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Adaptive Multivariate Data Compression in Smart
Metering Internet of Things
Mayukh Roy Chowdhury, Sharda Tripathi, and Swades De

Abstract—Recent advances in electric metering infrastructure
has given rise to the generation of gigantic chunks of data.
Transmission of all of these data certainly poses a significant
challenge in bandwidth and storage constrained Internet of
Things (IoT) where smart meters act as sensors. In this work,
a novel multivariate data compression scheme is proposed for
smart metering IoT. The proposed algorithm exploits the cross-
correlation between different variables sensed by smart meters
to reduce the dimension of data. Subsequently, sparsity in each
of the decorrelated streams is utilized for temporal compression.
To examine the quality of compression, the multivariate data
is characterized using Multivariate Normal – Autoregressive
Integrated Moving Average (MVN-ARIMA) modeling before
compression as well as after reconstruction of the compressed
data. Our performance studies indicate that compared to the state
of the art, the proposed technique is able to achieve impressive
bandwidth saving for transmission of data over communication
network without compromising faithful reconstruction of data at
the receiver. The proposed algorithm is tested in a real smart
metering set-up and its time complexity is also analyzed.

Index Terms—Smart meter, Internet of Things, multivariate
data, principal component analysis, compressive sampling

I. INTRODUCTION

W ITH rapid growth in the number of smart objects in the
era of Internet of Things (IoT), big data has always

been an area of concern. Sensors deployed in an IoT setup
generate a massive amount of data which is transmitted over
the communication channel to a central entity, e.g. a cloud
server. Advanced metering infrastructure (AMI) is an emerging
IoT scenario where smart electricity meters behave as sensors.
They are installed in domestic or industrial environments and
continuously sample values of different variables to monitor
electricity consumption. This data is interfaced with vari-
ous applications, namely billing, demand side management,
load forecasting, and dynamic pricing, to facilitate resource
optimization by the service provider and quality of service
delivery to the consumers. In a typical smart meter set-up,
electricity consumption is sampled at high frequency and
reported periodically to the collecting node as shown in Fig.1.

Millions of smart meters installed throughout the world
generate gigabytes of data which is expected to rise even
up to the order of hundreds of terabytes per year in near
future [1]. Practical examples given in [2], [3] show how a
hundred million of such meters recording five kilobytes of
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Fig. 1: Data communication framework in AMI.

data once in 15 minutes can collectively generate as high as
2920 terabytes in one year. Owing to this enormous volume of
generated data, the requirement of bandwidth for transmission
and storage space for data archival is very high. Also, from
the Internet service providers’ perspective, loading the network
unnecessarily in a constrained scenario needs to be avoided.
Hence, compression or pruning of smart meter (IoT) data has
attracted the attention of the research community in recent
years, as it can lead to saving in transmission bandwidth for
the telecom operators and reducing the storage cost [2]–[5].

A. Related works

Smart meter data compression techniques reported in the
literature can be broadly categorized based on: a) operating
mode: at the meter or at the aggregation point in the AMI
framework; b) quality of reconstruction: lossy or lossless. A
brief overview of relevant literature is presented below.

Spatial compression techniques are applied at the aggrega-
tion point, where consumption data from multiple users are
available [6]–[8]. The study in [6] expressed the consumption
profile of different customers as different combinations of a set
of partial usage patterns and used them for spatial compres-
sion. It also exploited sparsity in electricity consumption data
of a single customer for temporal compression. The authors
in [7] capitalized on the spatial correlation of single variable
data collected from metering devices at multiple substations.
In [8], load data was characterized using generalized extreme
value distribution, and the load features were used for data
compression. The main objective of these works is saving of
transmission bandwidth between data collectors (aggregation
points) and the control center. It is also noted that these
techniques have considered low-resolution data.

When data is captured at a high resolution, inconsistencies
in consumption patterns bring down compressibility of meter
data owing to the difficulty in identifying the underlying
patterns. Algorithms applied at the individual device level
in smart metering framework have considered data of higher
resolution (1 sample in several seconds) and mostly employ
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lossless compression [9]–[12]. In [9], the authors compared
performance of four lossless compression algorithms, namely,
Markov Chain Huffman coding, Lempel - Ziv Markov Chain
algorithm, Adaptive Trimmed Huffman method, and Lempel -
Ziv - Markov Chain - Huffman method, on smart meter data.
A lossless compression technique for smart meter load profiles
has been recently reported in [10], which uses Gaussian
approximation based on dynamic nonlinear learning technique.
A low complexity loss-less compression method with resum-
ability was proposed in [11] based on differential and entropy
coding. It was applied on high frequency open dataset REDD
[13] with smart meter data logged at every second. In [12],
two well-known lossless techniques, namely, Lempel - Ziv
Welsh (LZW) and Adaptive Huffman Coding, were assessed
in terms of overhead and quality of compression. Datasets
with relatively higher sampling period of 10 to 60 minutes
were used, and LZW showed better performance.

