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Abstract—This paper presents an adaptive multi-sensing (MS)
framework for a network of densely deployed solar energy
harvesting wireless nodes. Each node is mounted with heteroge-
neous sensors to sense multiple cross-correlated slowly-varying
parameters/signals. Inherent spatio-temporal correlations of the
observed parameters are exploited to adaptively activate a subset
of sensors of a few nodes and turn-OFF the remaining ones. To do
so, a multi-objective optimization problem that jointly optimizes
sensing quality and network energy efficiency is solved for each
monitoring parameter. To increase energy efficiency, network
and node-level collaborations based multi-sensing strategies are
proposed. The former one utilizes spatial proximity (SP) of nodes
with active sensors (obtained from the MS) to further reduce the
active sensors sets, while the latter one exploits cross-correlation
(CC) among the observed parameters at each node to do so. A
retraining logic is developed to prevent deterioration of sensing
quality in MS-SP. For jointly estimating all the parameters across
the field nodes using under-sampled measurements obtained
from MS-CC based active sensors, a multi-sensor data fusion
technique is presented. For this ill-posed estimation scenario,
double sparsity due to spatial and cross-correlation among
measurements is used to derive principal component analysis-
based Kronecker sparsifying basis, and sparse Bayesian learning
framework is then used for joint sparse estimation. Extensive
simulation studies using synthetic (real) data illustrate that,
the proposed MS-SP and MS-CC strategies are respectively
48.2 (52.09)% and 50.30 (8.13)% more energy-efficient compared
to respective state-of-the-art techniques while offering stable
sensing quality. Further, heat-maps of estimated field signals
corresponding to synthetically generated and parsimoniously
sensed multi-source parameters are also provided which may
aid in source localization Internet-of-Things applications.

Index Terms—Adaptive multi-sensing, energy harvesting-
wireless sensor networks (EH-WSNs), network residual energy,
cross-correlation, joint sparsity, spatial proximity

I. INTRODUCTION

Internet-of-Things (IoT) applications such as smart envi-
ronment [2], health-care [3], precision agriculture [4], border
surveillance [5], avalanche monitoring, target tracking [6], etc.
require simultaneous monitoring of multiple spatio-temporally
evolving correlated parameters/signals. One solution to per-
form this multi-sensing task (i.e., sensing multiple parameters)
is to deploy heterogeneous wireless sensor networks (WSNs)
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for the IoT applications. However, performing this energy-
hungry multi-sensing task using battery-constrained wireless
nodes severely limits network lifetime. This mandates devise
of a smart multi-sensing framework that intelligently optimizes
sensing quality of the various to-be-sensed parameters and
energy efficiency of the WSN. In addition, the spatio-temporal
and cross correlation characteristics of the parameters being
monitored can be exploited to impart this intelligence. Though
the intelligent multi-sensing prolongs network lifetime, it
cannot make the WSNs sustainable due to limited battery
capacity of the nodes. To impart network sustainability in
energy-intensive multi-sensing applications, such networks use
nodes equipped with ambient energy harvester module [7].

A. Related works
Various monolithic sensing approaches (wherein single pa-

rameter is sensed) over densely deployed WSNs exist in
literature. These approaches use only a few nodes to sense
a slowly varying spatio-temporal signal pertaining to an ob-
served process. The conventional ones [8], [9] opted random
selection of these fixed number of nodes. Subsequently, several
frameworks came out in the literature that select fixed number
of sensors to guarantee certain performance measures such
as energy efficiency [10], sensing quality [11]–[13], or both
[14], [15]. The authors in [16] proposed an integrated data
and energy gathering framework, called iDEG, that randomly
activates a fixed number of nodes each time for sensing while
harvest energy from non-participating nodes. Herein, double
sparsity due to spatio-temporal variations of the underlying
process is exploited to reconstruct data across entire field
using compressed sensing framework. Further, the approach
in [17] employed Bayesian framework for field reconstruction
across both high and low quality sensors measuring the same
process. For sparse heterogeneous sensor selection, maximum
allowed uncertainty at the query location is assumed and cross-
entropy method is used. However, these works considered
an impractical setting of sensing a spatio-temporally varying
signal using fixed number of nodes/sensors.

To overcome this limitation, several adaptive sensor selec-
tion techniques [18], [19] gained significant research interest.
Recently, an adaptive and energy-efficient monolithic sensing
framework was proposed in [20] that performs optimized
sensor selection by considering the sensing quality, energy
efficiency, and process variations. An optimization problem
formulation was proposed in [21] that exploits spatial corre-
lation among different sensors, learned from training data, to
select a fixed number of sensors. Herein, the training interval
is adapted by considering signal variations in the network.
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The existing infrastructure used for monolithic sensing
cannot be directly used for multi-sensing applications. De-
ployment of dedicated nodes/networks for sensing different
parameters is highly resource-inefficient. Further, replication
of the large-scale WSNs may significantly increase deploy-
ment and maintenance costs. Recent works such as [22]–[25]
explored the idea of sharing the network for multi-sensing to
overcome the drawbacks of infrastructure replication. In this
context, the work in [22] considered a node with multiple
sensors that can sense multiple parameters at a given location.
A threshold-based hierarchical approach was employed in
[24] for data reduction to realize a sustainable heterogeneous
sensor system. Likewise, adaptive hierarchical data acquisition
models based on context-aware sensing of dependent param-
eters are proposed for landslide monitoring [25]. Recently, in
order to realize the smart environment application of IoT, an
adaptive multi-sensing framework was proposed in [1] for an
energy harvesting-WSN (EH-WSN). Herein, the to-be-sensed
parameters do not depend on each other.

B. Research gap and motivation

The multi-sensing proposals [22], [23] primarily focus on
designing platforms to realize multi-sensing. Sensor selection
and field estimation aspects are left out. In the hierarchical
and threshold-based sensing strategies [24], [25], decisions
for sensing dependent parameters are based on measured
signal values corrupted with unknown noise. This associated
uncertainty raises question on their reliability. Further, these
approaches do not deal with multi-sensor data fusion for field
estimation which is critical for a monitoring application. Most
of the monolithic [16], [17], [21] and multi-sensing [24], [25]
strategies do not consider an important aspect of unequal
remaining energy of the nodes during sensor selection. It may
result in network coverage outage due to repeated selection
of a few nodes’ sensors. Moreover, these works do not
exploit intra- and inter-node collaboration in sensor selection
and signal estimation processes which may significantly help
respectively in reducing overall network energy consumption
and increasing field monitoring accuracy. Besides, none of the
existing works on multi-sensing collectively consider process
variations, sensing quality and energy consumption trade-off,
and node/network-level collaboration for sensor selection.

To overcome these lacuna, an adaptive and energy-efficient
multi-sensing framework is proposed to intelligently sense
cross-correlated spatio-temporal parameters/signals in an EH-
WSN. It accounts dynamics of the observed signals, jointly
optimizes sensing quality and network energy efficiency, and
integrates inter-/intra-node collaboration to activate a subset
of sensors of the nodes. Further, for sparse multi-sensing with
intra-node collaboration, a joint sparse recovery scheme is
presented that fuses multi-sensory data for field estimation.

C. Contributions and significance

Contributions and significance of this work are as follows:
1) An adaptive and energy-efficient multi-sensing frame-

work, named as MS, is proposed for heterogeneous
WSN. It selects a few sensors of each type mounted

on different wireless nodes to sense different correlated
slowly-varying parameters. For sensing each parameter,
a multi-objective optimization (MOP) problem is solved
that trades-off between the parameter’s sensing quality
and network energy efficiency. This heterogeneous sen-
sors selection process is adapted according to the spatio-
temporal dynamics of the observed parameters.

2) To further increase energy efficiency, a network col-
laboration based multi-sensing strategy, termed as MS-
SP, is developed. It utilizes spatial proximity of nodes
with same type of active sensors, obtained from the MS
strategy, to reduce the number of active sensors. Further,
a retraining strategy for MS-SP is also presented.

3) A node-level collaborative multi-sensing, called MS-CC,
is proposed, where cross-correlation among parameters
observed by its active sensor set (obtained from MS-SP)
is exploited to further prune this active sensors set.

4) A multi-sensor data fusion technique integrated with the
MS-CC for heterogeneous field recovery is presented.
It leverages the spatial and cross-correlation among
measurements to derive principal component analysis
(PCA)-based Kronecker sparsifying basis. The under-
sampled sensors measurements obtained from the MS-
CC and the sparsifying basis are then employed in
sparse Bayesian learning (SBL) technique to jointly
estimate sparse field parameters. This collective usage
of the spatial, temporal, and cross-correlations among
monitored field parameters has never been explored in
the existing literature on sensor selection.

5) The proposed strategies are tested on synthetic as well as
real WSN data. For synthetic data, a general procedure
of generating correlated spatio-temporal environmental
parameters is outlined. Heat-maps of these parameters’
estimates are provided for an environmental scenario
with multiple sources of different pollutants. Unlike the
existing literature, this work integrates energy awareness
in the multi-sensing framework. Performance compar-
ison of the proposed multi-sensing schemes with the
closest approaches demonstrates that up to ∼ 50% gain
in energy efficiency is achieved without sacrificing the
sensing quality of the observed parameters.

