

CS CS(n) from the knowledge of CS at the transmitter dur- 360

ing slot 0, i.e., CS(0). From CS(0), the first slot, i.e., CS(1) 361

marks the starting of blind interval of duration n slots when no 362

packets are transmitted. Using (5), ψi(1) gives the probability 363

distribution of CSs in the first blind slot. For successive blind 364

slots, the probability that the CS is in one of the L levels is 365

estimated from Bayes’ rule by iteratively conditioning the CS 366

distribution in the next slot on the probabilistic CSs in current 367

slot. Mathematically, for any blind slot κ ∈ (2, . . . , n), the 368

probability distribution of CSs is expressed as 369

ψi(κ) =
L−1∑
j=0

p{CS(κ) = i|CS(κ − 1) = j} 370

× p{CS(κ − 1) = j} (7) 371

=
L−1∑
j=0

�1

(
Zi+1−Z̄j
σ̇κ

)
−�1

(
Zi−Z̄j
σ̇κ

)

1 −�1

(
− Z̄j
σ̇κ

) · ψj(κ − 1) 372

∀i = 0, . . . ,L − 1 (8) 373

where σ̇κ = Ts
κ · σ̇ denotes the variance of the prob- 374

ability distribution function of Ż(t) in the κth slot and 375

Z̄j = (Zj + Zj+1)/2 is the mean value of signal envelope 376

in the jth level. Consequently, using (6), the probability dis- 377

tribution of CSs at the end of n-slot blind interval when 378

a new batch of packets is available for transmission is 379
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given by380