Lossless compression schemes lead to accurate reconstruc-
tion, and they do not incur any information loss. Lossy
algorithms, on the other hand, have a higher compression ratio,
which makes them suitable for application in error-tolerant
scenarios, such as in a wireless communication environment.
Moreover, many smart metering applications, e.g., load fore-
casting, do not require the exact consumption data; rather,
a reasonably accurate trend of consumption is sufficient in
deciding on an action. Hence, there exists a trade-off between
the extent of compression achievable and the information lost
due to it. A lossy compression technique proposed in [14]
applied piece-wise regression on time series data generated by
smart meters and claimed that the compression did not lead to
any significant information loss. Sparse coding was also used
as lossy compression technique on smart meter data in [15],
where the compressed data was further used for load fore-
casting in residential areas. Symbolic aggregate approximation
was used for smart meter data compression [16]; however,
this approach was found to suffer from poor recoverability.
A lightweight joint authentication and compression scheme
for low-cost smart meters was proposed in [17]. A load
data compression technique based on Neural Network was
proposed in [18]. The authors in [19] highlighted the storage
constraints in smart meters and suggested a lossy compression
algorithm to address the storage constraint. In a recent study
[20], the authors proposed a lossy data compression scheme on
a single time-series data that offers higher bandwidth saving
compared to the existing schemes.

B. Motivation and major contributions

From the current state-of-the-art, it is observed that most of
the existing smart meter data compression techniques consider
individual variable only. For example, Adaptive Compressive
Sampling (ACS) algorithm proposed in [20] operates on only
apparent power (AP) data. A few works that have considered
multiple variables, for example [7], applied the compression
techniques on each of the variables independently.

In real smart meters, multiple variables, such as power,
current, voltage, frequency, energy, and meter-health related
parameters, are sensed and transmitted over communication

link to a data aggregator. Since the amount of data generated
by numerous smart meters is massive and the communication
bandwidth is expensive, it is essential to investigate whether
continuous transmission of each of the measured variables is
required. Some of them are expected to be correlated, and
hence there may be redundancy in the information. To this end,
characterization of multivariate smart meter data is expected
to help in capturing the inter-dependence between different
variables. Modeling of the joint distribution of multivariate
data will also help to identify whether the distribution of data
is preserved after pruning of the content, which in a way would
validate the reconstruction accuracy.

Motivated by the above observations, this work presents
a multivariate data compression scheme which exploits the
cross-correlation among different variables measured by a
single smart meter, to reduce the dimension of transmitted
data. Subsequently, for each of the chosen dimensions, sparsity
is evaluated to compress them temporally. To the best of our
knowledge, there is no existing work that exploits the cross-
correlation between different variable streams of smart meter
to perform multivariate data compression.

The key contributions of this work are as follows:
(i) A novel two-step adaptive compression of multivariate

smart meter data is proposed which exploits the temporal
correlation in each individual time-series data as well
as the cross-correlation among different time series data
variables. The proposed technique is shown to achieve up
to 36% improvement in bandwidth saving compared to
the existing closest competitive approach in [20] without
compromising on quality of service (QoS) of the smart
metering application.

(ii) A novel method for characterization of multivariate smart
meter data using Multivariate Normal Autoregressive
Integrated Moving Average (MVN-ARIMA) model is
proposed. The proposed characterization model is further
used to validate the reconstruction accuracy of adaptive
multivariate compression technique proposed in (i).

(iii) Empirical optimization of the operating parameters,
namely, batch size, sparsity, and minimum required di-
mensions is investigated with respect to the data variabil-
ity for low-complexity online execution of the proposed
adaptive compression algorithm.

(iv) Reconstruction accuracy of the proposed adaptive mul-
tivariate compression scheme for smart meter data is
also validated using a real-life application involving the
utility as well as the consumer. It is demonstrated that
incorporation of the proposed technique does not have
any adverse effect on the applications which use data
collected by commercial smart meters.

(v) The proposed algorithm is implemented in real smart
meters deployed across the university campus, each with
a different data signature. These real implementation
performance results show that the proposed algorithm
is resource-efficient and computationally inexpensive.

C. Paper organization
The paper layout is organized as follows. Section II briefly

gives an overview of the basic techniques used in this work.
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Section III describes the proposed algorithm. Modeling of
the joint distribution of the multivariate smart meter data is
presented in Section IV. Section V contains the numerically
obtained compression results on different datasets. In Section
VI, real system implementation of the algorithm is described.
Section VII concludes the paper.