The proposed multi-sensing strategies have diverse utility,
such as in smart environment, smart agriculture, environment
monitoring, and hazardous gas monitoring.

D. Organization

EH-WSN system model for multiple parameters acquisition
and nodes’ operational energy cost are presented in Section
II. Section III presents the proposed MS strategies and their
complexities. Joint sparse recovery of field parameters is
described in Section IV, followed by simulation results and
concluding remarks, respectively in Sections V and VI.

II. SYSTEM MODEL: EH-WSN

First, the notations and conventions used are listed below.
In this work, A ∈ RM×N and a ∈ RN×1 represent

a real-valued matrix of size M × N and a real vector of
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TABLE I: List of symbols

Notation Description
N Total number of static wireless nodes
P Number of heterogeneous sensors per node
zpk ∈ RN×1 Spatial signal corresponding to pth parameter across

N nodes in kth cycle
Apk Set containing nodes with active pth sensor
Mp
k = |Apk| Total number of nodes with active pth sensor

ỹpk ∈ RM
p
k
×1 Measured pth signal corresponding to nodes ∈ Apk

Ap
k ∈ RM

p
k
×N Sensing matrix for pth parameter

Bp
k ∈ RN×N Sparsification matrix for pth parameter

ỹk ∈ RMk×1 Joint measurement vector
(
Mk =

∑P
p=1 M

p
k

)
Ak ∈ RMk×NP Joint sensing matrix for all the P parameters
zk ∈ RNP×1 Joint field signals’ vector
Eopk (n) (J) Energy consumed in operations of node n
Esk (J) Sensing energy consumed by active sensors of a node
Eremk (n) (J) Remaining energy of nth node in kth cycle
Ehk (J) Solar energy harvested by a node in kth cycle
[α, β] Lower and upper limits of BCRB
Mp
k+1|k Number of nodes predicted to have active pth sensor

in (k + 1)th cycle
Ipk Set containing nodes with active pth sensors across

which the signal is below their detection limit in
kth cycle

Ip
k+1|k Predicted set containing nodes across which the pth

signal may remain below pth sensors detection
limit in (k + 1)th cycle

Fig. 1: Multi-sensing in pollution monitoring EH-WSN.

size N × 1 respectively. IN represents an N × N identity
matrix. A (m,n), A (m, :), and Tr {A} respectively denote
the (m,n)th element, mth row, and trace of A . a (m) and
‖a‖ denote the mth element and the standard l2-norm of a
of vector a respectively. Throughout the paper, superscript
p and subscript k refer to the scalar/vector/matrix argument
corresponding to pth parameter in kth measurement cycle
respectively. The operators (.)

T , diag (·), |.|, and
⋃

denote
the transpose of the vector/matrix, the standard diagonalization
operation on a vector, the cardinality, and the set union
operation respectively. The main symbols used in this paper
are listed in Table I.

A. Multi-parameter acquisition

An EH-WSN is considered containing N static wireless
nodes, each mounted with P heterogeneous sensors to monitor

P correlated slowly-varying parameters (such as, CO, SO2,
NO2, etc., for pollution monitoring application in a solar
energy harvesting WSN, as shown in Fig. 1). Each node has
solar energy harvesting capability. Different types of sensors
have different detection limit. Let the signal corresponding to
pth parameter across N nodes in kth measurement cycle be
denoted by spatial signal vector zpk = [zpk (1) , · · · , zpk (N)]

T ∈
RN×1. For each pth parameter, central entity (fusion center
(FC)) runs the MOP problem in parallel (discussed in Section
III) and selects pth sensor of Mp

k (≤ N) number of nodes for
activation during the kth cycle. The corresponding active sets
are represented by Apk ⊆ {1, · · · , N} and |Apk| = Mp

k ,∀p.
The active/sleep status of the sensors is conveyed to the
nodes. Let sensing matrix Ap

k ∈ RM
p
k×N captures the sensing

status (active/sleep) of pth sensor of all the nodes. Each row
corresponds to pth active sensor of a distinct node out of total
Mp
k nodes. If mth row represents ith node’s pth active sensor,

then the row Apk (m, :) is given by,

Ap
k (m,n) =

{
1 (active) , n = i s.t. i ∈ Apk
0 (sleep) , n∈{1, . . . , N}\{i}

.

Let the measurement vector ỹpk ∈ RM
p
k×1 contains the pth

parameter signal sensed by the sensors of nodes ∈ Apk. Thus,
for acquiring the pth parameter, ∀1 ≤ p ≤ P , the system
model is given by,

ỹpk = Ap
kz
p
k + npk, (1)

where npk ∈ RM
p
k×1 denotes white Gaussian noise vector with

independent and identically distributed components having
zero mean and variance σ2. Thereafter, a mobile robot/data
collector collects active sensors measurements by moving to
the nodes and sends them to the FC. The FC then estimates
the signal vectors zpk,∀p, separately/jointly and runs sensor
selection strategy to broadcast sensing schedule for next mea-
surement cycle. The selected sensors of nodes then sense the
respective signals and their measurements are collected by the
mobile robot so as to transmit them to the FC. The mobile
robot does so in each measurement cycle.

Due to the inherent spatial correlation, a sparse represen-
tation of the system model can be derived using the PCA
transformation [26],

ypk = Ap
kB

p
kx

p
k + npk,∀p, (2)

where Bp
k ∈ RN×N is sparsification matrix for the pth

parameter signal zpk, xpk ∈ RN×1 is corresponding sparse
vector, and ypk ∈ RM

p
k×1 is equivalent measurement vector.

Before start of first sensing operation, training sets (T p,∀p)
containing a few past instances (Ktr) of spatial signal zp(·)
are used to compute Bp

k,∀p. Later, these sets are updated by
including current cycle’s estimate of the signal zpk. For details
on the PCA transformation, please refer work [20].

Note that the mobile robot-based sensed data collection
significantly saves transmission energy required by the nodes
to send the data to the FC. However, this consideration
increases data delivery time (delay), and thus it works well
for delay-tolerant applications such as traffic surveillance [27],
transmission line monitoring [28], etc. Other delay-tolerant
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telemetry applications include animal habitat monitoring and
border surveillance [29]. The associated delay can be de-
creased by using multiple robots to collect data. Further, note
that the mobile robot is used only in nodes-to-FC transmission
path and not in FC-to-nodes transmission path. In the latter
path, the FC directly informs the nodes about respective active
sensors by broadcasting the sensing schedule. Thus, the nodes
are not completely disconnected from the FC. This process
of sensor node activation avoids the robot-induced delay and
ensures timely activation and sensing by the sensors compared
to the scenario, where the robot is used in the FC-to-nodes
transmission path as well.

For real-time (delay-constrained) applications, such as haz-
ardous gas monitoring and health monitoring, the nodes in the
considered system model can directly transmit sensed data to
the FC as suggested in the survey [30]. This would decrease
delay encountered due to inclusion of the mobile robot,
however at the cost of nodes’ increased energy consumption
for data transmission.

It is important to note here that, the channel impairments,
such as shadowing and fading, are not taken into account
in the current work for two key reasons: (i) The application
is considered delay-tolerant and the associated communica-
tion infrastructure is suited to it. Any packet loss due to
channel variability can be mitigated through channel-aware
re-transmission strategies. (ii) Since communication distance
from the mobile robot to the individual field nodes is short and
nearly the same, the wireless channel related uncertainty and
the associated energy overhead in transmitting sensed data are
considered negligible and nearly the same for all field nodes.
Thus, accounting for the channel gain in the formulation is
expected to bring no additional insight, though the network
lifetime results may be affected.

B. Wireless node’s remaining energy calculation

A wireless node spends energy in sensing, transmis-
sion/reception, and data logging. This energy information is
vital for multi-sensing problem that aims to improve network
efficiency and reduces network energy outage. Often ignored
in the literature, this information is integrated in the current
work.

Energy consumed in various operations of a node n in
measurement cycle k (Eopk (n)) is given by,

Eopk (n) = Esk (n) + ECPUk + Ememoryk + Eradiok , (3)

where Esk (n) equals total energy consumed by active sensors
of the node n ( i.e. Esk (n) =

∑P
p=1E

p
s × 1 (n ∈ Apk) with

1 (·) being standard indicator function and Eps denotes sens-
ing energy of pth sensor ), ECPUk , Ememoryk , and Eradiok
respectively represent energy consumed in central processing
unit (CPU), memory, and radio operations. For sensing and
transmitting the sensed data to the data collector, the sensors
and other components of the considered mote (i.e. wireless
node) operates in different modes to sequentially perform
sensing, data logging, 2-way handshake with the data collector
(receive hello, transmit acknowledge), and transmit data to it
[31] as shown in Table II.

TABLE II: Different operation modes of mote’s components

Operation Sensor CPU Memory Radio
Sensing Active Sleep Off Off

Data Logging Sleep Active Write Off
Receive hello Sleep Active Off Transmit

Transmit acknowledge Sleep Active Off Receive
Transmit data Sleep Active Read Transmit

Fig. 2: Multi-sensing framework.

The energy consumed in active/sleep modes of sensors are
obtained from their data-sheets [31]. It depends on sensor type
used and its measurement time.

