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Beamforming based Mitigation of Hovering
Inaccuracy in UAV-Aided RFET

Suraj Suman, Swades De, Ranjan K. Mallik, Maged Elkashlan, and Arumugam Nallanathan

Abstract—Hovering inaccuracy of unmanned aerial vehicle
(UAV) degrades the performance of UAV-aided radio frequency
energy transfer (RFET). Such inaccuracy arises due to position-
ing error and rotational motion of UAV, which lead to localization
mismatch (LM) and orientation mismatch (OM). In this paper,
antenna array beam steering based UAV hovering inaccuracy
mitigation strategy is presented. The antenna beam does not
accurately point towards the field sensor node due to rotational
motion of the UAV along with pitch, roll, and yaw, which leads
to deviation in the elevation angle. An analytical framework is
developed to model this deviation, and its variation is estimated
using the data collected through an experimental setup. Closed-
form expressions of received power at the field node are obtained
for the four cases arising from LM and OM. An optimization
problem to estimate the optimal system parameters (transmit
power, UAV hovering altitude, and antenna steering parameter)
is formulated. The problem is proven to be nonconvex. Therefore,
an algorithm is proposed to solve this problem. Simulation results
demonstrate that the proposed framework significantly mitigates
the hovering inaccuracy; compared to reported state-of-the-art
the same performance can be achieved with substantially less
transmit power.

Index Terms—Beam steering, Internet of Things, optimization,
radio frequency energy transfer, UAV hovering inaccuracy, wire-
less sensors

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are used in recent times
in various applications, such as defense and security, disaster
management, surveillance and monitoring, healthcare, agricul-
ture, telecommunication, and logistics [1]. The choice of UAVs
lies in its several advantages, like excellent maneuverability,
remote controllability, low cost, light weight, and program-
ming flexibility. The usage of UAVs are also being envisaged
for recharging the field deployed internet of things devices
(IoTDs), also called sensor nodes, through wireless power
transfer (WPT) technology [2], where a UAV with a radio
frequency (RF) transmitter mounted on it hovers above the
IoTDs and charges them wirelessly. The mobility feature of the
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UAV enables it to access hard-to-reach inaccessible locations
within a short time span to facilitate on-demand WPT. A UAV-
aided WPT framework overcomes several challenges associ-
ated with real-life deployment, e.g., reachability to the field
nodes due to infrastructure constraints, lack of cellular and
electrical transmission infrastructure, and battery replacement
with human intervention.

Automated and on-demand recharging of IoTDs is impor-
tant to ensure their uninterrupted operation, since in many
applications the IoTDs are tasked to sense the surroundings
round the clock and report any undesired events to a central
entity [3]. A major concern in 5G and beyond (B5G) is that
the IoTDs consume significant amount of energy in sensing,
processing, and communication [4]. A massively large number
of IoTDs are envisioned to be used in various applications [5],
such as smart farming, environmental sensing, area monitor-
ing, security and defense, autonomous vehicles, smart city,
smart home, and industrial automation, with almost 100%
connectivity and availability [6]. WPT has been found to be
a promising solution to ensure the sustainable operation of
6G communication networks [7], [8]. Toward this goal, we
believe that a UAV-aided WPT framework can potentially
take the critical role of an automated recharging agent of
the field nodes. Therefore, it is important to investigate the
different limitations of UAV-aided WPT with a closer look
on the feasibility in practical deployments. Here, WPT refers
to radiative WPT, which is also known as RF energy transfer
(RFET) [9]. Using this radiative approach, data transfer as well
as power transfer can be done over the same frequency band,
because RF waves carry energy as well as information. Off-
the-shelf devices such as powercast energy harvesters [10] can
be easily embedded with the sensor nodes to facilitate RFET.

A. Related Work

The reported works related to UAV-aided RFET can be
broadly classified in three categories: UAV-aided RFET only
[11], [12], UAV-aided RFET and wireless information transfer
(WIT) [13]–[19], and UAV-aided RFET, WIT, and mobile-
edge computing (MEC) [20], [21]. The first set of works in-
vestigate strategies to recharge the field sensor nodes. Towards
this, a UAV-mounted energy transmitter is deployed in [11] to
deliver energy wirelessly to a set of nodes at known locations
on the ground. The trajectory of the UAV is optimized to
maximize the amount of energy transferred to the nodes during
a finite charging period. In [12], the UAV supplies wireless
energy to a set of ground nodes aiming to maximize the
minimum received energy among all the ground nodes. Here,
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a global optimal solution is achieved for the nodes deployed in
a one-dimensional array as opposed to a local optimal solution
in [11].

The second set of works studied to recharge the sensor
nodes along with data collection from them through WIT.
A wireless charging platform integrated with a quadcopter is
reported in [13]. In [14], the UAV acts as an energy source to
power device-to-device pairs for information transfer. Here,
the resources are allocated in optimal sense to maximize
the throughput within a time window. In [15], the UAV
transfers energy to the user equipments in half-duplex or full-
duplex mode, and the user equipments harvest energy for
data transmission to the UAV. The total energy consumption
of the UAV is minimized while satisfying the minimal data
transmission requests of the user equipments. A UAV-assisted
cooperative communication system based on simultaneous
wireless information and power transfer (SWIPT) is presented
in [16], wherein the UAV serves as a relay. Multiple UAVs are
deployed as relays equipped with energy harvesting capability
in [17]. In these works [16], [17], the UAV’s transmission
capability is powered by the energy harvested from RF
signal transmitted from the source. The joint consideration
of downlink SWIPT and uplink information transmission in
UAV-assisted millimeter wave (mmWave) cellular networks is
analyzed in [18]. On the other hand, the authors in [19] study
the application of SWIPT to mmWave non-orthogonal multiple
access (NOMA) enabled aerial networks, where an aerial base
station sends wireless information and energy simultaneously
via NOMA schemes to multiple single-antenna information
decoding devices and energy harvesting devices.