II. PRELIMINARIES

The proposed algorithm for multivariate data compression
uses a two-step mechanism. In the first step, dimensionality
of data is reduced by applying Principal Component Analy-
sis (PCA). Exploiting the cross-correlation between different
variables in smart meter data and using it for dimensionality
reduction is one of the salient contributions of this work. To
this end, it is of prime importance to choose the right tool for
this task. Other than PCA, the most popular dimensionality
reduction techniques available in the literature are: Indepen-
dent Component Analysis (ICA), Linear Discriminant Analy-
sis (LDA), Multidimensional Scaling (MDS), Locally Linear
Embedding (LLE), Isometric Mapping (Isomap). Through a
comparative study among these competitive techniques, it was
inferred in [21] and [22] that, in terms of accuracy as well
as processing speed, PCA offers the best trade-off. In the
second step, each of those selected components is further
compressed temporally using Compressive Sampling (CS).
These techniques are briefly discussed next.

A. Principal Component Analysis

PCA [23] is a dimensionality reduction technique which
transforms an n−dimensional data to p dimensions. With
strongly correlated features in input data, p � n, and, in the
transformed space most of the variance of the entire data is
preserved in only a few dimensions. PCA involves computing
eigen vector − eigen value combinations from covariance
matrix of the input data X ∈ Rm×n, where n is the number
of features or variables and m is the number of samples
taken from each feature. The covariance matrix is defined
as: Cov(X) = E[(X − E(X))(X − E(X))T ]. The eigen
vectors act as orthogonal basis in the transformed space. Using
singular value decomposition, a matrix X is factorized as:

X = USV T , (1)

where S ∈ Rn×n is a diagonal matrix with the singular values,
i.e., square root of the eigen values of X as the diagonal
entries. The left and right singular vectors of X are stored in
columns of U ∈ Rm×n and V ∈ Rn×n. Hence the projected
data in the transformed space, Y ∈ Rm×n is expressed as:

Y = XV = (USV T )V = US. (2)

V being invertible, X can be easily reconstructed. It can be
shown that the matrix U of singular vectors of the data matrix
X is same as the matrix of eigen vectors of the Cov(X)
[24]. Contrary to various other linear transforms where fixed
orthogonal basis vectors are used, the basis vectors in PCA
are data-dependent. After PCA is performed, the principal
components are uncorrelated and arranged in their decreasing
order of variance. A few components are chosen so that most

of the variance of data is preserved, leading to compression of
data while keeping the information loss at a minimum. This
is further elaborated in Section III-A.

B. Compressive Sampling

CS [25] is a technique that can directly acquire a condensed
representation without losing much on the information content.
If an m−dimensional signal y has to be monitored using a
sensor, the best case would be to get all the m values. But in
constrained environments, only a compressed version ỹ with
m̃ < m samples might be available. ỹ is expressed as: ỹ = φy,
where ỹ ∈ Rm̃ and y ∈ Rm; φ ∈ Rm̃×m is called the sampling
matrix. The notion of CS says, it is possible to recover y
from ỹ if there exists an orthonormal basis ψ that transforms
the signal y into a sparse domain. Consequently, y can be
expressed as: y = ψα, where the vector of coefficients α
corresponding to the sparsifying basis matrix ψ ∈ Rm×m is
sparse in the sense that, if the magnitudes of α are sorted, they
decay considerably fast. Thus,

ỹ = φψα = Aα, (3)

where A = φψ. To recover y from the measurements ỹ, the
sparsest possible solution for α should be found that satisfies
(3). The recovery problem of interest is framed as:

P0 : min
α

‖α‖0 subject to ỹ = Aα. (4)

Although l0-minimization in (4) is an NP-hard problem, vari-
ous approximation algorithms are proposed in the literature to
find the solution to l0 optimization problem with reasonably
low computation complexity. These can broadly be grouped
into greedy and relaxation methods. Greedy pursuit algorithms
like Orthogonal Matching Pursuit (OMP) [26] have been found
to faster than approximation algorithms such as Basis Pursuit
[27], which can be handled by linear programming (LP)
solvers. In this work, Subspace Pursuit (SP) [28] has been
used for reconstruction in CS which is claimed to be nearly
as accurate as LP methods while its computational complexity
is fairly low, on the same order as that of OMP.

III. PROPOSED ALGORITHM

This section presents the proposed Adaptive Multivariate
Data Compression (AMDC) scheme for smart meter data.