CS(n) = i such that,381

ψi(n) = max
{
ψj(n) ∀j = 0, . . . ,L − 1

}
. (9)382

The proposed stochastic framework for CS estimation is sim-383

ple and oblivious to the distribution of the underlying fading384

model. However, being a first-order model, its efficacy in385

predicting rapidly varying CSs, especially during the blind386

intervals, is limited. To this end, a data-driven framework using387

the Gaussian process regression is proposed in the next sec-388

tion to predict CSs for the sporadic PMU data transmission389

process.390

B. Learning-Based Framework391

In contemporary research, data-driven techniques are widely392

investigated to support the diverse requirements of next-393

generation wireless networks. Here, since the availability of394

packets for transmission at the PMU is intermittent in nature395

and comprises of several blind intervals over a period of time,396

the intuition for proposing a learning-based framework is to397

learn the instantaneous channel gain at the packet transmis-398

sion instant using previous channel gains when the packet399

transmission has occurred and accordingly choose optimal400

redundancy. The proposed model for CS prediction is based401

on the Gaussian process regression. As a special case of the402

Bayesian probabilistic inference, it can model complex time403

sequences in the presence of incomplete information through404

kernel modifications [37]. Hence, suitable for long-term fore-405

casting in the sporadic communication scenarios as considered406

in this article.407

Denoting the last transmission slot of current data batch as408

slot 0, it is required to predict channel gain x(n) for the esti-409

mation of CS CS(n) at the end of n-slot blind interval. Let410

{XA = x(0), x(−1), . . . , x(−(a − 1))} be the time sequence411

of channel gains corresponding to slots in which packets are412

previously transmitted. It may be noted that due to sporadic413

PMU data, x(i)s need not be regularly sampled. Since there414

are missing values in XA corresponding to slots in which no415

packet is transmitted, we drop the slot index for ease of nota-416

tion and redenote {XA = xn−1, xn−2, . . . , xn−a} such that the417

latest observed channel gain values required for predicting418

channel gain at the end of n-slot blind interval x(n) are419

denoted as x(0) ≡ xn−1, x(−1) ≡ xn−2, and so on. Likewise,420

also denoting x(n) as xn for further analysis in the proposed421

learning-based framework.422

The predicted instantaneous channel gain x̂n is assumed to423

be a nonlinear function of its feature vector xFn , compris-424

ing of optimal number of lagged channel gain samples d.425

Consequently, for regression analysis, the training set is struc-426

tured as {(xFn−1 , xn−1), . . . , (xFn−a , xn−a)} ⊂ R
d×R. The input427

space is d-dimensional such that xFi = {xi−1, xi−2, . . . , xi−d}.428

Considering the regression model429

xn = f
(
xFn

) + εn (10)430

where f is a function that maps the input xFn to the label xn,431

and εn ∼ N (0, σ 2). From the theory of the Gaussian process432

regression [37], function f is a random variable characterized433

by the Gaussian process with 0 mean and covariance kernel 434

function K(xFn , x′
Fn
), i.e., 435

f
(
xFn

) ∼ GP(
0,K(

xFn , x′
Fn

))
. (11) 436

To deduce f , prior over function f is updated into a posterior 437

through the likelihood function. Denoting all input vectors as 438

feature matrix XF = {xFn−1 , xFn−2 , . . . , xFn−a}T and outputs as 439

label vector Xα = {xn−1, xn−2 · · · xn−a}T . Following (11), prior 440

over f is expressed as 441

p(f |XF) ∼ N (
f |0,K(

xFn , x′
Fn

))
. (12) 442

Assuming likelihood p(Xα|f ) to be also a Gaussian function 443

such that the mean of likelihood is centered around arbitrary f 444

p(Xα|f ) ∼ N
(

Xα|f , σ 2I
)
. (13) 445

From Bayes’ inference, posterior over function f , 446

p(f |XF,Xα) ∝ p(Xα|f )p(f |XF). Since both prior and 447

likelihood are Gaussian, posterior over f is also a Gaussian 448

distribution. Using (12) and (13), we have 449

p(f |XF,Xα) ∼ N
(

f |μ̃, σ̃ 2
)

(14) 450

μ̃ = K(
xFn , x′

Fn

)[K(
xFn , x′

Fn

) + σ 2I
]−1

Xα 451

σ̃ 2 = K(
xFn , x′

Fn

)[K(
xFn , x′

Fn

) + σ 2I
]−1

σ 2I. 452

For predicting through the Gaussian process regression, it 453

is required to evaluate the predictive posterior which essen- 454

tially predicts over all possible f s weighted by posterior 455

in (14) as 456

p
(
x̂n|xFn ,XF,Xα

) =
∫

p
(
x̂n|xFn , f ,XF

) · p(f |XF,Xα)df (15) 457

where x̂n is the predicted value corresponding to the label xn. 458

The predictive posterior is again a Gaussian given by 459

p
(
x̂n|xFn ,XF,Xα

) ∼ N
(

x̂n|μ̂, σ̂ 2
)

(16) 460

μ̂ = K(
x̂n,XF

)[K(XF,XF)+ σ 2I
]−1

Xα 461

σ̂ 2 = K(
x̂n, x̂n

) − K(
x̂n,XF

)
462

×
[
K(XF,XF)+ σ 2I

]−1K(
XF, x̂n

)
. 463

Predicted value x̂n is the mean of this predictive distribution. 464

Thus, for fading channel characterized by L levels with chan- 465

nel gain boundaries demarcated as [Xj,Xj+1) ∀j = 0 · · · L − 1, 466

CS at the end of the nth time slot is given by 467

CS(n) = j, if
{
Xj ≤ x̂n < Xj+1

}
. (17) 468

In this article, training and predictions of channel sam- 469

ples using the Gaussian process regression is performed 470

using statistics and machine learning toolbox in MATLAB 471

2018b. 472
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C. Probing-Based Framework473