The third set of works explored strategies to process the
collected data locally on a UAV-mounted server followed
by recharging and data collection from the sensor nodes. In
[20], a UAV-enabled MEC wireless-powered system is studied
Here, the computation rate maximization problem is investi-
gated, under both partial and binary computation offloading
modes, subject to the energy-harvesting and the UAV’s speed
constraint. A time division multiple access based work flow
model, which allows parallel transmissions and executions, is
presented in [21] to improve energy efficiency of the UAV-
enabled MEC wireless-powered system.

B. Motivation and Contribution

The reported works [11]–[21] have considered an ideal
hovering condition of a UAV, which is not the case in real-
life deployment. The operational condition of the UAV is
very different from fixed or static infrastructure, as it hovers
above ground with sufficient payload. The UAV experiences
hovering inaccuracy due to various reasons, such as vibration
and positioning errors. Recently, hovering inaccuracy of a
UAV and its impact on the performance of UAV-aided RFET
was measured and quantified in [22]. Due to hovering inac-
curacy, a UAV hovers at a position that is a little away from
the desired position, leading to localization mismatch (LM).
It also undergoes rotational motion, leading to orientation
mismatch (OM). The individual as well as joint effects of these
mismatches on UAV-aided RFET performance was analyzed.

It made the following observations on the effects of UAV
hovering inaccuracy: (i) compared to an ideal deployment
scenario, a higher transmission power is required for the
same RFET performance, (ii) optimum hovering altitude is
significantly different, and (iii) compared to OM, the effect of
LM is more severe.

The aforementioned observations reveal that the desired
amount of energy is not harvested at IoTDs due to hovering
inaccuracy of the UAV. The excess transmit power required to
achieve the same set of objectives is a critical issue, because
the UAV is an energy-limited system. Therefore, it is important
to devise new strategies for mitigating the effects of hovering
inaccuracy so that the energy loss due to this inaccuracy can be
minimized in UAV-aided RFET. To the best of our knowledge,
this is the first work in the literature of UAV-aided RFET where
a mitigation strategy to overcome the performance degradation
due to hovering inaccuracy is studied.

The key considerations and contributions are as follows:

1) An array of antennas is mounted on the UAV to generate
an optimally narrow beam directed towards the ground-
deployed sensor node for recharging its battery. This an-
tenna array offers a high gain with appropriate directivity
to overcome the effect of LM.

2) OM leads to displaced beam spot on the ground, which
does not ensure coverage of the sensor node. This hap-
pens due to deviation of elevation angle of the narrow
antenna beam. To this end, an analytical framework to
model the deviation in elevation angle is presented and
its variation is estimated using the data collected through
an experimental setup.

3) Closed-form expressions for the received power at the
ground-deployed node are obtained for a total of four
cases arising due to LM and OM. This enables us to
investigate the mitigation capability of individual as well
as joint degradation due to mismatch. A term coverage
probability is defined, which plays a key role in evaluating
the received power at the sensor node. Further, the
received power is characterized for each of the four cases.

4) An optimization problem to estimate the optimal system
parameters (transmit power, hovering altitude of UAV,
and antenna steering parameters) for mitigating the hov-
ering inaccuracy is formulated. Simulation results reveal
that the proposed framework mitigates the LM effectively,
whereas the OM has appreciable adverse effect on the
performance. However, the combined effect of LM and
OM is mitigated significantly, and the same RFET perfor-
mance is achieved with substantially less transmit power
(up to 36% reduction) compared to [22].

5) A framework to analyze varying hovering inaccuracy
is presented to evaluate the performance for different
level of LM and OM. Numerical analysis reveals that,
in contrast with the observation in [22], OM affects the
performance more severely than LM.

This work distinguishes itself significantly from the previous
work reported in [22], where the effects of UAV hovering
inaccuracies on RFET were investigated. As an advance,
the current study presents beamforming-based UAV hovering
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inaccuracy mitigation strategy to achieve a higher amount
of energy transfer to a ground node. The consideration of
beamforming entails a very different system model and the
associated performance analysis. Importantly, this study shows
that, with beam steering the different aspects of hovering
inaccuracy (LM and OM) have very different consequences
and the associated optimization requirements.

C. Paper Organization

In Section II, the system model is presented. The effect
of hovering inaccuracy on the system layout is analyzed
in Section III. In Section IV, an optimization problem is
formulated to estimate the optimal system parameters with
hovering inaccuracy. The simulation results are discussed in
Section V, followed by concluding remarks in Section VI.
Abbreviations introduced in the paper: RFET: radio frequency
energy transfer; LM: location mismatch; OM: orientation
mismatch.