After transmission of sensed data to the data collector,
remaining energy of each node is updated in every cycle as
follows:

Eremk (n) = Eremk−1
(n)− Eopk (n) + Ehk , (4)

where Eremk (n) is the remaining energy of the nth node
after kth cycle and Ehk represents solar energy harvested
by the harvester mounted on the node. The energy har-
vesting profile is considered similar to [1] with hourly so-
lar irradiance Dh = [0.039, 0.124, 0.209, · · · , 0] for h =
[8 : 30am, 9 : 30am, 10 : 30am, · · · , 7 : 30am] [32] in the sim-
ulations. It may be noted that, the multi-sensing strategies
proposed in the subsequent section are applicable with ambient
energy harvesting capability of the nodes; in this study solar
energy harvesting is considered.

Further, it is assumed that the remaining energy informa-
tion of the nodes with active sensors is integrated with the
measured signal of these nodes and sent to the FC via the
robot. For the nodes with all the sleeping sensors, it is assumed
that the FC has full knowledge of the harvested energy (Ehk)
and energies consumed by the sensors, CPU, memory, and
radio in sleeping mode during various operations of the nodes
(i.e. Eopk (·)) mentioned in Table II. Using this knowledge, it
updates remaining energy of nodes with all sleeping sensors.

III. MULTI-SENSING STRATEGIES

The proposed multi-sensing strategies that exploit spatial,
temporal, and cross-correlation are outlined in this section.
The schematic of the framework is shown in Fig. 2. In step
1, the FC executes multi-sensing (MS) strategy wherein P
multi-objective optimization problems are run in parallel, one
each for selection of a type of sensor. This is followed by
execution of the network-level (MS-SP) and node-level (MS-
CC) schemes at the FC. In step 2, the FC broadcasts the
sensing schedule. Selected sensors of the nodes sense the
respective signals. Thereafter, a mobile robot collects the
sensed signals from the nodes with active sensors and transmits
to the FC. In step 3, the FC reconstructs field parameters.
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Thereafter, the same process (step 1 → step 2 → step 3)
follows in the next measurement cycle.

A. Adaptive multi-sensing (MS)

During each measurement cycle, for each parameter, the FC
runs adaptive sensor selection and signal estimation tasks in
parallel. For the latter task, the SBL framework [33] is em-
ployed which uses the vector ypk and matrices Ap

k,B
p
k of (2) to

obtain an estimate of the pth sparse signal x̂pk ∈ RN×1. From
x̂pk, estimate of the parameter signal ẑpk is obtained using the
PCA transformation and Bp

k [20]. Further, an important and
often-ignored heterogeneous sensing constraint is integrated
with the recovery and sensing tasks (discussed below): the
active pth sensor of the nodes ∈ Apk do not participate in the
recovery task if the signal zpk (·) across them is below their
detection limit ρp because the corresponding measured signal
ypk (·) = 0. Such node(s) constitute a set Ipk (⊆ Apk or ∅).

For sensing P parameters in each (k + 1)
th cycle, active

sensors of the nodes are obtained by solving P multi-objective
optimization problems (MOPs) (5) in parallel using scalariza-
tion technique [1]:

minimize
Ã
p
k+1

(n,n) ∀n

(
1−λpk+1

)
Tr

{(
1

σ2

(
Bp
k+1

)T
Ãp
k+1

(
Bp
k+1

)
+
(
Γpk+1

)−1
)−1
}

+ λpk+1

(
N∑
n=1

1

Eremk (n)
Ãp
k+1 (n, n)

)
subject to Ãp

k+1 (n, n) ∈ {0, 1} , n = 1, . . . , N (5a)

Ãp
k+1 (n, n) = 0, n ∈ {i | Eremk (i) = 0} (5b)∑

j∈Rr

Ãp
k+1 (j, j) ≥ 1, r = 1, . . . , R (5c)

Ãp
k+1 (n, n) = 0, n ∈ Ip

k+1|k. (5d)

Tr
{(

1
σ2

(
Bp
k+1

)T
Ãp
k+1B

p
k+1 +

(
Γpk+1

)−1
)−1

}
represents

Bayesian Cramér-Rao bound (BCRB) which characterizes
unknown mean squared error [1], [20]. The entity Ãp

k+1 =(
Ap
k+1

)T
Ap
k+1 ∈ RN×N is a binary diagonal matrix with

Ãp
k+1 (n, n) = 1/0 denoting active/sleep status of the nth

node’s pth sensor. The weighted sensor selection function∑N
n=1

1
Eremk (n)Ã

p
k+1 (n, n) promotes selection of the pth

sensor of the nodes with higher remaining energy left after
kth cycle, i.e. Eremk (·). Thus, the MOP (5) jointly optimizes
the sensing quality and network energy efficiency. Constraint
(5a) captures active(1)/sleep(0) state of the pth sensor of nth

node. Constraint (5b) accounts the fact that sensors of the
node(s) with zero remaining energy cannot participate. For
better monitoring of the field parameter, coverage constraint
(5c) activates pth sensor of at least one node from each
coverage region Rr,∀ 1 ≤ r ≤ R. The WSN field is assumed
to be divided into R fixed non-overlapping regions. Let a
predicted set Ipk+1|k comprises nodes across which the signal
zpk+1 (·) may remain below the pth sensor’s detection limit.
Its construction is discussed below along with the adaptation
mechanism. Detection limit constraint (5d) prevents selection
of pth sensor of nodes n ∈ Ipk+1|k. The scalarization technique
converts an MOP into a single objective optimization problem

by associating scalar weights with each objective function.
Usually, the scalar weights ∈ [0, 1] and their sum equals 1.
Here, multiple objective functions, namely BCRB and sensor
selection, are converted to single objective function in (5)
using the weights

(
1− λpk+1

)
and λpk+1. The MOP (5) is non-

convex in nature due to the binary constraint (5a) and hard to
solve. Applying exhaustive search over

(
N
m

)
,∀ 1 ≤ m ≤ N ,

combinations to solve it is impractical for the considered dense
WSN deployment settings. Thus, the constraint (5a) is relaxed
to box constraint: Ãp

k+1 (n, n) ∈ [0, 1] ,∀n [20]. Due to this,
the relaxed scalarized MOP, given by (6), becomes a convex
problem.

minimize
Ã
p
k+1

(n,n) ∀n

(
1−λpk+1

)
Tr

{(
1

σ2

(
Bp
k+1

)T
Ãp
k+1

(
Bp
k+1

)
+
(
Γpk+1

)−1
)−1
}

+ λpk+1

(
N∑
n=1

1

Eremk (n)
Ãp
k+1 (n, n)

)
subject to Ãp

k+1 (n, n) ∈ [0, 1] , n = 1, . . . , N (6a)

Ãp
k+1 (n, n) = 0, n ∈ {i | Eremk (i) = 0} (6b)∑

j∈Rr

Ãp
k+1 (j, j) ≥ 1, r = 1, . . . , R (6c)

Ãp
k+1 (n, n) = 0, n ∈ Ip

k+1|k. (6d)

Given scalar variable λpk+1 in each measurement cycle, the
relaxed scalarized MOP (6) is solved using CVX [34]. Due to
simultaneous optimization of two contradicting functions and
box constraint Ãp

k+1 (n, n) ∈ [0, 1], the optimized values of
Ãp
k+1 (n, n) ,∀n are either close to 1 or close to 0 (observed

in simulations as well). Thus, to obtain the entity Mp
k+1,

adding Ãp
k+1 (n, n) corresponding to all N nodes followed

by rounding the sum to nearest integer is intuitive, as shown
in (7). The unknown entity Apk+1 is obtained as given in (8).

Mp
k+1 = round

(
N∑
n=1

Ãp
k+1 (n, n)

)
, (7)

Apk+1 = Row indices of Mp
k+1 largest elements of set:{

Ãp
k+1(n,n)|Ãp

k+1(n,n)≥ Ãp
k+1(m,m)∀n,m

}
.(8)

Note that, after rounding, the result of the MOP (6) can be
interpreted as Ãp

k+1 (n, n) = 1 for all the nodes n with active
pth sensor, i.e., n ∈ Apk+1 and Ãp

k+1 (m,m) = 0 for the
nodes m with sleeping pth sensor, i.e., m /∈ Apk+1. Thus, the
result is feasible to the original problem (5) which assigns
binary values 0/1 to the variables Ãp

k+1 (n, n) ,∀n. Further, it

can be observed that Ãp
k+1

(
=
(
Ap
k+1

)T
Ap
k+1 ∈ RN×N

)
is

a positive semi-definite matrix (binary diagonal matrix) which
is ensured by the solution of the relaxed MOP (6) as well.