It may be noted that data transmission based on CS474

prediction requires a computational overhead at the trans-475

mitting node in terms of execution of stochastic as well as476

learning-based prediction models. To this end, a probing-based477

data transmission approach is proposed here wherein, if the478

channel is being used for data transmission after a long time479

interval, a probing packet is first transmitted to estimate the480

CS. In the case of successive packet transmissions, feedback481

from the receiver is collected at the transmitter to update482

CS. Thus, the number of probing packets required is equal483

to the number of blind intervals encountered during sporadic484

PMU packet transmissions. Also, maximum redundancy is485

assigned to the probing query and response in order to ensure486

their successful reception. This probing-based data transmis-487

sion scheme appears to be a more intuitive approach for488

the sporadic data communication scenario since the channel489

knowledge is based on immediate probing feedback, it is more490

accurate compared to the estimated knowledge in stochas-491

tic modeling and learning-based modeling. Consequently, the492

packet loss probability in probing-based data transmission is493

considered as a benchmark for comparing the performance of494

the previous two-channel prediction-based data transmission495

schemes.496

D. Complexity of the Proposed Channel Prediction497

Algorithms498

The evaluation of probabilistic CS distribution in the499

stochastic modeling framework as proposed in Section III-A500

primarily includes the computation of standard univariate nor-501

mal CDF, �1(β) in (5), and identifying the state having502

highest probability in (6). �1(β) can be derived from the503

error function as �1(β) = (1/2)(1 − erf(−β/√2)). For the504

purpose of numerical computation, let the error function be505

represented as y = erf(β)(1 + δ). It is found that in exist-506

ing software tools, such as MATLAB and Mathematica, δ is507

assumed to be in the order of 10−7 and the evaluation of508

y is based on rational approximation as suggested in [38].509

Thus, the computation of �1(β) is of constant complexity.510

Furthermore, for L CSs, identifying the CS having highest511

probability requires O(L) computations. Consequently, the net512

complexity is 3LO(1)+O(L) ∼ O(L). For this article, a fixed513

number of CSs are considered, thus computation complexity514

of the proposed stochastic framework is essentially constant.515

To analyze the complexity of CS prediction using the516

learning-based approach as proposed in Section III-B, train-517

ing of the regression model, prediction of channel gains, and518

identifying CS from predicted channel gains are the essen-519

tial steps. For each of these, computation complexities are,520

respectively, found to be O(a3) [37], bO(a3), and O(a), where521

a denotes the training length and b is the number of step-522

ahead predictions. Thus, the net computation complexity of523

the proposed learning-based framework is on the cubic order524

of training length.525

The computation complexity of the probing-based data526

transmission is negligible as no intelligent signal processing527

is required at the transmitter to know the current CS.528

IV. PROPOSED CHANNEL-ADAPTIVE TRANSMISSION 529

It may be noted that unlike wireline Ethernet protocols, 530

in case of wireless transmission, channel uncertainties, such 531

as fading and interference need to be carefully addressed to 532

meet the required QoS. Broad guidelines for PMU data com- 533

munication methods using IP over Ethernet in a client–server 534

format are defined in the IEEE standard C37.118. However, 535

to the best of our knowledge, no standard protocols specif- 536

ically defined for handling the vagaries of communicating 537

PMU data over wireless channel exist in the literature. To 538

this end, in this article, we have complemented the proposed 539

channel prediction techniques based on stochastic modeling, 540

data-driven learning, and probing with a channel-aware data 541

transmission scheme, wherein the knowledge of predicted CS 542

is exploited to adaptively choose the channel coding parame- 543

ters for efficient and reliable transmission of time-critical PMU 544

data over the wireless channel. In this section, the adaptive 545

scheme for sporadic but time-critical PMU data transmission 546

based on the proposed CS prediction frameworks, as discussed 547

in Section III, is presented along with the performance indices. 548

A. Channel-Adaptive Transmission Scheme 549

A flowchart representation of the channel-adaptive trans- 550

mission scheme using the proposed stochastic, learning, and 551

probing-based CS prediction frameworks are shown, respec- 552

tively, in Fig. 2(a)–(c). An adaptive block coding is chosen in 553

the transmission approach because of the time-critical nature 554

of PMU data, wherein retransmission of lost packets is not 555

feasible. RS code is a linear nonbinary block code, suited for 556

correction of burst errors over wireless channels [39]. It is 557

denoted as RS(c, k) with both c and k represented by m bit 558

symbols such that for every k information symbols, c − k par- 559

ity symbols are appended to create c symbol codeword. For a 560

given (c, k) block, the RS decoder can correct up to (c − k)/2 561

symbol errors of m bits each. The transmission scheme primar- 562

ily includes the prediction of current CS using the proposed 563

frameworks and the selection of appropriate block length ci 564

for the packet transmission. Here, the subscript i corresponds 565

to the fading level i ∀i = 0, . . . ,L − 1. At the receiver, a 566

packet is successfully received if the number of erroneous 567

symbols e is within the error correction capability of the code; 568

else the packet is dropped. Thus, the proposed adaptive cod- 569

ing responds to current CS by appropriately choosing ci, for 570

attaining a high packet success rate with far less bandwidth 571

requirement, unlike fixed-rate code where error correction is 572

always intended for the worst case scenario. 573

As discussed in Section III-D, since the complexity of 574

the proposed learning-based channel prediction algorithm is 575

O(a3), the length of the training set is limited to optimum 576

training length (OTL) such that the prediction is statisti- 577

cally reliable and computationally practical. The selection of 578

OTL and other parameters of the learning model is further 579

discussed in Section V. To build the training set for subse- 580

quent prediction, selective slotwise channel gains from the 581

current packet transmission duration are communicated to 582

the transmitter once decoding is completed at the receiver. 583

In contrast, CSI of the latest slot only is required in the 584
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(a) (b)

(c)

Fig. 2. Channel-aware transmission schemes for time-critical PMU data based on channel estimation using: (a) stochastic modeling; (b) learning; and
(c) probing-based approaches.