II. SYSTEM MODEL

The system model for a UAV-aided RFET is shown in
Fig. 1, where the antenna array is mounted at the bottom
of the UAV. An antenna array radiates power over a narrow
beam in a particular direction with high directivity. Excel-
lent maneuvering capability of the UAV enables it to hover
vertically above the sensor node and facilitate RFET. With
this system configuration, hovering vertically above the sensor
node offers the maximum received power, as the distance
between transmitter and the individual receiver is minimum.
There are several advantages of using a narrow beam compared
to an omnidirectional radiation pattern. It transfers a higher
amount of power to the ground sensor node due to higher
directivity, which offers relatively higher coverage along the
line-of-sight (LoS) to extend the range of RFET. This extended
RFET range plays a key role in several real-life deployments.
The UAV visits each field sensor node one by one and
replenishes energy wirelessly, because the range of UAV-aided
RFET is very small, up to a few meters only. This is due
to relatively much higher minimum received power threshold
(i.e., poor sensitivity) for RFET (approximately −12 dBm).
On the other hand, the inter-node distance in a practical
ground node deployment is much larger (e.g., ten meters or
more) compared to the size (diameter) of the beam’s ground
projection (of the order of sub-meter). Thus, charging the
nodes individually is only feasible with the narrow beam
generated by the UAV-mounted transmitter having limited
ground projection area. Also, due to much smaller spot size
compared to the inter-node distance, an individual node’s
charging process does not influence the charging process
of another node. Simultaneous charging of multiple nodes
through multiple beams is not beneficial because the gain and
the power allocated to each beam are insufficient to meet the
receive power threshold. Further, a large inter-node distance in
real-life deployment degrades the energy harvesting capability
due to higher path loss. Therefore, without loss of generality,
for charging optimization, a single node is considered in the
network. The consequence of the UAV hovering inaccuracy

UAV

Sensor node

h

Figure 1: The system model for UAV-aided RFET.

will be the same for charging any other ground node in the
network. Since practically a UAV is able to charge one ground
node at a time, the analysis of LM and OM can be extended to
multi-UAV scenarios where each of them covers one node at
a time without appreciable overlap of ground projection areas.

In the given context of UAV-aided RFET, the channel
between the UAV and the sensor node is highly dominated
by the LoS link due to smaller hovering altitude and limited
ground projection area of the narrow beam. The effect of
small-scale (multipath) fading is negligible with a narrow
beam, i.e., when the LoS signal is very strong. Further, since
the time required for RFET based charging is large (of the
order of several minutes), the effect of small-scale (multipath)
fading is averaged out over such a long duration.

Referring to Fig. 1, the power received at a ground sensor
node when the UAV hovers at altitude h above it is expressed
as

P (h, θ) =PtxGrxF (θ, ϕ)

(
c

4πfcdtx−rx

)2

=
PtxΛ0F (θ, ϕ)

[dtx−rx]2
,

with Λ0 = Grx

(
c

4πfc

)2

(1)

where Ptx is the radiated power transmitted by the transmitter
mounted on the UAV and Grx is the receiver antenna gain,
c (= 3 × 108 m/s) is the speed of light, fc is the carrier
frequency of the transmitted RF wave, dtx−rx is the distance
between the transmitter and the receiver, and F (θ, ϕ) is the
radiation pattern of the transmit antenna array, with θ and
ϕ denoting, respectively, the elevation angle and the azimuth
angle. F (θ, ϕ) is expressed as [23]

F (θ, ϕ) =

{
N, if θ ∈

[
−θB(N)/2, θB(N)/2

]
, ϕ ∈ [0, 2π]

0, otherwise,
(2)

where θB(N) is the half power beamwidth (HPBW) of the
antenna array having N antenna elements and is θB(N) =
π/

√
N .

In the given context of UAV-aided RFET analysis, the main
lobe of the antenna array is of our interest, because of its
much higher gain compared to the side lobes. The impact
of side lobe gain is negligible in RFET because the nodes
are charged one-by-one individually due to smaller ground
projection area of the narrow beam compared to the inter-
node distance. Further, the side lobe gain has no effect on
the performance of UAV-aided RFET due to higher received
power threshold (approximately −12 dBm) for RF energy
replenishment. It is notable that, in contrast, the side lobe
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gain is of concern in a cellular communication scenario due
to much higher sensitivity for wireless information reception
(i.e., it works even at much lower received power, −90 dBm
or less), which causes interference [23].

Remark 1. The ground node is equipped with an omnidirec-
tional antenna, which aids in mitigation of LM of the hovering
UAV. Moreover, omnidirectional circularly polarized antenna
is a good choice, because of its insensitivity to polarization of
the received signal [24].

Remark 2. The emphasis of the study is to analyze the impact
of hovering inaccuracy on RFET performance, where the
received power is considered as the performance metric due
to analytical tractability. Since the harvested power is a non-
decreasing function of the received power [25], the analysis
for received power will also remain valid for harvested power
[11], [12].

III. EFFECT OF HOVERING INACCURACY ON SYSTEM
LAYOUT

A. Analysis of Hovering Inaccuracy

The location of the ground sensor node to be charged is
fetched into the UAV to schedule an autonomous flight, and
it arrives at the mentioned location to facilitate RFET. It
is desired that the UAV should hover vertically above the
sensor node and remain stationary while facilitating RFET
in order to transfer maximum energy to the ground sensor
node, because this orientation offers the minimum distance
between transmitter and receiver. Furthermore, the center of
the transmitted beam should point towards the field sensor
node. However, this does not happen in practical deployment
due to hovering inaccuracy of the UAV [22]. In fact, the UAV
hovers at a slightly different location rather than hovering
vertically above the sensor node and undergoes rotation at this
position. The UAV hovers at a different position other than the
desired location due to positioning error caused by the global
positioning system (GPS), which is termed as LM. The error
caused due to rotation of the UAV is termed as OM.

In this work we explore the possibility that, in the presence
of hovering inaccuracy, the narrow beam generated by the
UAV-mounted antenna array is steered towards the sensor
node as shown in Fig. 2(a) using the location information of
the field deployed sensor node and the GPS mounted on the
UAV. The location information of the deployed sensor node is
assumed known to the UAV, which can be either acquired
during deployment of the sensor node or shared with the
central entity (e.g., base station or UAV) during the field data
transfer. This will overcome the effect of LM by providing a
high gain. But OM displaces the center of the UAV-mounted
antenna’s beam pointed towards the sensor node as shown in
Fig. 2(b). Thus, the repercussions of LM and OM lead to
change in the system layout as depicted in Fig. 2(c). It is very
important to investigate the effect of hovering inaccuracy on
the system layout to analyze further the performance analysis
of the UAV-aided RFET.