A. Adaptive multivariate data compression (AMDC)

Multivariate compression of smart meter data involves
decorrelating the input variables, having high cross-
correlation, using PCA, and then exploiting the sparsity in each
of those decorrelated streams to achieve further compression
using CS. At the transmitter side, first, PCA is applied on the
multivariate data in a batch. This process obtains the principal
components by using eigen value-eigen vector combination
from correlation matrix of the data. Starting with the eigen
vector corresponding to the highest eigen value, the algorithm
identifies the required number of principal components that is
sufficient for reconstructing the original data at the receiver
side. As in PCA projected space most of the variance of the
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data is preserved in a few dimensions, only those many prin-
cipal components are considered for an acceptably accurate
reconstruction of data at the receiver. Let X ∈ Rm×n be the
input data matrix, where n is the number of dimensions, i.e.,
variables measured by the smart meter, and m is the number of
samples taken from each variable. PCA operation on X returns
the orthogonal basis vectors in V and principal components
in Y , as shown in (2).

Let p be the number of principal components that preserve
more than a certain predefined threshold percentage of the total
variance, such that p < n. Then, only those p principal com-
ponents and the corresponding basis vectors are required for
an acceptable reconstruction at the receiver. More specifically,
to retain ξ % variance, p is chosen such that the following
relation holds:

p =

{
min{κ} :

∑κ
i=1 sii∑n
i=1 sii

>
ξ

100
, 1 6 κ 6 n

}
, (5)

where sii is the element of diagonal matrix S at the ith row
and ith column. To find the value of p, the matrix S from
(1) is used. After the value of p satisfying (5) is chosen, the
reduced matrix Vred ∈ Rn×p, which consists of only the first
p columns of V , is obtained. If ξ is close to 100, most of the
variance in data is captured in the p dimensions, resulting in
less error in reconstruction. In this work ξ = 99 is considered
to ensure faithful reconstruction of all n dimensions of data
from p principal components.

The projection of X along those p orthonormal dimensions
are given by: Yred = XVred. Next, every column of Yred ∈
Rm×p is sent to the CS block for temporal compression.
Sparsity k of each column is estimated by the number of DFT
coefficients that preserve at least 99.99% energy of all the
samples.

B. Reconstruction of data at the receiver

Let yu be the uth column of Yred, and after it is passed
through the CS block, let ỹu be the temporally compressed
output. At the cloud or the data aggregator, ỹu vectors are
received, from which the corresponding yu is estimated as ŷu.
Thus, the minimization problem in (4) is reframed as:

P1 : min
αu

‖αu‖0
subject to ỹu = Aαu ∀u ∈ {1, 2, · · · p}. (6)

The p optimization problems in (6) corresponding to the p
principal components are to be solved independently. Since
each column represents a smart meter variable projected in
transformed space, they may have different sparsity. To adapt
to the temporal dynamics, sparsity of each stream is computed
at the run time. The solution to the uth problem in (6) is a
sparse vector ᾱu . From all these ᾱu vectors, first ŷu vectors
are estimated, and then from them, Ŷred is constructed. Thus
Ŷred is an estimate of Yred. SP algorithm is used for this
CS recovery because of its decent reconstruction performance
and fast computation. To make sure that the matrix A satisfies
restrictive isometry property, the matrices φ and ψ have been

Fig. 2: Flow diagram of the proposed AMDC algorithm.

TABLE I: Components of time complexity

PCA Compressive Sampling
Transmitter Side O(n3) +O(p) O(mpb3)
Receiver Side O(mpn) O(p(k(b+ k2)log(k)))

taken as identity matrix and FFT of identity matrix, respec-
tively [25]. Now, as part of the PCA reconstruction the actual
batch data is recovered back from Ŷred as: X̂ = ŶredVred

T .
The proposed algorithm is adaptive in the sense that both

sparsity in CS (which decides the number of transmitted
samples) and number of principal components in PCA (which
decides the number of transmitted variables) are computed
during the run time. Hence both of them are adaptively decided
based on data variability within a batch. Flow of the proposed
algorithm is depicted using a block diagram in Fig. 2.

C. Complexity of the proposed algorithm

The order of complexity is computed by finding the com-
plexity of one iteration and the required number of iterations.
Computation complexity of the proposed algorithm is divided
primarily into four components as shown in Table I along with
the respective orders of complexity, where n is the dimension
of original data (number of variables), m is the number of
samples of each variable in a batch, p is the number of
principal components in each batch, b is the batch size for CS,
and k is the sparsity in a batch averaged across all principal
components. For a particular dataset, n,m, b are configured
offline to certain fixed values before online execution. Hence,
combining all four components, complexity of the algorithm,
when executed on a meter, is given by: O(p). Thus, run-time
computation complexity of AMDC is linear in the number of
principal components in a batch.

IV. MODELING MULTIVARIATE DATA

The joint distribution of multivariate smart meter data is
modeled in this section which is used in Section V-F to
characterize the actual data as well as the reconstructed data.
The objective is to evaluate the quality of compression or loss
in information.