case of the stochastic modeling framework, whereas in the585

probing-based approach, the CSI of the last slot is collected586

immediately before the data packet transmission. Thus, the587

devised transmission schemes aim at maximizing the PMU588

packet success probability by exploiting the historical chan-589

nel information, thereby increasing the reliability of grid590

operation.591

B. Performance Indices592

The proposed stochastic modeling, learning, and probing-593

based channel prediction frameworks as developed in594

Section III are studied by numerical simulations. Also,595

to verify the analytical performance, the channel-adaptive596

transmission schemes for each of the proposed approaches 597

are studied over simulated fading channels in MATLAB. The 598

performance is quantified using the following indices. 599

1) False Prediction Probability pf : It is defined as the 600

ratio of predicted CSs not matching with actual CSs 601

over the total number of packets transmitted Np, over 602

a sufficiently large time interval �, i.e., lim�→∞ pf = 603

(number of mismatched predictions)/Np. 604

2) Symbol Error Probability pse: It is the ratio of the num- 605

ber of symbols with received SNR below threshold SNR 606

over the total number of symbols transmitted during the 607

interval �. Let the number of erroneous symbols and 608

the total number of transmitted symbols be Nse and Ns, 609

respectively. Then, pse = lim�→∞ Nse/Ns. 610
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TABLE I
VARIATION OF COMMUNICATION SYSTEM PERFORMANCE WITH THE STRUCTURE OF THE RS CODE AT SNR = 10 DB AND fD = 50 HZ