Remark 3. First, the GPS coordinate system (represented
using longitude and latitude) needs to be converted into the

UAV

Sensor node

h

(a) beam steered towards node

h

UAV

(b) beam displacement due to OM

U

OuOs

Ob
ΦLM

(c) change in system layout

Figure 2: (a) UAV-mounted antenna’s beam directed towards sensor
node, (b) displacement of beam due to OM, and (c) geometrical
interpretation of system layout due to hovering inaccuracy.

Cartesian coordinate system. Let LO
o and LO

a respectively be,
the longitude and latitude of a location positioned on the
ground at O. The transformation from longitude and latitude
to Cartesian coordinates is obtained as [26]

xO = Re · cos(LO
a ) · cos(LO

o ), yO = Re · cos(LO
a ) · sin(LO

o )

LM leads to change in distance and elevation angle between
transmitter and receiver (Fig. 2(a)). Let d(h) and ΦLM (h)
respectively denote the distance and elevation angle due to
LM when the UAV hovers at altitude h. Let Os (xs, ys, 0)
be the ground sensor node coordinate which can be obtained
from Remark 4. The UAV hovers at location U (xu, yu, h)
which is not vertically above the location of the sensor node
(Fig. 2(c)). Then, the location of the projection point of the
UAV on ground above which it hovers is Ou (xu, yu, 0). The
distance d(h) between transmitter and receiver is obtained as

d(h) = ∥UOs∥ =
√

(xu − xs)2 + (yu − ys)2 + h2. (3)

The elevation angle ΦLM (h) between UAV transmitter and
ground receiver is

ΦLM (h) = ∠OuUOs = arctan

[√
(xu − xs)2 + (yu − ys)2

h

]
.

(4)
The UAV undergoes rotational motion along its rotational

axes. However, OM does not change the distance between
the transmitter and the receiver. However, it displaces the
narrow beam transmitted from the UAV-mounted antenna array
towards the ground sensor node as shown in Fig. 2 (b).
Thus, due to OM, the center of the antenna’s beam does not
accurately point towards the sensor node, which leads to a
deviation in the elevation angle ∠OsUOb as shown in Fig. 2
(c).

There are three types of rotational motion: pitch, roll, and
yaw. Pitch corresponds to rotation around the lateral axis
or around the wings, roll corresponds to rotation around the
longitudinal axis or around the head, whereas yaw corresponds
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Roll

Pitch

Yaw

(a) UAV rotation axes

θP
ΦLM h

U

OuOs OpRoll

(b) effect of rotation along roll

U

OsOb

Ψ

(c) deviation in elevation angle

Figure 3: (a) The rotational axes of UAV; depiction of (b) rotation
along roll and (c) deviation in elevation angle.

to rotation around the vertical plane. For convenience and
analytical tractability, let us assume that roll, pitch, and yaw
denote x, y, and z axes, respectively, as shown in Fig. 3(a).
With this assumption, Fig. 3(b) depicts the displacement of the
beam center of the antenna array along roll axis, where the
center of the beam points towards a slightly different location
(say Op) rather than the original sensor node’s location Os

due to roll angle θR. Thus, the x-coordinate of the center of
the displaced beam xR due to rotation along the roll θR is
obtained as

xR = h tan
(
ΦLM − θR

)
. (5)

Likewise, y-coordinate of the displaced beam center yP due
to rotation along the pitch θP is

yP = h tan
(
ΦLM − θP

)
. (6)

Thus, (xR, yP , 0) is the new coordinate of the beam center
after rotation along the pitch and roll axes. The beam experi-
ences rotation along the yaw, which rotates the beam along the
vertical z-axis and the beam experiences θY angular rotation
along the yaw. Consideration of the yaw is important, because
radiation pattern of the transmitted beam from the UAV-
mounted antenna array is not symmetric about the vertical axis
(or z-axis). Thus, the antenna beam centered at (xR, yP , 0)
undergoes θY angular rotation along the yaw. Then, the
coordinate of the new center of the beam (say Ob = (xb, yb, 0))
after θY rotation along the yaw (see Fig. 3 (c)) is obtained as

[
xb

yb

]
=

[
cos θY − sin θY
sin θY cos θY

] [
xR

yP

]
⇒ xb = xR cos(θY )− yP sin(θY )

yb = xR sin(θY ) + yP cos(θY ).

(7)

Finally, the center of the antenna’s beam points towards
Ob (xb, yb, 0) (see Fig. 3 (c)) after experiencing the rotation
of the UAV rather than the original sensor location Os. This
leads to the deviation in the elevation angle Ψ between the
sensor node Os and the shifted center of the beam spot Ob as
shown in Fig. 3(c). Using the coordinates of the three points,
i.e., the sensor node’s location (Os ≡ (xs, ys, 0)), the shifted
center of the beam spot (Ob ≡ (xb, yb, 0)), and the UAV’s
location (U ≡ (xu, yu, 0)), the deviation in elevation angle Ψ
is obtained as

Ψ = ∠ObUOs = arccos

[ −−→
UOb ·

−−→
UOs

|
−−→
UOb| · |

−−→
UOs|

]
. (8)

In (8),
−−→
UOb = [xb − xu, yb − yu,−h] and

−−→
UOs = [xs −

xu, ys − yu,−h], and
−−→
UOb ·

−−→
UOs denotes the dot product of

two vectors
−−→
UOb and

−−→
UOs.