Adaptation process: The scalar weight λpk+1 is obtained
by employing modified binary search (MBS) proposed in
[20] with an additional input Ipk+1|k. The MBS searches
λpk+1 in space [0, 1] to minimize the MOP (6) until either
(λpk+1)U−(λpk+1)L < ∆ or

∑N
n=1 Ãp

k+1 (n, n) == Mp
k+1|k is

satisfied; ∆ being a small positive real number. Input Mp
k+1|k

(calculated in previous cycle k) to the MBS algorithm denotes
the number of nodes predicted to have pth active sensor in
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(k + 1)th cycle. It is adapted on the basis of estimated pth

parameter’s variation in the previous cycle k (δ̂pk) and updated
remaining energy of the nodes such that the BCRB remains
within a desired application-specific range [α, β]. Intuitively,
higher parameter variation demands more active sensors. Thus,

if δ̂pk > δpth, then Mp
k+1|k ←Mp

k + 1, where δ̂pk =
‖ẑpk−ẑpk−1‖√

N
and δpth is a suitably chosen threshold. Else, construct a pruned
active set Ap

k|Mp
k−i

(i.e. Apk \ {i nodes}) by decreasing Mp
k in

unit steps (Mp
k+1|k ← Mp

k − i,∀i = 1, · · · ,Mp
k − R) and

compute a heuristic ε̂pk =
∥∥∥x̂pk − x̂p

k|Mp
k−i

∥∥∥. This heuristic
determines the extent up to which Mp

k can be decreased
in the next (k + 1)

th cycle such that the estimates x̂pk and
x̂p
k|Mp

k−i
are nearly same. If ε̂pk ≤ εpth and corresponding

BCRBp
k|Mp

k−i
∈ [α, β], further decrease Mp

k until either
BCRBp

k|Mp
k−i

/∈ [α, β] or Mp
k − i < R. Next, the predicted

entities Ipk+1|k and Mp
k+1|k are updated (in previous cycle k)

based on the set Ipk and slow variations of the parameter as,
Ipk+1|k←∅, if Ipk=∅
Ipk+1|k←I

p
k , if I

p
k 6=∅, δ̂

p
k≤δ

p
th

Ipk+1|k←∅, if I
p
k 6=∅, δ̂

p
k>δ

p
th

}
,Mp

k+1|k=min{Mp
k , N−|I

p
k |} .

(9)
From output of the MBS, if

∑N
n=1 Ãp

k+1 (n, n) = Mp
k+1|k

and corresponding BCRBk+1 ∈ [α, β], continue with sens-
ing task of the next measurement cycle. Otherwise, if
BCRBk+1 < α (or > β), then update Mp

k+1|k ←

max
{
Mp
k+1|k − 1, R

}(
or min

{
Mp
k+1|k + 1, N

})
.

A step-wise schematic of the proposed adaptive multi-
sensing framework is outlined in Algorithm 1 which the FC
runs in parallel for each parameter p.

B. Network-level collaboration-based multi-sensing (MS-SP)

This strategy uses inter-node (or network-level) collabora-
tion to further reduce size of the active sets (Apk,∀p) obtained
from the MS strategy by turning off the nodes

(
∈ A(·)

k

)
with

only one active sensor. To do so, spatial proximity among
nodes with same type of active sensors is exploited, hence,
the strategy is termed as MS-SP. The logic developed is
as follows: nodes with only one active sensor (say type p),
constitute a set A1pk, are turned OFF if there exists more
than one nearest neighbor node with more than one active
sensor including type p. The process of turning off sensors
saves energies (Esk , ECPUk , Eradiok , and Ememoryk). Step-
wise flow is given below-

1) Construct the set A1pk as A1pk =
{n| (n ∈ Apk) ∩ (n /∈ Aqk) ,∀q 6= p, 1 ≤ n ≤ N}.

2) For each n ∈ A1pk, create a set of its nearest neighbor
nodes with respect to the pth parameter signal during
cycle k, denoted by N p

k (n). It is constructed as
follows: if with respect to node n, difference between
the pth parameter signal across nodes n,m is less
than heuristically chosen values, then the node m is
designated as nearest neighbor of the node n with
respect to the pth signal. Mathematically, N p

k (n) =

Algorithm 1 Adaptive multi-sensing framework

Input:T p=
{
zp−Ktr+1, . . . , z

p
−1, z

p
0

}
,Rr∀r, α, β, δpth, ε

p
th, ρ

p.
Initialization: Erem1 , λ

p
1, k=1, exitflagp =0, Ip1 =∅.

while exitflagp == 0 do
if k = 1 then

-Calculate Bp
k using PCA scheme [20].

-Solve (5) to get Mp
k ,A

p
k; obtain Ap

k (Sec. II-A).
end if
Broadcast sensing schedule Apk, collect ypk.
Find Ipk . Use {ypk(n) , n∈A

p
k\I

p
k}, SBL [33] to get x̂pk.

Obtain ẑpk using x̂pk and PCA transformation [20].
if
∑N
n=1Eremk(n)>0 then(Prediction step)

Initialize Mp
k+1|k ←Mp

k .
Compute δ̂pk (Sec. III-A).
if δ̂pk > δpth then

Mp
k+1|k ←Mp

k + 1.
else

for i = 1, . . . ,Mp
k −R do

Construct Ap
k|Mp

k
−i (Sec. III-A), Ap

k|Mp
k
−i.

Obtain x̂p
k|Mp

k
−iusing SBL.

Compute BCRBp
k|Mp

k
−i, ε̂

p
k (Sec. III-A).

if ε̂pk ≤ ε
p
th and BCRBp

k|Mp
k
−i∈[α, β] then

Mp
k+1|k ←Mp

k − i.
else if BCRBp

k|Mp
k
−i /∈ [α, β] then break.

end if
end for

end if
Update:Bp

k+1(use ẑpk in PCA).(Update step)
Obtain Ipk+1|k using (9).
do

Call Alg. Modified Binary Search [20] with
inputs Eremk ,B

p
k+1,M

p
k+1|k, I

p
k+1|k, ∀p.

if
∑N
n=1 Ã

p
k+1 (n, n) ==Mp

k+1|k then
Obtain Apk+1,A

p
k+1.

Calc. BCRBpk+1 (Sec. III-A).
if BCRBpk+1 < α then

Mp
k+1|k ← max

{
Mp
k+1|k − 1, R

}
.

else if BCRBpk+1 > β then
Mp
k+1|k ← min

{
Mp
k+1|k + 1, N

}
.

end if
else

exitflagp ← 1, break.
end if

while BCRBpk+1 /∈ [α, β].
Update: Mp

k+1 ←Mp
k+1|k.

else
exitflagp ← 1.

end if
Update: k ← k + 1.

end while
Output: K = k.

{
m|∆̂zn

p

k−1 (m) < ζ ×max
(
∆̂zn

p

k−1

)
, 1 ≤ m ≤ N

}
\

n, with the difference signal ∆̂zn
p

k−1 (m) =
|ẑpk−1 (m) − ẑpk−1 (n)| ∈ RN×1, 1 ≤ m ≤ N .
Note that N p

k (n) changes with different nodes (n),
parameter signal (p), and measurement cycle (k).

3) If |N p
k (n) ∈ Apk \ A1pk| > 1,∀n ∈ A1pk, update the

pth active set as Apk ← A
p
k \ n and Mp

k = |Apk|.

Retraining: For each parameter, the sparse recovery process
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is based on the sparsification matrix Bp
k which is estimated

using a few past instances of estimated signal ẑp(·) or x̂p(·). Due
to accumulation of the estimation error, the recovery process
may become erroneous as the measurement cycles progress. It
may produce non-sparse estimate x̂pk of the unknown sparse
signal xpk. To prevent this, a logic to detect need for retraining
in the next measurement cycle is proposed which is based on
current reconstructed signal vector x̂pk as the true signal vector
xpk is unknown. It is integrated with the MS-SP strategy and
termed as MS-SP retrain. The key idea is to approximately
find and compare the number of non-sparse components N̂C

p

k

in the reconstructed signal x̂pk against a suitable threshold
value NCpth. If N̂C

p

k > NCpth, retrain the network in the
next (k + 1)th cycle. A component x̂pk (·) is considered as
non-sparse if it constitutes more than 0.1% of total energy

of parameter signal vector x̂pk, i.e., (x̂pk(·))
2∑N

n=1(x̂
p
k(n))

2 >
0.1
100 . The

0.1% energy criteria ensures that no non-sparse component
of x̂

(k)
r is wrongly considered as sparse. From the instances

of training/retraining signal, the knowledge of NCpth can be
roughly obtained.

C. Node-level collaboration-based multi-sensing (MS-CC)

This strategy exploits intra-node (or node-level) collabora-
tion to further prune active sets obtained from the MS-SP
strategy. For each node, active set Pnk of sensors is derived
from the MS-SP based Apk,∀p and cross-correlation among
signals across its active sensors is computed. Intuitively, highly
cross-correlated signals across different sensors of a node can
be parsimoniously sensed. Thus, a sensor of nth node (∈ Pnk )
which has high correlation with maximum number of other
active sensors of that node (∈ Pnk ), referred as primary sensor,
remains ON. The remaining sensors (∈ Pnk ) with which this
primary sensor has high (low) correlation are turned OFF
(ON). The flow of strategy is as follows:

1) For every node n, compute Pnk =
{p|n ∈ Apk, 1 ≤ p ≤ P} . Let number of active sensors
of a node be represented by Snk = |Pnk |.

2) Calculate cross-correlation matrix of sensors ∈ Pnk ,
denoted by C ∈ RSnk×Snk . Pearson correlation coefficient
among previously estimated parameter signal ẑp(·) (n) is
used to compute the matrix C. Do so for each node n.