Time series data in general exhibits temporal correlation.
Hence, to model the joint distribution of multiple time series
data, first, the individual time series is characterized using sig-
nal models, such as AR, ARMA, and ARIMA. Afterward, the
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TABLE II: Datasets used for performance evaluation
Meter Installation Site Sampling Interval
Meter-01 A computing research lab 30 sec
Meter-02 Power distribution substation of a multi-storey building 30 sec
Meter-03 Mechanized kitchen of a student dormitory 30 sec
Meter-04 Telephone switch room of the university 30 sec
iAWE A household location 1 sec

inter-dependence is captured by modeling the joint distribution
of the decorrelated residuals [29], [30].

In our context, the multivariate smart meter data is charac-
terized using MVN-ARIMA modeling. For modeling of joint
distribution, five primary variables, namely, apparent power,
power, current, voltage and frequency, which are common
amongst all the datasets, are considered in this work. The
temporal correlation of all the individual variables are captured
using ARIMA models [31] as it is suitable for non-stationary
data. An ARIMA(p, d, q) model, when applied on a non-
stationary time series data, does a differencing of order d to
stationarize before fitting it to ARMA(p, q). Following this, the
inter-dependence among the residuals is modeled by MVN
distribution. Multivariate normality is tested using squared
Mahalanobis distance between an MVN distribution and a
random point picked from that distribution [32]. In a way, it
generalizes in multiple dimensions the concept of measuring
how many standard deviations away a randomly chosen point
P is from the mean of a distribution D. For a multivariate
normal distribution with mean µ and covariance matrix Σ, the
squared Mahalanobis distance is defined as:

MD2(x, µ) = (x− µ)TΣ−1(x− µ). (7)

It can be shown that the squared Mahalanobis distance MD2

of a normally distributed data follow χ2 distribution. If a
random data point is picked from a multivariate normal
distributed data, its MD2 will be smaller than or equal to
a critical value with probability p [24]. From the χ2 table of
critical values, it is seen that, for 5 degrees of freedom, the
critical value is 15.09 for p = 0.01, i.e. at most 1% samples
can have MD2 > 15.09, and those are outliers. The data
characterization described here will further be used in Section
V-F to validate the performance of the proposed technique.

V. RESULTS

In this section extensive analysis of the performance of the
proposed algorithm is done by employing it on multiple smart
meter datasets. Subsequently, the performance is compared
with that of (i) the current practice of transmitting original
meter data and (ii) a closest competitive technique for smart
meter data compression recently reported in [20].

A. Datasets used for evaluation

The proposed algorithm is applied to multivariate data from
four real smart meters (Meter-01, Meter-02, Meter-03, Meter-
04) installed at different locations in the university campus
where the sampling interval is set to 30 seconds. To test
performance of the proposed algorithm on finer granular data,
it is also applied on an open dataset namely iAWE [33],
which provides a sampled record of the domestic load of

TABLE III: Cross-correlation between different variables

Variables Correlation Coefficient Category
AP, Current, PF, Power 0.98-0.99 HIGH
Energy, Power Interrupt 0.75 MEDIUM
Frequency, Voltage 0.24 LOW

Fig. 3: CS block compression performance versus batch size.

a household at 1 second intervals. iAWE has been chosen
over other open smart meter datasets available on the web
as it includes data corresponding to more than one variable.
All the installation sites along with the sampling interval
of the corresponding meters are listed in Table II. Each of
these locations have multiple appliances with unique power
signatures; cross-correlation information of multiple variables
are listed in Table III.

B. Performance indices

The metrics used in performance evaluation of the algorithm
are described here. All the variables used here carry the
same meaning as mentioned in Section III-C unless explicitly
mentioned.
(a) To quantify the gain achieved by the algorithm, percent-

age bandwidth saving is used, which is computed as:
n·m−(p·k+n·p)

n·m × 100.
(b) Error induced in the process is measured in terms of

normalized root mean squared error (nRMSE) [34] of
reconstruction for each variable which is calculated as:
1
x̄

√
1
m

∑m
i=1(xi − x̂i)2,

where xi and x̂i are actual and reconstructed data of the
variable under consideration; x̄ is the maximum of actual data
of the same variable, which is used as the normalization factor.

C. Estimation of optimum batch size

While implementing the proposed algorithm on real smart
meters, data are fed in batches. Hence estimation of optimum
batch size is of interest. In Fig. 3, the variation of bandwidth
saving and nRMSE with increasing batch size are shown
for different variables of one of the meters (Meter-01). It is
observed that for all the variables, as batch size increases,
the nRMSE of reconstruction is non-decreasing, whereas the
corresponding bandwidth saving decreases. Hence the batch
size of CS is kept at the minimum possible value, i.e., two.
The performance with the other meters exhibit similar trends,
and hence they are not shown here.
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(a) 30 sec sampled data (b) 1 sec sampled data

Fig. 4: Batch size estimation for PCA.

Fig. 5: Reconstruction nRMSE of AMDC for all variables.