B. Modeling of Hovering Inaccuracy Parameter

For conducting experiments, a customized rotatory-wing
UAV was assembled (see Fig. 4(a)) and a single sensor node
equipped with GPS module was considered. Extensive experi-
ments were conducted in an open play ground. The GPS loca-
tion of the deployed ground sensor node was noted. This posi-
tion information along with the hovering altitude was fetched
into the Ardupilot mission planner (http://ardupilot.org), which
was installed in the computer acting as a ground control
station. In the experiment, the setup was programmed to arrive
at the fetched location and hover at altitudes ranging from 1
m to 5 m, for approximately three minutes at each altitude.
While the UAV hovers at each of these altitudes, the rotation
angle parameters, i.e., pitch, roll, and yaw, change frequently
(around hundred samples per second). The data of the GPS
location and the rotational motion parameters of the UAV were
collected for further analysis. The hovering altitude of the UAV
was considered up to 5m only due to relatively higher received
power threshold (i.e., poorer sensitivity) for RFET, which is
approximately −12 dBm.

Using the GPS location data of the UAV and the sensor node
at each hovering altitude h, the distance d(h) and the elevation
angle ΦLM (h) between the UAV-mounted transmitter and the
receiver on the ground are calculated for different hovering
altitudes using (4) and (5), respectively. For this purpose, first
the GPS coordinate system is converted into the Cartesian
coordinate system (see Remark 3). The estimated values of the
distance and the elevation angle for different hovering altitudes
are modeled using a curve fitting technique in order to obtain
the empirical equations as functions of the hovering altitudes
for the ease of analysis. The empirical equations are given as

d(h) =
√

u1h2 + u2h+ u3

ΦLM (h) = v1h
3 + v2h

2 + v3h+ v4
(9)



6

(a) experimental setup

Angle, Ψ (rad)
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55N

u
m
b
e
r
o
f
sa

m
p
le
s

0

200

400

600

800

1000

1200

Empirical Fitted

(b) h = 1 m

Height h (m)
1 2 3 4 5

µ
H
I
(h
)

0

0.1

0.2

0.3

0.4
Empirical
Fitted

(c) mean of Ψ

Height h (m)
1 2 3 4 5

σ
H
I
(h
)

0.02

0.03

0.04

0.05
Empirical
Fitted

(d) standard deviation of Ψ

Figure 4: UAV experimental setup and variation of hovering inaccuracy parameters.

Table I: Variation of hovering inaccuracy parameters associated with
beamforming based strategy

OM-only

ΨOM (h) ∼ N
(
µOM (h), σ2

OM (h)
)
,

µOM (h) = q1 exp(q2h) + q3 exp(q4h),
q1 = 4.449e− 06, q2 = 1.38,
q3 = 0.08578, q4 = −0.1565
R-square = 0.9972
σOM (h) = r1 exp(r2h) + r3 exp(r4h),
r1 = −2.075e− 05, r2 = 1.147,
r3 = 0.04924, r4 = −0.1122
R-square = 0.9991

Both LM and OM

ΨHI(h) ∼ N
(
µHI(h), σ

2
HI(h)

)
,

µHI(h) = m1 exp(m2h) +m3 exp(m4h),
m1 = 2.498,m2 = −2.243,
m3 = 0.1657,m4 = −0.2552
R-square = 0.9999
σHI(h) = n1 exp(n2h) + n3 exp(n4h),
n1 = 0.0633, n2 = −0.233,
n3 = 2.153e− 06, n4 = 1.529
R-square = 0.9921

where u1 = 1.015, u2 = −0.1193, u3 = 0.2588, v1 =
−0.01573, v2 = 0.1763, v3 = −0.651, v4 = 0.8488. The R-
square values for the fitting of d(h) and ΦLM (h) are 0.9999
and 0.9938, respectively, and the values close to 1 indicate the
best fit.

The data of rotational angle parameters along with the
location of the UAV and the sensor node are used to estimate
the deviation in elevation angle Ψ using (9). At each altitude,
eighteen thousand samples of rotational angle (each for pitch,
roll, and yaw) are collected, and deviation in elevation angle
corresponding to them are estimated at each altitude. It has
been observed that the deviation in elevation angle Ψ closely
follows Gaussian shape for the data set at each height. For
example, the histogram of Ψ at altitude h = 1 m is shown
in Fig. 3(b). The mean and variance of the distribution of
Ψ for each height is obtained and fitted using curve fitting
technique in order to obtain the empirical equations as function
of hovering altitude for analytical tractability, which are listed
in Table I. Thus, Ψ at UAV hovering altitude h is modeled as

Ψ(h) ∼ N
(
µHI(h), σ

2
HI(h)

)
, (10)

where N denotes the Gaussian distribution; µHI(h) and
σHI(h) denote the mean and standard deviation, respectively,
when the UAV hovers at altitude h.

The values of µHI(h) and σHI(h) for different heights,
e.g., 1 m to 5 m, are obtained by analyzing the distribution
at each height. Next, the variation of µHI(h) and σHI(h)
against hovering altitude h are individually modeled through

mathematically via curve fitting for analytical tractability. The
modeled equations for µHI(h) and σHI(h) along with the
fitting coefficients are listed in Table I. The variation of the
empirical and fitted values of mean µHI(h) and standard
deviation σHI(h) are respectively shown in Figs. 4(c) and
4(d), which indicate a good match. The R-square values are
also listed in the table; the values close to 1 indicate the best
fit.