3) Packet Loss Probability pl: It may be recalled that if the611

number of erroneous symbols in a packet encoded with612

RS(ci, k) code exceeds (ci − k)/2, it is considered to be613

lost. Here, ci denotes the block size chosen for a packet614

transmitted during the fading level i, 0 ≤ i ≤ L − 1. If615

the number of packets lost over time interval � is Npl,616

then pl = lim�→∞ Npl/Np.617

4) Bandwidth Consumption BWc: It is the amount of data618

transmitted over the wireless link during time interval �.619

If the jth PMU packet is encoded as a block of length620

ci(j), then BWc = lim�→∞
∑Np

j=1 ci(j)/�.621

5) Signaling Overhead Os: It is the average number of622

additional bits transmitted per symbol over the wireless623

link for enhancing the performance of a chosen com-624

munication protocol. This includes the probing overhead625

and the feedback counts at the transmitter. Denote the626

number of probing packets and count of feedback col-627

lected over time interval� as Nprob and Nfb, respectively.628

Then, Os = lim�→∞ 2mcmaxNprob/
∑Np

j=1 ci(j), where629

cmax = 2m −1 is the maximum block length that can be630

assigned using RS(c, k) code with both c and k being m631

bit symbols.632

V. RESULTS AND DISCUSSION633

In this section, first the structure of the channel-adaptive634

RS coding scheme is presented. Subsequently, the prediction635

quality of the proposed stochastic modeling and learning-based636

frameworks is discussed. Next, the prediction and packet loss637

performance of the proposed stochastic modeling and learning-638

based channel prediction approaches are compared with the639

probing-based transmission approach for different SNR val-640

ues and fading coefficients, followed by a discussion on their641

overhead requirements.642

An example of the Rayleigh fading wireless channel is643

considered for numerical performance studies. Typical system644

parameters considered are: symbol duration Ts = 1 ms, carrier645

frequency fc = 900 MHz, threshold SNR = 7 dB, and PMU646

packet size = 40 B. The fading wireless channel is charac-647

terized by three states. Accordingly, three coding schemes:648

RS(c0, k), RS(c1, k), and RS(c2, k) are used. CS boundaries in649

this article are set at 10 and 25 dB. Hence, the CS in a slot650

is either 0, or 1, or 2, respectively, when the received symbol651

SNR in that interval is <10 dB, between 10 and 25 dB, and652

>25 dB. It is observed that the prediction performance of the653

proposed stochastic modeling framework and learning-based654

framework exhibits similar behavior irrespective of the choice 655

of CS boundaries. 656

A. Choice of Adaptive RS Coding Parameters 657

For RS(ci, k) code, the error correction capability is gov- 658

erned by block size ci. Recall that for a given (ci, k) block, 659

the RS decoder can correct up to (ci − k)/2 symbol errors of 660

m bits each. During the worst CS, the block size is chosen 661

to be cmax = 2m − 1 in order to provide maximum error 662

protection. Likewise for the best CS, minimum block size 663

cmin is specified. From large-scale simulations of the proposed 664

channel-adaptive transmission schemes over a wireless fading 665

channel, it is identified that during the best CS, the desired 666

value of cmin is at least 50 symbols for required quality of 667

service at the PDC. For simplicity, a packet transmitted in an 668

intermediate CS is assigned a block size of (cmax + cmin)/2. 669

Thus, faithful recovery of erroneous packets during different 670

CSs is governed by the selection of parameter m. In Table I, 671

variation of communication system performance with differ- 672

ent RS code parameters is presented for SNR = 10 dB and 673

fD = 50 Hz. It may be observed that with an increasing value 674

of m, the symbol error probability remains almost the same 675

due to fixed SNR, however, it adds more redundant symbols to 676

the transmitted packets. Consequently, the packet loss proba- 677

bility eventually drops and bandwidth consumption increases. 678

For the required quality of service, the packet loss probability 679

is set at about 10−4. Accordingly, m = 12 is chosen for further 680

performance studies. 681

B. Channel State Prediction Using the Stochastic Framework 682

Using the stochastic modeling framework proposed in 683

Section III-A, CS estimation during the simulation of the 684

sporadic communication scenario between PMU and PDC 685

is studied. In Fig. 3, predicted CSs are compared against 686

actual CSs in the corresponding slots for SNR = 10 dB and 687

fD = 50 Hz. It may be noted that owing to the sporadicity 688

of data transmission instants, the samples are not equispaced. 689

The gap between some of the consecutive samples represents 690

the blind intervals during which no PMU packets were avail- 691

able for transmission. It may be noted that the CS prediction 692

for the current slot using stochastic modeling is based only 693

on the state in the previous slot. Consequently, it is observed 694

from Fig. 3 that the stochastic predictions follow the change 695

in actual CS with a lag of one sample. In the case of sustained 696
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Fig. 3. Predicted CS using the stochastic modeling approach with respect
to actual CS, at SNR = 10 dB and fD = 50 Hz.

(a) (b)

Fig. 4. Optimum parameter selection for the learning-based model.
(a) Feature vector length. (b) Training set length.

CS over consecutive slots, stochastic predictions exactly match697

with the actual CS.698

C. Channel State Prediction Using the Learning-Based699

Framework700

As discussed in Section III-D, runtime of the learning-based701

model for CS estimation using the Gaussian process regres-702

sion is influenced by the length of the training set used in703

the prediction model. Besides, the length of the input fea-704

ture vector comprising of lagged channel samples is another705

user-defined parameter in the model implementation. In this706

article, v-fold cross-validation error of the Gaussian process707

regression model is used to decide the optimum value of fea-708

ture vector and training length. Fig. 4(a) and (b), respectively,709

captures the variation of mean cross-validation error versus710

lag value and training length, for 20 Rayleigh channel gen-711

eration instances at SNR = 10 dB and fD = 50 Hz. It may712

be observed from the plots that with increasing lag and train-713

ing length, mean cross-validation does not improve beyond a714

certain value. This saturation point is chosen as optimum for715

learning-based model implementation. Specifically, for a given716

channel condition, optimum feature vector length and OTL are717

found to be 4 and 100 samples, respectively.718

Using the Gaussian process regression model with OTL,719

1-step ahead channel gain predictions using optimum feature720

vector length as input are made for every slot during the721

PMU packet transmission duration. Predicted CSs with respect722

to the actual CSs in the corresponding slots during large-723

scale simulations of the learning-based approach are shown724

in Fig. 5. It is observed that unlike the stochastic modeling725

approach, CS changes are better traced in the learning frame-726

work. Thus, false predictions with the learning-based approach727

are comparatively rare.728

Fig. 5. Predicted CS using the learning-based prediction model with respect
to actual CS, at SNR = 10 dB and fD = 50 Hz.

Fig. 6. Variation of false prediction probability of stochastic modeling and
learning-based framework with SNR at fD = 50 Hz.

Fig. 7. Variation of false prediction probability of stochastic modeling and
learning-based framework with fading at SNR = 10 dB.