In Fig. 4a variation of bandwidth saving with increasing
batch size for PCA is presented. It is observed that, for most
of the meters with 30 seconds sampling interval, there is
no significant variation in bandwidth saving beyond batch
size of 30 samples. Also, from the literature, it is noted that
the smart meters in domestic or industrial setting typically
report accumulated data once every 15 minutes [35]. Hence to
make the data collection at the cloud as real-time as possible
the batch size is limited to 30 samples which accounts for
data over 15 minutes for the meters sampling once in every
30 seconds. Similarly, for the iAWE dataset with 1 second
sampling interval, as shown in Fig. 4b, bandwidth saving
saturation was observed at batch size of 250 samples, which
is close to 4 minutes’ data.

Remark 1. Hence the optimum batch size Nopt is chosen as
30 samples for the data sampled at 1

30 Hz frequency and 250
samples for the data sampled at 1 Hz.

D. Reconstruction performance evaluation

For the faithful reconstruction of data, nRMSE induced at
the optimum batch size should not cross the allowable thresh-
old. This error threshold varies with the kind of application
of the smart meter data. In this study, nRMSE below 0.2
is considered to be acceptable, as suggested in [36]. Fig. 5
exhibits nRMSE of reconstruction for all variables across all
meters. It is observed that for every case the nRMSE is well

below the acceptable threshold 0.2, in fact on the order of
10−3. Intuitively, bandwidth saving decreases with increased
reconstruction accuracy, i.e., with reduced nRMSE threshold.
Therefore, a trade-off exists between achievable bandwidth
saving and induced nRMSE.

A comparison of actual data streams and reconstructed
streams at the receiver after decompression are presented
respectively in Fig. 6 and Fig. 7 for data sampled at 1
second (iAWE) and 30 seconds (Meter-03), respectively. It
is observed that the reconstructed data almost overlap with
the actual data in all the cases, owing to high reconstruction
accuracy. It is notable that, if instead an overall higher order
of nRMSE threshold is chosen, the bandwidth saving with the
proposed AMDC is much higher. However that is at the cost of
significantly higher mismatch in the reconstructed data, which
may be unacceptable for maintaining the QoS.

E. Comparison with adaptive compressive sampling (ACS)

Performance of the proposed AMDC algorithm is now
compared with that of a recently proposed ACS algorithm [20],
which claims to perform better than a lossless compression
method in the presence of communication errors. Since ACS
was intended for compression of single variable only, each
smart meter variable is independently compressed using ACS
and stacked together for evaluation of bandwidth saving and
reconstruction error. In Table IV, nRMSE comparison across
all locations are shown. From Table IV it may be noted that
the order of nRMSE induced in both the algorithms is same.

Fig. 8 shows the offered bandwidth saving with AMDC
and ACS with respect to non-compressed transmission. It is
observed that AMDC achieves 10% to 36% gain in bandwidth
saving over ACS for the meter data sampled at 1

30 Hz, whereas
it offers 11% gain in case of data with sampling frequency
1 Hz. In both cases, error induced with AMDC in terms of
nRMSE are still in the same order as that of ACS, thereby
verifying fairness of relative bandwidth saving performance.

Remark 2. The bandwidth saving is highly dependent on data
variability and hence it varies with installation locations.

F. Validation of reconstruction using distribution modeling

To further validate the reconstruction performance of the
proposed AMDC algorithm, multivariate distribution modeling
discussed in Section IV is used. First, the variables from the
actual data are fitted individually to ARIMA models. The
best-fit model is found using auto.arima function of forecast
package in R [37] where Akaike Information Criterion (AIC)
is used to compare models, and the order of differencing
d is computed based on Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test. The parameters (p, d, q) corresponding to the
best-fit ARIMA models of all the individual time series are
listed in Table V for all the datasets. Next, the joint distribution
of residuals from best-fit models of the actual data is modeled
using multivariate normal distribution. The goodness of fit
of the multivariate distribution is validated by Mahalanobis
distance between the actual data and the modeled distribution.
Similarly, the variables from the reconstructed data are fitted
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Fig. 6: Reconstruction of data sampled at 1 Hz (iAWE).