Remark 4. For the scenario when the UAV experiences only
OM, ΦLM = 0 and the distance between transmitter and
receiver is equal to the hovering altitude. The above analysis
will remain valid with ΦLM = 0 and the hovering inaccuracy
parameters can be estimated. For this case, the detailed
analysis is not presented here for brevity, but the hovering
inaccuracy parameters ΨOM , i.e., deviation in elevation angle
due to OM-only is modeled and listed in Table I.

Remark 5. The analysis presented here is based on a data
set of hovering inaccuracy measured using the experimental
setup in Fig. 4(a). It is quite possible that the same UAV
may exhibit different levels of hovering inaccuracy in different
deployment scenarios and environmental conditions. However,
the analytical framework and procedure to model the effect
of hovering inaccuracy on the system layout will remain the
same as those presented here. Therefore, it is important to es-
timate the UAV hovering inaccuracy profile via a measurement
campaign before facilitating RFET in a particular deployment
scenario, and optimize the system parameters accordingly. The
UAV can also update the optimal system parameters in real-
time according to the hovering inaccuracy profile.

IV. ESTIMATION OF OPTIMAL SYSTEM PARAMETER

With the analysis and modeling of the hovering inaccuracy
in the previous section, it is important to investigate the
joint and individual impact of mismatches. These cases are
important to analyze in order to evaluate the performance
deviation due to the hovering inaccuracy and severity of each
mismatch. For this purpose, four cases are considered as there
are two types of mismatches, i.e., LM and OM, and the
hovering inaccuracy is characterized in terms of the received
power at the sensor node. Then the optimal system parameters,
such as transmit power level, hovering altitude, and antenna
parameter, are estimated. These parameters will play a key
role in the UAV-aided RFET system design from practical
deployment perspective.
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A. Without Hovering Inaccuracy (Ideal Hovering)

In this case, the sensor node does not experience any
hovering inaccuracy. This refers to the scenario when the UAV
hovers vertically above the sensor node and does not undergo
rotational motion. Thus, from (1), the received power at the
sensor node when the UAV hovers at altitude h with N antenna
elements mounted on it is obtained as

P (Ideal)
rx (h,N) = PtxΛ0F (θ, ϕ)

(
1

dtx−rx

)2
∣∣∣∣∣
θ=0

dtx−rx=h

=
PtxΛ0N

h2
= PtxZIdeal(h,N),

(11)

where ZIdeal(h,N) is given as

ZIdeal(h,N) = Λ0N/h2. (12)

Remark 6. ZIdeal(h,N) is not a convex function of h and N .
It may be noted that, ZIdeal(h,N) is an increasing function
of N for a given h. On the other hand, ZIdeal(h,N) is a
decreasing function of h for a given N .

B. With Only Localization Mismatch (LM)

In this case, the sensor node experiences only LM. The UAV
does not hover vertically above the sensor node as well as does
not undergo rotational motion at this erroneous position. The
beam is steered towards the ground node at angle ΦLM (h) and
the node is covered by a narrow beam. This leads to change in
the distance between transmitter and receiver, but no deviation
in the elevation angle is noted. Thus, from (1), the received
power at the sensor node when the UAV hovers at altitude h
with N antenna elements mounted on it is obtained as

P (LM)
rx (h,N) = PtxΛ0F (θ, ϕ)

(
1

dtx−rx

)2
∣∣∣∣∣
θ=0

dtx−rx=d(h)

=
PtxΛ0N

[d(h)]2
= PtxZLM (h,N),

(13)

where ZLM (h,N) is given as

ZLM (h,N) = Λ0N/[d(h)]2. (14)

Theorem 1. ZLM (h,N) is not proven to be a convex function
of h and N .

Proof. See Appendix B.

Lemma 1. ZLM (h,N) is a decreasing function of h for a
given N = N0.

Proof. See Appendix C.

Lemma 2. ZLM (h,N) is an increasing function of N for a
given h = h0.

Proof. See Appendix D.

ZLM (h,N) is not proven to a convex function of h
and N , and therefore its variation against the individual
parameters h and N are investigated. Lemma 1 reveals that
ZLM (h,N = N0) is a decreasing function of h, because the
distance between the transmitter and the receiver increases

with increase in h. Lemma 2 reveals that ZLM (h = h0, N) is
an increasing function of N , because the gain of the antenna
array mounted on the UAV increases with increase in N . These
observations are used helpful in estimating optimal system
parameters.

C. With Only Orientation Mismatch (OM)

In this case, the sensor node experiences only OM. The
UAV hovers vertically above the sensor node and undergoes
rotational motion at this location. This does not change the
distance between transmitter and receiver, but the deviation in
the elevation angle is noted due to OM. Thus, from (1), the
received power at the sensor node when the UAV hovers at
altitude h with N antenna elements mounted on it is obtained
as

P (om)
rx (h,N) = PtxΛ0F (θ, ϕ)

(
1

dtx−rx

)2
∣∣∣∣∣
θ∼ΨOM (h)

dtx−rx=h

= PtxΛ0F (θ, ϕ)
1

h2

∣∣∣∣∣
θ∼ΨOM (h)

.

(15)

It may be noted from Table I that the deviation in the
elevation angle ΨOM is a random variable having Gaussian
distribution. Hence, the received power in the expected sense
is an appropriate metric for performance evaluation, because
the UAV will have to hover for a long duration (up to a few
minutes) in order to transfer several Joules of energy to each
of the sensor nodes. Thus, the received power in the expected
sense is evaluated as

P (OM)
rx (h,N) = E

[
PtxΛ0F (θ, ϕ)

(
1

h

)2
]

= PtxΛ0

(
1

h

)2

E
[
F (θ, ϕ)

]
,

(16)

where E[·] denotes the expectation operator.
The narrow beam pointed towards the sensor node gets

displaced due to the hovering inaccuracy of the UAV, which
leads to a deviation in the elevation angle. Thus, the sensor
node does not lie within the beam transmitted by the antenna
array mounted on the UAV. The gain of the directed beam is
N when the sensor node is covered by it, whereas the gain is
0 when the sensor node is not covered by the beam. Therefore,
E
[
F (θ, ϕ)

]
estimates the coverage of the sensor node, and to

capture this a term named coverage probability Pcov(h,N) is
defined for analysis.