D. Comparison of False Prediction Probability 729

Variation of false prediction probability pf with increasing 730

values of average SNR in the fading channel is presented in 731

Fig. 6 for the proposed stochastic modeling and learning-based 732

framework at fD = 50 Hz. It is observed that the prediction 733

accuracy in each case is sensitive to the SNRs located in the 734

vicinity of CS boundaries. This behavior is observed because 735

in these regions, the actual value of parameters that identify 736

the CS (i.e., received signal envelope for stochastic modeling 737

and channel gain in case of the learning-based approach) has 738

a small separation margin from the boundary values. Thus, 739

even a small prediction error may lead to false identification 740

of CS. It is found that mean pf of the learning-based model 741

over different average SNR at fD = 50 Hz is 70% lower with 742

respect to the stochastic modeling framework. Additionally, 743

for CS boundaries at 10 and 25 dB, the prediction accuracy of 744

the learning-based model is higher, respectively by, 42% and 745

58%. 746

In Fig. 7, pf of the stochastic modeling and learning-based 747

frameworks with varying channel fading parameter fDTs are 748

presented at an average SNR = 10 dB. Note that fDTs < 0.2 749
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Fig. 8. Comparison of the packet loss probability of learning and stochastic
modeling-based frameworks with respect to probing-based transmission at
different SNR and fD = 50 Hz.

signifies a slow fading channel. Consequently, the successive750

channel samples are highly correlated, leading to a higher751

accuracy in CS predictions. On the contrary, for fDTS > 0.2752

consecutive channel samples are almost temporally indepen-753

dent, thereby deteriorating the prediction accuracy. Hence, an754

increasing trend of pf is observed in Fig. 7. Nevertheless,755

the learning-based model outperforms the stochastic modeling756

framework in terms of false prediction probability pf . It is757

found that at 10 dB SNR, mean pf over different values758

of fading parameter for learning-based model is 39% lower759

compared to the stochastic modeling framework.760

Remark 1: In dynamic channel conditions, the learning-761

based model is able to follow channel dynamics more closely762

compared to the stochastic modeling-based framework.763

E. Comparison of Packet Loss Probability764

In this section, the channel-adaptive data transmission765

scheme based on the proposed stochastic modeling, learning,766

and probing-based CS estimation frameworks is simulated for767

varying average SNR and fading conditions, and their rela-768

tive performances are compared with respect to packet loss769

probability pl, respectively, in Figs. 8 and 9.770

It is observed from Fig. 8 that at very low SNRs (< 0 dB),771

the channel is mostly unusable and pl is high irrespective of772

the CS estimation approach. However, as the channel con-773

dition improves, pl eventually drops close to 0. A detailed774

view on the log scale reveals that as compared to the stochas-775

tic modeling framework, pl obtained using the learning-based776

model is close to the benchmark probing-based transmission.777

During the transition region, mean pl of stochastic modeling,778

learning, and probing-based approaches is observed to be,779

respectively, 0.089, 0.078, and 0.079. The stochastic modeling780

framework has higher packet loss probability pl due to high781

false prediction probability pf . Numerically, with respect to782

the probing-based approach, at fD = 50 Hz, mean packet783

loss probability over varying SNR for learning and stochas-784

tic model-based schemes is higher by 1.2% and 12.3%,785

respectively.786

Fig. 9 shows loss performance pl of the proposed stochastic787

modeling, learning, and probing-based transmission schemes788

at different values of channel fading parameter fDTs at SNR789

= 10 dB. With increasing fDTs, pl rapidly decays to 0 despite790

high false prediction probability pf in the fast-fading scenarios.791

This behavior is primarily due to the efficacy of RS codes in792

Fig. 9. Packet loss probability comparison of learning-based and stochastic
modeling-based frameworks with respect to probing-based transmission at
different fading parameter and SNR = 10 dB.