3) Find correlation degree vector c ∈ R1×Snk as fol-
lows: c (p) =

∑Snk
q=1 1 (C (q, p) ≥ η) , 1 ≤ p ≤

Snk , where the indicator function 1 (C (q, p) ≥ η) ={
1, if C (q, p) ≥ η
0, if C (q, p) < η

. Obtain primary sensor u of node

n such that c (u) = max
∀q

(c (q)). Repeat this for all the

nodes.
4) Update Pnk ← Pnk \ p and Apk ← A

p
k \ n if C (u, p) ≥

η,∀p ∈ Pnk , p 6= u. Set Mp
k = |Apk|. Similarly update

for other nodes.
Note, η = 0.5 is chosen because the literature on signal
statistics identifies correlation value 0.5 as high correlation
between two signals [35]. Since, cross-correlation among
sensors is used to further decrease active number of sensors

of a node, the strategy is known as MS-CC. It saves more
energy compared to the MS and MS-SP strategies.

Adaptation in MS-CC is based on updated Mp
k if corre-

sponding BCRBpk ∈ [α, β]; otherwise Mp
k obtained from the

MS strategy is set as predicted value Mp
k+1|k.

D. Complexity analysis

Let the complexity of recovery scheme, that is executed at
the FC, be denoted by ORec in general. The complexity of
the adaptive multi-sensing framework for each parameter type
p is derived by computing complexities of the prediction and
the update steps in one measurement cycle. In the prediction
step, the complexities of calculating δ̂pk and Mp

k+1|k are O (N)

and O
(
(Mp

k )
3
)
, respectively. The overall complexity of the

prediction step is given by ≈
(
O (N) +O

(
(Mp

k )
3
)
+ORec

)
.

In the update step, the complexity of computing Bp
k+1 is

O
(
N2
)
. The modified binary search requires log2

(
λU1
−λL1

∆

)
iterations with each solving the relaxed MOP (6) using the
CVX tool. The CVX runs infeasible primal-dual predictor-
corrector interior point algorithm based on HKM search
direction with complexity ≈ O

(
Ñ log

(
1
ν

))
[36], where Ñ

denotes the number of variables after converting problem
(6) to a standard form by the CVX and ν represents the
precision accuracy (10−8 by default). Ñ is a function
of N . Thus, complexity of the MOP increases with
N . Complexity of the update steps is O

(
(Mp

k+1|k)
3
)

.
In the worst case, the update step will converge in(
Mp
k+1|k −R+ 1

)
iterations. Thus its overall complexity is

≈
(
O
(
(Mp

k+1|k)
3
)
+
(
Mp
k+1|k−R+ 1

)
log2

(
1
∆

)
O
(
Ñ log

(
1
ν

)))
.

Hence, the combined complexity of the proposed
adaptive multi-sensing (MS) framework is OMS ≈(
O
(
max

(
N, (Mp

k )
3)) + ORec + O

(
(Mp

k+1|k)
3
)

+(
Mp
k+1|k−R+1

)
log2

(
1
∆

)
O
(
Ñ log

(
1
ν

)))
. Though the

framework runs for P parameters/signals in parallel, the
complexity remains OMS . On the similar lines, complexities
of the MS-SP and MS-CC parts are (OMS +O (NP )) and(
OMS +O

(
NP 2

))
, respectively. Also, the complexity ORec

for reconstruction of parameters individually (in MS and MS-
SP) and jointly (given in subsequent section for MS-CC) using

the SBL are O
(
(Mp

k )
3) and O

((∑P
p=1 M

p
k

)3
)

+ O
(
N2P 2

)
,

respectively.

IV. JOINT SPARSE RECOVERY OF FIELD PARAMETERS

Until now, estimation of different field parameters, using
measurements of active sensors obtained from the MS and
MS-SP strategies, is carried out separately for each parameter
at the FC. However, the separate estimation of each parameter
does not exploit cross-correlation among them. For the cross-
correlation based MS-CC, an estimation scheme is developed
that jointly estimates the correlated spatial parameters. This
scheme exploits sparsity due to cross, spatial, and temporal
correlation of the field parameters.

For joint recovery of the field parameters, the system model
(1) is collated as follows:

ỹk = Akzk + nk, (10)
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where ỹk = vec
([

ỹ1
k, · · · , ỹPk

])
∈ RMk×1 with Mk =∑P

p=1M
p
k , Ak = diag

(
A1
k, · · · ,AP

k

)
∈ RMk×NP is a block-

diagonal matrix, the field signal zk = vec
([

z1
k, · · · , zPk

])
∈

RNP×1, and the noise nk = vec
([

n1
k, · · · ,nPk

])
∈ RMk×1.

In the existing literature on joint sparse signal representation
and recovery, Kronecker product of discrete cosine/Fourier
transforms-based sparsification matrices is used [16]. How-
ever, these matrices do not sparsify the correlated signals well,
while PCA does so, as mentioned in [37]. PCA-based joint
sparse signal representation has not been explored earlier. To
this end, this work derives joint sparse representation of the
system (10) using sparsification matrix which is Kronecker
product of PCA-based spatial and cross-correlation bases.

Let the matrix Zk =
[
z1
k, · · · , zPk

]
∈ RN×P . Using the

PCA transformation [26], sparse representation of Zk and
(Zk)

T ∈ RP×N can be written as,

Zk = Bsp
k Xsp

k + Zk, (11)

(Zk)
T

= Bcc
k Xcc

k + (Zk)
T
, (12)

where Bsp
k ∈ RN×N ,Bcc

k ∈ RP×P respectively represent
spatial and cross-correlation based sparsification matrices,
Xsp
k ∈ RN×P ,Xcc

k ∈ RP×N are respective sparse signal
matrices, and Zk ∈ RN×P , (Zk)

T ∈ RP×N are corresponding
mean matrices. Using (11), sparse representation of the field
signal zk = vec (Zk) is derived as follows:

zk = vec (Bsp
k Xsp

k ) + vec
(
Zk
)
, (13)

= vec
(
Bsp
k Xsp

k (Bcc
k )
−T

(Bcc
k )

T
)

+ vec
(
Zk
)
.(14)

Let the sparse signal Xk = Xsp
k (Bcc

k )
−T ∈ RN×P ,

xk = vec (Xk), and using matrix identity vec (PRQ) =(
(Q)

T ⊗P
)

vec (R) [38], (14) can be written as,

zk = (Bcc
k ⊗Bsp

k ) vec (Xk) + vec
(
Zk
)
, (15)

= (Bcc
k ⊗Bsp

k ) (xk) + vec
(
Zk
)
. (16)

Substituting (16) in (10), joint sparse representation of the
system is given by,

yk = AkBkxk + nk, (17)

with yk = ỹk − Akvec
(
Zk
)
∈ RMk×1 and Bk =

(Bcc
k ⊗Bsp

k ) ∈ RNP×NP .
Using yk and dictionary matrix AkBk, estimate of joint

sparse signal, x̂k ∈ RNP×1, is computed using the SBL
framework [33]. The estimate X̂k is computed using relation
x̂k = vec

(
X̂k

)
and the estimate of spatial matrix is then

obtained as Ẑk = BkX̂k + Zk. Note that correct calculation
of vec

(
Zk
)

directly affects the joint recovery process.

V. RESULTS AND DISCUSSIONS

This section illustrates the energy efficiency of the proposed
multi-sensing strategies over the closest monolithic scheme
proposed by Chen et al. in [14], [15], Silvestri et al. in [21],
and Jain et al. in [16] on both synthetic and real data-sets.
The scheme in [14], [15] is chosen because it developed subset
selection strategy for optimized sensing, that in [21] developed
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Fig. 3: Solar energy harvested by nodes during a day.

heuristic-based sensor selection approaches (Top-W, Top-W-
Update, and Batch selection), while the scheme in [16] pro-
posed a method for random sensor selection and joint recovery
of the WSN parameter signals. For fair comparison, SBL-
based recovery scheme, EH-capability, and BCRB measure
are included in the comparing schemes as well.

For the WSN considered in below sub-sections, the solar
energy harvested by each node during different time of a
day (576 measurement cycles; 1 cycle ≡ 2.5 min [1]) cor-
responding to Dh (given in Section II-B) is shown in Fig.
3. The considered EH-WSN with the proposed multi-sensing
strategies is simulated in Matlab.