Definition 1. The coverage probability refers to the possibility
that the target sensor node lies within the beam spot gener-
ated by the UAV-mounted antenna array having N antenna
elements hovering at altitude h.
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Using the definition 1 and the hovering parameters estimated
in Table I, P (OM)

cov (h,N) is estimated as

P (OM)
cov (h,N) =Pr

{
− θB(N)

2
≤ ΨOM (h) ≤ θB(N)

2

}
=Q
(
−

θB(N)
2 − µOM (h)

σOM (h)

)
−

Q
( θB(N)

2 + µOM (h)

σOM (h)

)
,

(17)

where Q(·) denotes the Gaussian Q-function.
Using the definition 1, E

[
F (θ, ϕ)

]
is given as

E
[
F (θ, ϕ)

]
= NP (OM)

cov (h,N). (18)

Using the above finding, (16) is rewritten as

P (OM)
rx (h,N) = PtxΛ0

(
1

h

)2

E
[
F (θ, ϕ)

]
= PtxΛ0

(
1

h

)2

NP (OM)
cov (h,N)

= PtxZOM (h,N),

(19)

where ZOM (h,N) is given as

ZOM (h,N) = Λ0NP (OM)
cov (h,N)/h2. (20)

It may be noted from (19) that the coverage probability
strongly depends on the variance of the deviation in the
elevation angle; increase in the variance leads to decrease in
the coverage probability and vice versa. Thus, the variance
of the deviation in the elevation angle has strong impact on
received power at the sensor node, because the received power
is directly proportional to the coverage probability.

Theorem 2. ZOM (h,N) is not proven to be a convex function
of h and N .

Proof. See Appendix E.

Lemma 3. ZOM (h,N) is an increasing function of h for a
given N = N0.

Proof. See Appendix F.

Lemma 4. ZOM (h,N) is an increasing function of N for a
given h = h0.

Proof. See Appendix G.

The variation of ZOM (h,N) against the individual pa-
rameters h and N , is investigated, as it is not proven to
be a convex function of h and N . Lemma 3 suggests that
ZOM (h,N = N0) is a decreasing function of h. This happens,
because the distance between the transmitter and the receiver
increases with increase in h. In addition, the coverage proba-
bility also decreases with altitude, as the mean and variance
of the deviation in the elevation angle ΨOM decreases with
increase in h. Lemma 4 reveals that ZOM (h = h0, N) is an
increasing function of N . The gain of antenna array increases
with increase in N , whereas the coverage probability decreases
with increase in N due to reduced HPBW. ZOM (h = h0, N)

is the product of antenna gain and coverage probability. The
increase in antenna gain overcomes the effect of reduction
in coverage probability, and as a result ZOM (h = h0, N)
increases with increase in N .

D. With Both LM and OM

In this case, the UAV does not hover vertically above
the sensor node (i.e., LM), which leads to a change in the
distance between transmitter and receiver. In addition, the UAV
undergoes rotational motion at this erroneous position (i.e.,
OM), which leads to a deviation in the elevation angle between
transmitter and receiver. Thus, from (1), the received power at
the sensor node when the UAV hovers at altitude h with N
antenna elements mounted on it is obtained as

P (hi)
rx (h,N) = PtxΛ0F (θ, ϕ)

(
1

dtx−rx

)2
∣∣∣∣∣
θ∼ΨHI(h)

dtx−rx=d(h)

= PtxΛ0F (θ, ϕ)

(
1

d(h)

)2
∣∣∣∣∣
θ∼ΨHI(h)

.

(21)

It may be noted from (10) that the deviation in the elevation
angle θ is a random variable having Gaussian distribution. The
received power in the expected sense is evaluated as

P (HI)
rx (h,N) = E[P (hi)

rx (h,N)] = E

[
PtxΛ0

[d(h)]2
F (θ, ϕ)

]
=

PtxΛ0

[d(h)]2
E
[
F (θ, ϕ)

]
.

(22)

By definition 1 and the estimated parameters in Table I,
P

(HI)
cov (h,N) is estimated as

P (HI)
cov (h,N) = Pr

{
− θB(N)

2
≤ ΨHI(h) ≤

θB(N)

2

}
= Q

(
−

θB(N)
2 − µHI(h)

σHI(h)

)
− Q

( θB(N)
2 + µHI(h)

σHI(h)

)
.

(23)

Now, E
[
F (θ, ϕ)

]
is estimated as

E
[
F (θ, ϕ)

]
= NP (HI)

cov (h,N). (24)

Using the above finding, (22) is rewritten as

P (HI)
rx (h,N) =

PtxΛ0

[d(h)]2
E
[
F (θ, ϕ)

]
=

PtxΛ0NP
(HI)
cov (h,N)

[d(h)]2
= PtxZHI(h,N),

(25)

where ZHI(h,N) is given as

ZHI(h,N) = Λ0NP (HI)
cov (h,N)/[d(h)]2. (26)

Theorem 3. ZHI(h,N) is not proven to be a convex function
of h and N .

Proof. See Appendix H.

Lemma 5. ZHI(h,N) is a unimodal function of h for a given
N = N0.
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Proof. See Appendix I.

Lemma 6. ZHI(h,N) is a unimodal function of N for a given
h = h0.

Proof. See Appendix J.