Fig. 7: Reconstruction of data sampled at 1
30 Hz (Meter-03).
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TABLE IV: nRMSE values for different meters and different variables

AP Current Energy Frequency Power PF Voltage
Meter-01 AMDC 0.0034 0.0044 0.0001 0.0002 0.0031 0.0117 0.0005

ACS 0.0034 0.0041 0.0001 0.0002 0.0030 0.0069 0.0005
Meter-02 AMDC 0.0050 0.0043 0.0004 0.0014 0.0039 0.0222 0.0036

ACS 0.0057 0.0036 0.0001 0.0011 0.0036 0.0174 0.0015
Meter-03 AMDC 0.0058 0.0060 0.0004 0.0044 0.0038 0.0029 0.0049

ACS 0.0051 0.0061 0.0001 0.0044 0.0038 0.0029 0.0023
Meter-04 AMDC 0.0064 0.0073 0.0005 0.0005 0.0066 0.0081 0.0076

ACS 0.0060 0.0074 0.0001 0.0005 0.0063 0.0083 0.0073
iAWE AMDC 0.0032 0.0033 N/A 0.0016 0.0036 0.0014 0.0009

ACS 0.0033 0.0032 N/A 0.0013 0.0029 0.0012 0.0009

Fig. 8: Bandwidth saving comparison for different meters.

TABLE V: ARIMA modeling parameters for best fit
AP Current Frequency Power Voltage

Meter-01 (1,1,1) (1,1,1) (3,1,2) (1,1,2) (5,1,4)
Meter-02 (5,1,5) (5,1,5) (3,1,3) (5,1,5) (1,1,3)
Meter-03 (5,1,5) (3,1,5) (3,1,3) (4,1,2) (3,1,3)
Meter-04 (5,1,5) (1,1,3) (3,1,2) (5,1,5) (4,1,4)
iAWE (1,1,1) (2,1,0) (5,1,3) (0,1,1) (2,1,1)

TABLE VI: Outliers in multivariate normality

Meter-01 Meter-02 Meter-03 Meter-04 iAWE
Actual 0.0099 0.0096 0.0096 0.0098 0.0095
Reconstructed 0.0101 0.0099 0.0105 0.0101 0.0097

to the same ARIMA models with parameters listed in Table
V, which were found in the previous step with the actual
dataset. This is followed by modeling the joint distribution
of the residuals using a multivariate normal distribution. Sub-
sequently, reconstruction performance is validated by Maha-
lanobis distance between the residuals of reconstructed vari-
ables and the modeled multivariate distribution. The fraction
of outliers among random sample points drawn from the fitted
multivariate distributions for both the actual and reconstructed
data is shown in Table VI. It can be noted from the table that,
in all cases, the number of outliers is limited to 1%. It may
be recalled that, this validation is done with batch size equal
to Nopt of the corresponding dataset.

Remark 3. Multivariate smart meter data characteristics are
preserved in the compression process; thus, the bandwidth
saving is attained with minimum loss of information.

G. Validation of reconstruction using real-life application

In the previous subsection reconstruction accuracy of the
proposed AMDC algorithm was validated using distribution

TABLE VII: Comparison of monthly bill calculated with
actual versus reconstructed data

Meter-01 Meter-02 Meter-03 Meter-04
Actual $ 57.3989 $ 4921.9 $ 205.0368 $ 105.5123
Reconstructed $ 57.3989 $ 4921.9 $ 205.0273 $ 105.5342

modeling. We now demonstrate through a practical example
that the proposed technique can be implemented in commercial
smart meters without affecting the real-life user experience.
One most pertinent application that affects both utility com-
panies and consumers in the power sector is electricity billing.
Utility companies use the month-long data collected from the
smart meters installed at household/industrial locations for
monthly billing. Table VII presents a comparison of monthly
bill calculated using the actual data and that after applying
the proposed AMDC algorithm at the smart meters installed
in the campus, assuming each of them belong to different type
of consumers. Monthly bill is calculated using the power data
from all meters and then following the bill calculation logic
of a local government-controlled power service provider. Final
billed amounts in USD are compared in the two cases. The
iAWE dataset is not considered for billing, as it does not have
month-long data. From Table VII, it can be noted that using
AMDC data instead of the actual data practically does not
affect the total monthly bill calculated from any of the meters.
In fact, use of reconstructed data leads to a maximum deviation
of 0.02%, which is quite acceptable. This result strengthens the
claim that, while AMDC reduces the bandwidth requirement,
loss of information is practically negligible.

Remark 4. The proposed technique does not have any adverse
effect in terms of monetary loss or compromise of QoS. While
at the same time, it leads to effective resource optimization for
the service provider by not loading the network unnecessarily.

VI. IMPLEMENTATION IN A REAL SMART METER

In this section, implementation of the proposed AMDC
algorithm on real smart metering setup deployed in the uni-
versity campus is presented.

A. Hardware setup

The metering hardware setup is shown in Fig. 9. It com-
prises of an ENERSOL MFR2810 energy meter which records
multiple data variables at a sampling interval of 30 seconds.
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Fig. 9: Smart metering IoT setup installed in the campus.

Fig. 10: Architecture of the smart metering system.