A. Performance studies with synthetic data-set

N = 80 solar energy harvesting wireless nodes are
considered deployed in a 2-dimensional WSN field of
size 100 × 100 m2 divided into d

√
Ne × d

√
Ne = 9 × 9

square areas of size ≈ 11 × 11 m2 each, having one
randomly deployed node [39]. The field is partitioned into
R = 4 non-overlapping coverage regions designated by sets
Rr,∀1 ≤ r ≤ R, containing nodes within them. Initial
energy is set as Erem0 (n) = 10 J,∀1 ≤ n ≤ N . Considering
multi-sensing for pollution monitoring application, each
node is considered to have P = 7 sensors for monitoring
CO, SO2, NO2, Cl2, CH4, NH3, and H2S pollutants.
Their sensing energies are set as {Eps , 1 ≤ p ≤ P} =
{0.6426, 1.3590, 1.5789, 1.4257, 0.3507, 0.9401, 1.9355} J
[31] and detection limits {ρp, 1 ≤ p ≤ P} =
{0.02, 0.009, 0.01, 0.007, 0.015, 0.022, 0.015}. The detection
limits considered here lie within dynamic range of
synthetically generated pollutant signals. In practice,
these are set as specified in sensors data-sheets. The pth

parameter signal across different nodes is obtained as
zpk (n) =

∑Sp

s=1 e
− dn,sθp upk (s) [20], where Sp is the total

number of sources of pth parameter (set as 1 here), dn,s
is distance between nth node and sth source, θp represents
spatial diffusion parameter, and upk (s) denotes random
signal emitted from the sth source of pollutant p during
kth measurement cycle. Temporal samples of the source
signal upk (s) are generated using AR(1) process [20]
as upk+1 (s) = ϕpupk (s) +

√
1− (ϕp)2wpk+1 (s), where

ϕp denotes temporal correlation between two adjacent
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samples of up(·) (s), wpk+1 (s) ∼ N
(

0, σ2
upk

(s)
)

, and σ2
upk

(s)

denotes the variance of upk (s). Cross-correlation among
the pollutants is modeled using AR(1) process [40] as:
up+1
k (·) = ϕccu

p
k (·) +

√
1− (ϕcc)2vp+1

k (·), where ϕcc
represents cross-correlation between the pollution signals
upk (·) and up+1

k (·) ,∀ p and vp+1
k (s) ∼ N

(
0, σ2

upk
(s)
)

.
The p = 1 pollution signal from each source in 1st cycle
is generated as u1

1 (s) ∼ N (0, 1) , ∀s [41]. Each pollutant
sources are located randomly in the WSN field. The
spatio-temporal and cross correlation parameters are set as
{θp, 1 ≤ p ≤ P} = {100, 500, 1000, 5000, 200, 2000, 4000},
{ϕp, 1 ≤ p ≤ P} = {0.99, 0.92, 0.95, 0.98, 0.97, 0.96, 0.94},
and ϕcc = 0.8. The FC is located at 110 m above and
200 m away from field center. Noise variance is set
as σ2 = 10−5, so as to guarantee reasonable sensing
performance in the considered severely ill-posed estimation
scenarios (N/Mp

k � 2,∀p) , (NP/Mk � 2). Performance
measures used are, network residual energy in kth cycle

=
∑N
n=1Eremk (n) and sensing error (nMSE)= ‖zpk−ẑpk‖2

‖zpk‖2
.

It gauges the energy in error against that in signal.
The parameter ∆ in MBS [20] is fixed as 10−8.
Unless otherwise specified, the BCRB window is set as
[α, β] =

[
5× 10−5, 5× 10−4

]
, according to minimum

and maximum value of BCRB obtained in the comparing
schemes. Note that, the BCRB is used because the MSE
cannot be computed at the receiver due to unknown zpk.
The MSE plots are used to highlight stable sensing quality
provided by the proposed framework. While solving (5),
the objective functions are normalized using their respective

smallest values-
Tr
{(

1
σ2

(Bpk+1)
T

Ãp
k+1Bpk+1+(Γpk+1)

−1
)−1

}
Tr
{(

1
σ2

(Bpk+1)
T

INBpk+1+(Γpk+1)
−1
)−1

} ,

(∑N
n=1

1
Eremk

(n)
Ãp
k+1(n,n)

)
(∑

n∈E
1

Eremk
(n)

Ãp
k+1(n,n)

) ,

where E is the set containing R nodes with the highest
remaining energy. Signal estimates are averaged over
300 Monte-Carlo iterations in each measurement cycle. To
effectively capture the dynamics of all pollutants (or parameter
signals), the thresholds are heuristically set as {δpth,∀p} =
{0.1097, 0.3019, 0.2620, 0.1560, 0.1936, 0.2302, 0.2801},
{εpth,∀p} =

{
2.5× 10−5,∀p

}
, and ζ = 0.1. The initial

training set T p contains Ktr = 5 instances of the respective
pollutant signals zp(·). The multi-sensing strategy MS-SP
retrain uses 2 instances of the signals zp(·),∀ p.

TABLE III: Energy efficiency of the proposed strategies

(Synthetic data) Energy consumption Energy efficiency(%)
Strategies per cycle (J)

Chen 109.3209 −
MS 70.3940 35.6078∗

MS-SP 56.6233 48.2045∗

MS-SP retrain 79.5577 27.2255∗

iDEG 133.4718 −
MS-CC 66.3297 50.3042∗∗

∗ − with respect to Chen [14], [15], ∗∗ − with respect to iDEG [16]

The power model of Mica2 mote [31], [42] is considered in
this work for simulating the energy consumption aspect. Power
consumed by the CPU, memory, and radio in different modes
are set as Pmemory(read) = 3V × 6.2mA, Pmemory(write) =
3V × 18.4mA, Pmemory(sleep) = 3V × 2µA, PCPU(active) =
3V × 8mA, PCPU(sleep) = 3V × 10µA, Pradio(transmit) =
3V×21.5mA, Pradio(receive) = 3V×7mA, and Pradio(sleep) =
3V × 1mA. 3V is voltage supplied to the Mica2 mote. In
sensing operation, time taken by an active sensor to sense is
set as 30 s (average response time of sensor [31]), and the same
value is considered as sleeping duration of sleeping sensors,
CPU, memory, and radio components (for synchronization in
sensing). Further, it is assumed that a sensed signal sample is
2 bytes long. Time taken by memory to read and write 1 byte
of data are set as 565 µs and 12.9 ms, respectively. Bit rate of
the radio component with the Mica2 mote in the works [31],
[42] is set as 76.8 kbits/s = 9.6 kbytes/s. Thus, time taken by
the radio component to transit/receive 1 byte of data is: 1

9.6k
s. Sleep duration of different components of the mote during
different operations depend on the maximum time taken by
any component in required mode to perform the operation.
For transmitting data, it is assumed that a node transmits
(7 + 2× (#active sensors)) bytes long packet to the mobile
robot, including 7 bytes overhead. The associated energies are
computed as product of power and time consumed.

1) Performance comparison of MS and MS-SP strategies
with state-of-the-art: Performance of the proposed multi-
sensing strategies MS and MS-SP is compared with the
closest monolithic approach developed by Chen et al. [14],
[15] by running it separately for all the P pollutants. The
monolithic approach by Chen is chosen because there exists
no other strategy in literature that deals with subset selection
for optimal multi-sensing and parameter estimation. From
Fig. 4(a), it can be observed that the proposed strategies are
more energy-efficient compared to the Chen’s scheme. Us-
ing the proposed strategies, the heterogeneous WSN sustains
throughout a day (i.e. considered 576 measurement cycles)
even when there is no energy harvested from 241st − 576th

cycle as seen from Fig. 3. While using Chen’s scheme, it
suffers from network outage (i.e. 0 network residual energy)
in measurement cycles 427 − 576 due to which sensing
operation cannot be carried out. Table III captures values
of energy consumption per cycle (Econs) of the proposed
and Chen’s strategies and energy-efficiency with respect to
Chen (= |Econs;Chen−Econs;MS |

Econs;Chen
× 100%). This gain in energy

efficiency in the proposed strategies is due to adaptive and
optimized selection of each type of sensors while providing
stable sensing quality as illustrated in Figs. 4(b)-(c). Similar
sensing quality is achieved for other parameters as well. Low
nMSE values (approximately < 10−2) are achieved due
to optimized multi-sensing based on chosen BCRB window
[α, β] and using an efficient recovery technique SBL. Increas-
ing trend in network residual energy in Fig. 4(a) is due to
considered harvested energy profile Fig. 3.

Integrating retraining logic with the MS-SP strategy con-
sumes more energy as observed from Fig. 4(a). However, this
retraining prevents deterioration of the MSE in Figs. 4(b)-(c).
Thus, it provides more stable sensing quality. For more insights
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on retraining, refer Section V-A3.
Note that, discontinuities are observed in the nMSE curves

of the proposed strategies. This is because estimation is not
possible in some measurement cycles as either the parameter
signal across corresponding sensors of all the nodes is below
their detection limit or none of these sensors are active. While
in Chen’s case, it is due to no sensing and estimation operation
because of network energy outage.
Remark 1: The proposed strategies MS, MS-SP offer energy-
efficient multi-sensing of slowly-varying correlated parameters
in heterogeneous EH-WSN, thereby improving on energy sus-
tainability of the nodes.

2) Performance comparison of cross-correlation based
sensing and joint recovery: To compare performance of the
proposed MS-CC+joint recovery and the existing iDEG [16]
strategy, joint recovery process is kept identical in both.
For each pollutant/parameter, iDEG scheme chooses fixed
number of sensors randomly in each cycle without exploiting
correlation among them. The proposed one chooses them by
suitably trading-off the sensing quality and energy efficiency,
and exploiting cross-correlation among parameters. Figs. 5(a)-
(c) and Table III indicates that the proposed strategy offers
energy-efficient multi-sensing without affecting the sensing
accuracy compared to the iDEG scheme.