handling fast fading. Without RS coding, the probing-based 793

approach will benefit in the fast fading environment, where 794

the prediction capability of the stochastic and learning-based 795

frameworks gradually reduce due to decreasing correlation 796

in channel samples. However, with the proposed channel- 797

adaptive transmission scheme using RS coding, probing-based 798

data transmission helps only over a small fading window. 799

For the slowly varying channel, the size of burst error 800

is larger and may exceed the error correction capabil- 801

ity of the code even after using maximum redundancy. A 802

detailed view of pl variation reveals that the performance 803

of the channel-adaptive transmission scheme using stochas- 804

tic modeling, learning, and probing-based CS estimation is 805

alike for fDTs < 0.02. Thus, if the channel is highly corre- 806

lated, the stochastic modeling framework, which is relatively 807

simpler in terms of computation complexity and inexpensive 808

due to the minimum feedback requirement is equally efficient. 809

Consequently, learning and probing-based approaches may not 810

be required at all in this region. However, with increasing fDTS, 811

the prediction accuracy of the stochastic model deteriorates, 812

while learning and probing-probing-based approaches adapt to 813

channel dynamics. 814

Remark 2: With increasing average SNR and fading condi- 815

tions in the channel, the performance of the learning-based 816

approach closely matches with the probing-based approach 817

and is better in comparison to the stochastic framework. 818

However, stochastic modeling-based channel prediction bene- 819

fits the system in case of a slowly varying channel. 820

F. Overhead Analysis 821

Signaling and computational overheads of the proposed 822

adaptive transmission schemes are studied here. 823

For packet transmission, required channel overhead com- 824

prises of its block size and the corresponding signaling. It 825

may be noted that signaling overhead varies with fading con- 826

ditions in the channel, while for a given fading, the block 827

size is chosen based on average SNR. Thus, a variation of 828

signaling overhead with fading parameter and bandwidth con- 829

sumption with SNR for adaptive data transmission schemes 830

using proposed stochastic modeling, learning, and probing- 831

based channel prediction frameworks are shown in Figs. 10 832

and 11, respectively. From Fig. 10, it can be observed that 833

signaling overhead required for the stochastic model is mini- 834

mum owing to the requirement of only previous slot CSI for 835
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Fig. 10. Comparison of signaling overhead of the learning-based frame-
work and stochastic modeling with respect to probing-based transmission,
with varying fading parameter, SNR = 10 dB.

Fig. 11. Comparison of bandwidth consumption of learning-based and
stochastic modeling-based frameworks with respect to probing-based trans-
mission at different SNR and fD = 50 Hz.

prediction of current CS. On the contrary, the training length of836

the learning-based prediction model increases with the fading837

parameter, thus adding to the signaling overhead. In the case838

of probing-based data transmission, requirement of signaling839

overhead is maximum as the probing query and its response840

are assigned the maximum number of redundant symbols for841

their successful reception. It is evaluated that for a fixed num-842

ber of blind intervals at SNR = 10 dB, the mean signaling843

overhead requirement of the probing-based data transmission844

scheme exceeds by 65.8% and 11.2% with respect to data845

transmission using the proposed learning model for, respec-846

tively, slow and fast varying channel. In comparison to data847

transmission using stochastic modeling, the signaling overhead848

of probing-based data transmission is almost 98% higher.849

Furthermore, from the bandwidth consumption plot in850

Fig. 11, it can be noted that BWc in the worst CS (SNR851

< 10 dB) is highest owing to the largest size of transmis-852

sion block in the channel-adaptive coding scheme, followed853

by intermediate state (10 dB ≤ SNR ≤ 25 dB), and least BWc854

in the best state (SNR > 25 dB). Moreover, it can be observed855

that due to better prediction accuracy in the vicinity of channel856

boundaries (see Fig. 6), BWc in the learning-based approach857

is optimized to suit the channel conditions. For instance, from858

the magnified subplot in Fig. 11, BWc of the learning-based859

model is higher compared to the stochastic framework when860

more symbols are expected to be in error in order to maintain861

low packet loss and vice versa. Numerically, with respect to the862

probing-based approach, at fD = 50 Hz, mean BWc over vary-863

ing SNR for learning and stochastic model-based schemes is864

higher by 2.3% and 4%, respectively, which is only marginal.865

Fig. 12. Variation of runtime with training length in learning-based CS
prediction framework.