The meter is connected to a Raspberry Pi (R-Pi) 3 board
with 1.2 GHz 64-bit quad-core ARM v8 processor and 1 GB
RAM, which acts as the meter controller. After recording the
multivariate data, all of them are stacked together in JavaScript
Object Notation (JSON) format and then zipped using gzip
compression technique to transmit over TCP/HTTP link to
the storage cloud through a TP-LINK TL - MR3020 wireless
router. Simple Measurement and Actuation Profile (sMAP)
2.0 [38] protocol is used to read different time series data
from the meter in a simple and configurable setting, and to
publish it on the web or a central cloud. It uses Modbus
protocol to read data from energy meter. The whole system
architecture used for implementation is presented in Fig. 10.
The proposed AMDC algorithm is implemented in Python
3.6 and configured to operate in R-Pi controller in the meter
between the data collection and data transmission blocks. The
frequency of reporting compressed data to the cloud is decided
based on the optimum batch size for a particular meter, which
is governed by the location-specific meter data pattern.

B. Packet traffic comparison

Bandwidth saving with compressed batch transmission over
the network is obtained by measuring the size of the link layer
packets sent over TCP/HTTP link from the client (meter) to
the server (cloud). This evaluation has been conducted over
a period of one month and averaged to obtain per-day traffic
due to this data communication. Packet size is acquired by
sniffing packets over the connection between the client and

Fig. 11: Relative packet traffic volume generated per day.

Fig. 12: Linear fit of time complexity of AMDC.

the server access point using Wireshark software, which is an
open-source packet analyzer.

It may be noted that, in the current practice the controller
does not use any intelligence to decide on which variables or
how many samples of each variable are to be sent. Rather, it
sends all of them over the wireless access network. The com-
mercial meters installed in the university campus inherently
employ gzip format [39] for loss-less data compression before
transmission. The underlying mechanism of gzip is based on
DEFLATE [40], which is a combination of Huffman coding
and LZ77 [41]. Hence gzip is insensitive to the data dynamics
and cross-correlations, which are taken into consideration in
AMDC. In Fig. 11, the traffic volume generated without data-
driven compression (i.e., with gzip only, as done in a standard
smart meter) is compared with the traffic generated by the
proposed AMDC algorithm followed by gzip as well as by
employing ACS [20] followed by gzip. It is observed that,
compared to the conventional scheme in standard smart meters,
ACS reduces the traffic by about 50%, whereas AMDC is
able to reduce it by about 95% for 1

30 Hz data and 98.5%
for 1 Hz data. It may be noted that the percentage bandwidth
savings shown in Fig. 8 and those in Fig. 11 are different.
This is because, unlike in Fig. 11, the results in Fig. 8 did
not account for the network overhead; bandwidth saving was
evaluated only based on data reduction after compression.

C. Computation time complexity

The proposed algorithm is executed on a real smart meter,
and its per-batch execution time is noted to be 0.108 second
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for a batch size of 30 samples, collected over 15 minutes
at a sampling rate of 1

30 Hz. Thus run time overhead of
the proposed algorithm is negligible compared to the data
collection time granularity. Further, run time corresponding to
different number of principal components (p) is recorded. For
a given p, execution time is averaged over different batches.
Fig. 12 shows the variation of execution time with p. Curve-
fitting is used to study the nature of variation of execution time
with p. The parameters of curve fitting are: Execution Time,
τ(p) = α1 · p + α2; coefficients: α1 = 0.033, α2 = −0.001;
goodness of fit: R2 = 0.9999, RMSE = 0.00085.

Remark 5. It is observed that run time complexity is linear
in the number of principal components in a batch, p, which
also validates the complexity analysis in Section III-C.

VII. CONCLUSION

In this work a novel two-step compression scheme called
AMDC has been proposed for multivariate smart meter data.
The proposed AMDC algorithm exploits cross-correlation
between different variables to reduce the dimensionality of
input data. Subsequently, it exploits temporal correlation in the
individual streams to increase the bandwidth saving without
any significant information loss. Through exhaustive testing on
real smart meter data it has been demonstrated that AMDC
can reduce the bandwidth requirement for transmission of
multivariate smart meter data over actual communication net-
work by up to 98.5% while ensuring faithful reconstruction
of data in the aggregator within an acceptable error threshold.
Further, performance of the proposed multivariate compression
algorithm has been shown to offer about 36% reduction of
bandwidth requirement with respect to a nearest individual-
stream based ACS scheme. It has been noted that, different
smart meter data can have widely differing data dynamics,
which is accounted in the proposed algorithm by online
parameter tuning according to the individual smart meter
data pattern. The proposed algorithm has been implemented
in a real smart meter and its execution time overhead has
been shown to be very small in comparison with the typical
interval between two consecutive data batch transmissions.
Considering a real-life application that uses smart meter data,
it has been validated that implementation of AMDC leads to
significant reduction in network resource requirement by the
service provider while the QoS of the electricity consumer
remains unaffected.
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