Note that in the proposed MS and MS-SP multi-
sensing strategies, sensor selection and signal estimation

in (Mp
k ×N) dimension space for each parameter/signal

type are required to run in parallel in each measurement cycle.
To analyze the results, we ran these tasks sequentially in
Matlab in each measurement cycle. This increases computation
time per cycle by ∼ P (7 here) times. Likewise, for MS-CC
strategy, we ran sensor selection task sequentially and then
performed joint signal estimation task in

(∑P
p=1M

p
k ×NP

)
dimension space. Further, to adapt the number of active
sensors of each type for next cycle, joint estimation task is
repeated to find signal estimates using pruned active sets. Thus,
computation time increased here as well. Due to this, ∼ 100
measurement cycles are considered while simulating results
shown in Figs. 5(a-c) and in subsequent sections. Further, the
increasing trend in Fig. 5(a) is due to the considered harvested
energy profile shown in Fig. 3. For further measurement
cycles, this plot shows behavior similar to the plot in Fig.
4(a), i.e. first increasing and then decreasing when there is no
harvested energy during evening time. Usually, dimensioning
of solar panels (used with the wireless node) is done such that
the harvested energy profile and node’s energy consumption
in sensing, communication, etc. operations result in stable
remaining energy of the node and the network. In our case,
network’s remaining energy first increases, then decreases; the
trend will be followed for further measurement cycles because
of the energy harvesting cycles. Design/dimensioning of the
solar cells/panel [43] for achieving a stable network remaining
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Fig. 7: Heat-maps of actual and estimated multi-source pollution signal (a) z5
6, (b) ẑ5

6 and single-source signal (c) z1
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6.

energy is out of scope of this work.
3) Retraining: For the three considered BCRB win-

dows ([α, β])- 1. narrow (=
[
5× 10−5, 5× 10−4.8

]
), 2.

moderate (=
[
5× 10−5, 5× 10−4

]
), and 3. wide (=[

5× 10−5, 5× 10−3
]
), it can be observed from Fig. 6(a) that

as the BCRB window widens (i.e. case 1→2→3), the energy
efficiency of the MS and MS-SP strategies increase. While for
the MS-SP retrain strategy, it is not so because relaxing BCRB
in case 3 results in relatively more acceptable/tolerable error
⇒ frequent retraining compared to the case 2.

Further, energy efficiency-wise the MS-SP performs better
than the MS-SP retrain scheme in all 3 cases. As the BCRB
window tightens, the MS-SP retrain strategy performs better
than and closer to the MS strategy. In BCRB case 2, MS-SP
retrain undergoes less frequent retraining than BCRB case 3
due to which gap between MS-SP and MS-SP retrain, MS and
MS-SP retrain increase for case 3 compared to case 2.

Sensing quality-wise, the MS-SP retrain scheme performs
better than both MS and MS-SP strategies due to retraining as
illustrated for cases 2 and 3 in Figs. 6(b),(c) respectively. For
case 1 (stricter BCRB), it was observed in simulations that
all 3 strategies provide similar sensing quality. Note that, here
MSE = ‖zpk − ẑpk‖

2 is used to quantify the sensing quality
as effect of retraining is more clearly observed in these MSE
plots than the nMSE plots.
Remark 2: Retraining improves the sensing quality at the cost
of energy efficiency.

4) Multi-sensing in a WSN field with multiple sources:
A generic pollution monitoring WSN field now considered
with more than one source of different pollutants (Sp > 1)
generating pollution signals. Number of sources of each
pollutant are set as {Sp,∀p} = {1, 2, 1, 1, 2, 1, 2}. X and

Y coordinates (in m) of randomly generated locations
of the pollutants with multiple sources, i.e. SO2, CH4,
and H2S, are respectively

{
(x2
s2 , y

2
s2), 1 ≤ s2 ≤ S2

}
= {(11, 12), (77, 88)} ,

{
(x5
s5 , y

5
s5), 1 ≤ s5 ≤ S5

}
=

{(10, 15), (55, 95)} , and
{

(x7
s7 , y

7
s7), 1 ≤ s7 ≤ S7

}
=

{(96, 80), (20, 5)}. Various thresholds are set as {δpth,∀p} =
{0.1177, 0.3106, 0.2451, 0.1492, 0.1890, 0.2249, 0.2747} ,
{ρp,∀p} = {0.2651, 0.02, 0.03, 0.01, 0.08, 0.02, 0.025}. Sens-
ing energy parameters are set as {Eps ,∀p} = {0.5621, 1.2238,
1.6390, 1.7433, 0.2883, 1.2749, 1.9042} J. Rest spatial,
temporal, and cross correlation parameters are kept same as
in above sections.

From heat-maps of actual and estimated signals in Figs.
7(a)-(d), it can be observed that there are two sources of the 5th

pollutant (near actual location (10, 15) m and (55, 95) m)
and one source of the 1st pollutant. Thus, the proposed
strategies can effectively sense and estimate signals in multi-
source monitoring scenarios as well without loss of sensing
accuracy. nMSE in estimates of multi-source CH4 signal (ẑ5

k)
and single-source CO signal (ẑ1

k) in measurement cycle k = 6
are respectively 0.0013 and 0.00052 for MS strategy.

Multi-source sparse sensing and estimation ability of the
proposed energy-efficient multi-sensing strategies have im-
mense practical applicability in the following IoT applications-
1. air quality monitoring (classification of the observing field
in different zones based on severity of estimated pollution
signals), 2. gas leakage detection, 3. source localization.

5) Effect of imperfect knowledge of harvested energy: This
section investigates behavior of the proposed framework with
imperfect knowledge of the harvested/arriving energy. For this,
a WSN field (100×100) m2 with N = 32 randomly deployed
nodes, each having P = 4 sensors mounted on them is
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TABLE IV: Effect of error in prediction of harvested energy
∆Eh

Erem(·)
∆Eh
Eh

A1
k A2

k A3
k A4

k

0
10

0
0.6709

{1, 2, 3, 4, 5, 6, 7, 8, {1, 7, 10, 22, 26, 27, 29, {1, 10, 22, 24, 26, 27, 29, {1, 7, 10, 22, 24, 26, 29,
(no error) 10, 22, 25, 26, 27} 30, 31, 32} 30, 31, 32} 30, 31, 32}

0.3354
10

0.5 {1, 2, 3, 4, 5, 6, 7, 8, {1, 7, 10, 22, 26, 27, 29, {1, 10, 22, 24, 26, 27, 29, {1, 7, 10, 22, 24, 26, 29,
10, 22, 25, 26, 27} 30, 31, 32} 30, 31, 32} 30, 31, 32}

0.6
10

0.8943 {1, 2, 3, 4, 5, 6, 7, 8, {1, 7, 10, 22, 26, 27, 29, {1, 10, 22, 24, 26, 27, 29, {1, 7, 10, 22, 24, 26, 29,
10, 22, 25, 26, 27} 30, 31, 32} 30, 31, 32} 30, 31, 32}

2.5
10

3.7263 {1, 2, 3, 4, 5, 6, 7, 8, {1, 7, 10, 22, 26, 27, 29, {1, 10, 22, 24, 26, 27, 29, {1, 7, 10, 22, 24, 26, 29,
10, 22, 25, 26, 27} 30, 31, 32} 30, 31, 32} 30, 31, 32}

5
10

7.4527 {1, 2, 3, 4, 5, 6, 7, 8, {1, 7, 10, 22, 26, 27, 29, {1, 10, 15, 22, 24, 26, 29, {1, 7, 10, 22, 24, 26, 29,
10, 17, 25, 26, 27} 30, 31, 32} 30, 31, 32} 30, 31, 32}

10
10

14.905 {1, 2, 3, 4, 5, 6, 7, 8, {1, 7, 10, 22, 25, 26, 27, {1, 10, 15, 19, 22, 24, 29, {1, 7, 10, 22, 24, 26, 29,
10, 17, 25, 26, 27} 30, 31, 32} 30, 31, 32} 30, 31, 32}

Number of nodes (N)
128 80 32

Av
er

ag
e 

no
de

 e
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

0.1

0.5

1

1.5
MS
MS-SP X: 2

Y: 1.306

X: 1
Y: 1.298

X: 3
Y: 1.384

X: 1
Y: 0.5083

X: 2
Y: 0.7043

X: 3
Y: 1.093

(a)
Density of nodes

(

N
field area

)

32
(50×50)

32
(100×100)

32
(200×200)

A
ve

ra
ge

n
et
w
or

k
en

er
gy

co
n
su

m
p
ti
on

(J
)

0

10

20

30

40

50
MS
MS-SP

X: 1
Y: 31.6

X: 1
Y: 31.94

X: 2
Y: 44.28

X: 3
Y: 44.53

X: 2
Y: 31.81

X: 3
Y: 34.74

(b)

Fig. 8: (a) Average node energy consumption versus number of nodes and (b) average network energy consumption versus
density of nodes of the proposed strategies: MS and MS-SP.

simulated. Initial energy of the nodes is set as Erem0 (n) = 10
J, 1 ≤ n ≤ N . P synthetic signals are generated and
other parameters are set as discussed in Section V-A of the
manuscript. Error introduced in the energy harvested by each
node is denoted by ∆Eh. This error could be due to imperfect
knowledge of the harvested energy or error in its prediction
at the FC. The difference in active sets (Apk,∀p) obtained by
running the relaxed MOP (6) for different values of ∆Eh

Erem(·)
is observed, where Erem (·) represents remaining energy of
a node. Here, the subscript k is dropped for brevity. From
Table IV it can be observed that, as the ratio ∆Eh

Erem(·) increases
(approaches 0.5 or higher values) or the prediction error ∆Eh

Eh
increases, the active sets (Apk,∀p) obtained in presence of error
differ from the case when there is no error. While for the lower
values of ∆Eh

Erem(·) (< 0.5), the active sets obtained are same
in both the cases. The entity Eh represents actual harvested
energy and is set as 0.6709 for all the nodes in the considered
measurement cycle.