It may be recalled from Section III-D that the computa- 866

tional complexity (i.e., runtime) of the stochastic modeling 867

and learning-based framework is, respectively, constant and 868

O(a3), where a is the training length. Mean runtime of the 869

proposed stochastic modeling is found to be 0.0038 s/packet. 870

In Fig. 12, variation of runtime with training length for trans- 871

mission of 100 packets using learning-based CS estimation is 872

presented. The cubic nature of runtime variation with training 873

length as studied in Section III-D is validated in this plot using 874

curve fitting. The parameters of curve fitting as obtained are: 875

runtime, τ(a) = λ1a3 + λ2a2 + λ3a + λ4, where λ1 = 0.6655, 876

λ2 = 0.8557, λ3 = 0.9921, and λ4 = 1.397; goodness of fit, 877

R2 = 0.9992, root mean-square error (RMSE) = 0.011. It may 878

be recalled that computation complexity of data transmission 879

using probing-based CS estimation is negligible. 880

Remark 3: The computation complexity of the learning- 881

based prediction model is higher. However, for varying chan- 882

nel conditions, it incurs far less signaling overhead and has 883

comparable packet loss performance compared to the bench- 884

mark probing-based transmission. Also, runtime complexity as 885

well as signaling overhead of the stochastic modeling frame- 886

work are significantly low, though it incurs somewhat higher 887

packet losses, especially in more dynamic channels. 888

G. Delay Investigation 889

For the real-time implementation of the proposed channel- 890

aware transmission protocols, the computation capability of 891

commercially available hardware PMUs can be augmented 892

using a secondary processor such as Raspberry Pi (RPi) on 893

which the stochastic modeling, data-driven framework, and 894

probing-based channel prediction models are configured. From 895

the networking literature, it is known that the delay incurred 896

for the successful reception of a packet comprises of process- 897

ing, transmission, and propagation delay. It may be recalled 898

from Section II that in this article, a point-to-point commu- 899

nication scenario is considered where the PMU packets are 900

transmitted to the nearest PDC over a single-hop wireless 901

communication network such that the propagation delay is 902

negligibly small. Besides, with the use of 4G technologies, 903

such as LTE having a typical uplink rate of 50–100 Mb/s, 904

the transmission time of PMU data packet is on the order of 905

microseconds, which is insignificant. Also, due to the time- 906

critical nature of PMU data, retransmissions are not consid- 907

ered. Consequently, the primary component of delay involved 908

in the transmission of time-critical PMU data is the execution 909
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TABLE II
PROCESSING DELAY OF THE ADAPTIVE TRANSMISSION STRATEGIES

time of the proposed channel-aware transmission strategies on910

the augmented secondary processor. It may be noted that since911

the Linux-based operating system is supported on most sec-912

ondary processors, the proposed channel-aware transmission913

strategies are executed in a Python-based environment to have914

an estimate of the processing delay. In Table II, code simu-915

lation times observed during the execution of channel-aware916

transmission framework using probing, stochastic modeling,917

and data-driven learning-based prediction model, respectively,918

on Python 3.7.4 running on Intel i7 processor @ 2.4 GHz and919

8-GB RAM are presented.920

To meet the QoS criterion of smart grid monitoring and921

control, it is required that the incurred delay is within the922

acceptable latency limits. This is typically in the range of923

20 ms–10 s and varies with the kind of application feeding on924

the data [40]. From Table II, it is observed that for the probing-925

based approach and stochastic modeling-based prediction, the926

respective processing delays are well within the minimum927

acceptable latency threshold. In case of the learning model,928

the latency bound is easily met for slowly varying channel929

(fDTs ≤ 0.1), while for fast variations (fDTs > 0.1), processing930

delay is on the same order as the minimum latency threshold.931

It is notable from [11] that the delay in learning-based prun-932

ing is around 12 ms. Since smart grid networks with fixed933

deployed PMUs and PDCs are expected to experience very934

little mobility in the environment (equivalently low value of935

fDTs), delay in learning-based channel adaptation is typically936

less than 10 ms. Hence, the total processing time in data prun-937

ing and learning-based channel adaptation is expected to be938

closely around the minimum delay limit.939

Remark 4: Execution of the proposed channel-adaptive940

transmission protocols in a Python-based environment indi-941

cates that the proposed stochastic modeling-based as well as942

probing-based approaches require negligible additional pro-943

cessing delay at the smart PMU node. It is also found that the944

proposed learning-based approach can be effectively imple-945

mented at a minor cost of adding secondary processing and946

storage capabilities, and the total data handling delay at the947

smart PMU is closely comparable to the required latency948

constraint for delivery of time-critical PMU data.949

VI. CONCLUSION950

To summarize, in this article, novel strategies have been951

proposed for channel-aware transmission of sporadic but time-952

critical PMU data in smart grid IoT networks. It has been953

demonstrated that by exploiting temporal correlation in the954

wireless channel, the proposed techniques, especially learning- 955

based prediction can effectively follow channel variability 956

leading to accurate CS prediction in the required transmis- 957

sion slots. In comparison to the benchmark probing-based 958

data transmission scheme, at fD = 50 Hz, mean packet loss 959

probability over varying SNR for the stochastic modeling 960

and learning-based transmission exceed by 12.3% and 1.2%, 961

respectively, though their corresponding signaling overhead 962

requirements are 98% and 38% lower. 963

With this article, we anticipate that augmenting the smart 964

IoT devices, such as smart PMUs, with node-level intelligence 965

in terms of channel awareness and adaptive data transmission 966

capability will significantly contribute to efficient handling of 967

big data footprints in future IoT communications. 968
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