6) Effect of number and density of nodes on energy con-
sumption: A simulation scenario is considered where the
WSN field spans 100 × 100 m2 area with randomly de-
ployed nodes N each having P = 4 sensors to sense
different parameters. Initial energy of the nodes is set
as Erem0

(·) = 10 J. Their sensing energies are set as
{Eps ,∀p} = {0.6324, 1.3328, 1.5761, 1.4249} J. P syn-
thetic signals are generated as discussed in Section V.A
(spatio-temporal characteristics corresponding to first four

signals are used). Detection limits of the sensors are set as
{ρp,∀p} = {0.02, 0.019, 0.006, 0.0357}. Thresholds are set
as {δpth,∀p} = {0.1228, 0.2557, 0.2804, 0.1629} , {εpth,∀p} ={

2.5× 10−5,∀p
}

, and BCRB window is set as [α, β] =[
5× 10−5, 5× 10−3

]
. Energy consumption per node per mea-

surement cycle (i.e., average node energy consumption) using
the MS and MS-SP schemes are plotted against the number
of nodes N in Fig. 8(a). It can be observed that average
node energy consumption decreases with the increase in N
for the same BCRB window. This is because correlation
among measurement of the nodes increases, which allows
effective field monitoring using even lesser number of sensor
measurements and also gives more opportunity to collaborate
at network level. Further, it can also be verified that the MS-
SP scheme consumes less energy compared to the MS scheme.
Likewise, by decreasing field area while keeping N fixed, it
can be observed from Fig. 8(b) that, as the density of nodes(

N
field area

)
increases the average network energy consumption

(i.e. network energy consumption per measurement cycle)
decreases while maintaining the same BCRB window.

B. Performance studies with real WSN data-set
To compare performance of the proposed multi-sensing

strategies with Chen’s [14], [15], Silvestri’s [21] (Top-W,
Top-W-Update, Batch Selection), and iDEG [16] schemes
using real data-set, comprised of temperature, humidity,
light, and voltage, collected from a WSN deployed in Intel
Berkeley research lab [44] is considered. These P = 4
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Fig. 10: Comparison of (a) network residual energy and (b-c) sensing error in estimates of humidity signal (p = 2)
and light signal (p = 3) obtained using the proposed strategy (MS-CC+joint recovery) with iDEG approach [16]
({Mp

k ,∀p} = {15, 16, 17, 18} ,∀k).

correlated signals sensed by a subset of 30 Mica2Dot sensors
spanning over 25×32 m2 lab area are considered. Parameters
{[αp, βp] ,∀p} , δpth, ε

p
th, R, ρ

p, and σ2 are respectively set
as

{[
1.0249× 10−6, 0.0522

]
,
[
3.0683× 10−6, 0.0522

]
,[

2.04654297× 10−6, 0.0522
]
,
[
2.0469× 10−6, 0.0522

]}
,

{0.0595, 0.0627, 0.4178, 0.0174} , {0.5, 0.5, 0.05, 0.05} , 4,
{14.4, 38.6, 1.1, 2.24} , and ∼ 10−6. The energy parameters
are set as Erem0

(n) = 10 J, ∀n and {Eps , 1 ≤ p ≤ P} =
{0.6426, 1.3590, 1.5789, 1.4257} J. In practice, the sensing
energy of different sensors are set as specified in their
data-sheets. Here, their values are set comparable to the
initial energy of the nodes so as to analyze results effectively.
Rest all the parameters are similar to the synthetic case. Fig.
9(a) and Fig. 10(a) validate that the proposed multi-sensing
strategies MS, MS-SP, and MS-CC are indeed more energy-
efficient compared to Chen’s approach, Silvestri’s approaches,
and iDEG scheme respectively. Energy efficiency of MS,
MS-SP with respect to Chen’s and Silvestri’s schemes and
that of MS-CC with respect to iDEG scheme are presented in
Table V. Due to the considered profile of energy harvesting
(Fig. 3), Fig. 4(a) (using synthetic data) shows increasing
trend in network residual energy for cycles till the energy
harvested is increasing; thereafter a decreasing trend in
residual energy is observed when the energy harvested
decreases and becomes 0. For the results with real-data set,

for simplicity of demonstration the network residual energy
performance is simulated for 70 measurement cycles during
day-time when the rate of harvested energy is high. The
trends are similar to that observed in Fig. 4(a) for the different
schemes. For the remaining cycles when energy harvested
decreases or becomes 0, reduction in network residual energy
is expected, with the MS-SP having a slower decreasing
rate. Further, from Figs. 9(b)-(c) and Figs. 10(b)-(c), it
can be verified that the order of sensing quality has not
been changed significantly to achieve this gain in energy
efficiency. For instance, the average values of nMSE for
humidity signal {7.6, 4.09, 1.48, 4.86, 3.38, 2.42} × 10−5

(Fig. 9(b)), obtained respectively using MS-SP, MS methods,
and Chen’s, Top-W, Top-W-Update, and batch selection
schemes, are on the same order

(
∼ 10−5 here

)
. A similar

observation holds for light signal, in which the average nMSE
values obtained for the different competitive schemes are
{5.03, 2.42, 200, 214, 2.06, 1.67} × 10−4 (Fig. 9(c)). Similar
sensing quality is achieved for parameters p = 1 and 4 i.e.
temperature and voltage signals.

C. Advantage of joint recovery in MS-CC over individual
recovery in MS/MS-SP

Exploiting cross-correlation in MS-CC+joint recovery
scheme facilitates recovery of a parameter signal even if the
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|ẑ
4 6
6
(·
)|

0.0055

0.0056

0.0057

0.0058

0.0059

(b) ẑ4
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Fig. 11: Heat-maps of actual and estimated pollution signals (a) z4
66, (b) ẑ4

66 obtained from MS-SP strategy, (c) z5
50 and (d)

ẑ5
50 obtained from MS-CC strategy using synthetic data.

TABLE V: Energy efficiency of the proposed strategies

(Real data-set) Energy consumption Energy efficiency(%)
Strategies per cycle (J)

Chen 52.9793 −
Top-W 49.0074 −

Top-W-Update 42.7419 −
Batch Selection 49.1497 −

MS 38.5451 27.2449∗, 21.3484+

9.8189++, 21.5761+++

MS-SP 25.3792 52.0959∗, 48.2135+

40.6221++, 48.3634+++

iDEG 54.6816 −
MS-CC 50.2347 8.1323∗∗

∗ − with respect to Chen [14], [15], ∗∗ − with respect to iDEG [16],
++ − with respect to Top-W-Update [21], +++ − with respect to
Batch Selection [21], + − with respect to Top-W [21].

corresponding sensors of all N nodes are sleeping. While
this is not possible in case of MS/MS-SP+individual sparse
recovery of parameters. Dotted nMSE lines across 24th cycle
in Fig. 10(b) and 57th cycle in Fig. 10(c) show that the
humidity and light signals are estimated with the nMSE
values 0.0032 and 0.0031 even when corresponding sensors
of all the field nodes did not participate in sensing (i.e.
M2

24 = M3
57 = 0). However, Fig. 9(c) illustrates that using

MS+individual recovery, it is not possible to recover p = 3
light signal in 55th cycle when M3

55 = 0. Similar behavior is
seen for simulations using synthetic case in Sections V-A1 and
V-A2. Here, in the MS-SP strategy M4

66 = 0, due to which ẑ4
66

is not estimated as seen in Figs. 11(a-b) showing heat-maps of
actual and estimated signals of type 4. While in MS-CC, even
though M5

50 = 0, ẑ5
50 is still estimated as seen from the heat-

maps of actual and estimated type 5 signals in Figs. 11(c-d).
Remark 3: Cross-correlation based sensing and estimation
help in estimating a sensor’s signal without the actual mea-
surements from the corresponding sensors.

VI. CONCLUSION

This paper has proposed novel energy-efficient adaptive
multi-sensing strategies (MS, MS-SP, and MS-CC) in energy
harvesting heterogeneous WSN. The strategies adaptively ac-
tivate a subset of sensors of a few field nodes to monitor dif-
ferent correlated parameter signals. To do so, sensing quality

and energy efficiency of the WSN are jointly optimized for
each parameter, and the inherent spatial, temporal, and cross-
correlation among them are exploited for further adaptation
and pruning of the active sensors sets. Energy consumption
of different components of a node has been integrated in the
formulation which is often ignored in the literature. Further,
system constraints due to different detection limits of the
sensors and stochastic solar energy availability have also been
incorporated in the proposed strategies. A retraining logic
has also been developed that detects the need for retraining
a type of sensors in current measurement cycle to prevent
deterioration of the sensing quality. A SBL-based joint sparse
recovery scheme using Kronecker product of PCA-based
spatial and cross-correlation bases and MS-CC based active
sensors’ measurements has also been presented. It estimates
a field parameter even if all the corresponding sensors are
sleeping. Extensive simulation results on real data-sets have
demonstrated that the proposed MS-SP strategy along with
individual parameter recovery and MS-CC with joint recovery
are respectively 52% and 8% more energy-efficient compared
to the closest subset selection and field recovery strategies.
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