Lemma 5 reveals the unimodal nature of ZHI(h,N = N0).
The coverage probability increases with increase in h due
to decrease in mean and variance of ΦHI and the distance
between transmitter and receiver increases at the same time.
Thus, at a lower altitude, reduction in the coverage probability
dominates due to significantly higher values of mean and
variance of ΦHI , whereas the distance between the transmitter
and the receiver dominates at a higher altitude. Therefore,
ZHI(h,N = N0) is a unimodal function of h. Lemma 6
reveals the unimodal variation of ZHI(h = h0, N). The
HPBW reduces with increase in N and the gain of the antenna
array increases at the same time. Therefore, the coverage
probability decreases with increase in N due to reduction in
HPBW. It may be noted from Table I that the magnitude
of mean and variance of ΨOM is significantly lesser than
that of ΨHI . Due to this, Lemmas 3 and 4 exhibit different
characteristics than Lemmas 5 and 6.

E. Estimation of Optimal System Parameters

Till now, the received power level at the sensor node for
all the four cases have been obtained, which will be used to
estimate the optimal system parameters. For this purpose, an
optimization problem to obtain the optimal system parameters
for the kth case is formulated as

(P1) : minimize
h,N

P
(k)
tx , k = {Ideal,LM,OM,HI}

s. t.: (C1) : E[P (k)
rx (h,N)] ≥ Po,

(C2): hmin ≤ h ≤ hmax,

(C3): Nmin ≤ N ≤ Nmax.

(27)

The objective function of (P1) ensures the transfer of at least
Po amount of power to the ground deployed sensor node
by transmitting minimum amount of power from the UAV-
mounted transmitter. To this end, the developed objective
function aims to select an appropriate hovering altitude and
the antenna parameter so that the transmitted power level can
be minimized in order to receive a power level of at least
Po. Constraint (C1) captures the received power threshold
characteristics. Constraint (C2) restricts the UAV hovering
altitude range, whereas constraint (C3) limits the range of the
number of antenna elements mounted on the UAV.

Using (11), (13), (16), and (25), constraint (C1) is rewritten
as

E[P (k)
rx (h,N)] ≥ Po ⇒ P

(k)
tx · Zk(h,N)

⇒ P
(k)
tx ≥ Po

Zk(h,N)
, k = {Ideal,LM,OM,HI}.

(28)

Using (28), the optimization problem (P1) is rewritten as

(P2) : maximize
h,N

Zk(h,N), k = {Ideal,LM,OM,HI}

s. t.: (C2) and (C3)
(29)

Algorithm 1 Estimation of Optimal System Parameters

1: Input: Λ0, Nmin, Nmax, hmin, hmax, P0, hovering inac-
curacy parameters (Table I and (9))

2: Output: P opt
tx , hopt, Nopt

3: ϵ = 0.01, N0 = Nmin

4: Find hr(N0), the root of ∂
∂hZHI(h,N0) = 0 (see Ap-

pendix I), using bisection method
5: Calculate ZHI(hr(N0), N0) (see (26))
6: while ϵ ≥ 0 do
7: N0 = N0 + 1,
8: Find hr(N0), the root of ∂

∂hZHI(h,N0) = 0, using
bisection method

9: Calculate ZHI(hr(N0), N0), ϵ = ZHI(hr(N0), N0)−
ZHI(hr(N0 − 1), N0 − 1)

10: end
11: nopt = N0 − 1, hopt = hr(N0 − 1), P opt

tx =
[P0]/[Λ0 · ZHI(hopt, nopt)]

Thus, the optimization problem (P1) is transformed into (P2)
and solving (P2) is equivalent to solving (P1). Moreover,
Remark 6, Theorems 1 through 3 indicate that Zk(h,N) is not
a convex function of h and N . Therefore, numerical techniques
are needed to solve this optimization problem, where the
characteristics of Zk(h,N) proved in Lemmas 1 through 6 will
be explored. For the ideal case without hovering inaccuracy
Zk(h,N) with k = {Ideal}, the minimum hovering altitude
is the optimal one, whereas the maximum allowable value
of N is the optimal one (see Remark 6). On one hand, for
LM-only and OM-only cases, the optimal hovering altitude
is the lowest possible one, i.e, hmin (see Lemmas 1 and 3),
and the optimal number of antenna elements is the maximum
allowable one, i.e., N = Nmax (see Lemmas 2 and 4). On the
other hand, in presence of both LM and OM, Zk(h,N) with
k = {HI} exhibits unimodal variation against h for a given
N (see Lemma 5). Also, Zk(h,N) with k = {HI} exhibits
unimodal variation against N for a given h (see Lemma 6).
Using the characteristics of the received power, an algorithm
is proposed (Algorithm 1) to estimate the values of optimal
system parameters with both LM and OM. Here, the optimal
hovering altitude, which is the root of ∂

∂hZHI(h,N0) = 0, is
obtained using bisection method for a given number of antenna
elements. Then ZHI(·, ·) is calculated and compared with the
previous set of optimal value. This process is repeated until
decrease in ZHI(·, ·) is noted due to unimodal variation of
ZHI(h,N) against h and N individually.

The computational complexity of Algorithm 1 is
O(hmaxNmax), because the computational complexity
of the bisection method depends upon the search interval and
accuracy of the solution (a constant, here it is 0.01m). The
function evolved in the optimization problem is characterized
in Lemma 5 and Lemma 6, and found to be unimodal. It
may be noted that the unimodal function contains unique
optimality in the domain of definition, which ensures the
convergence of Algorithm 1 in a finite number of iterations.
Further, the optimal solution estimated by Algorithm 1 is
the global optimal solution due to the presence of unique
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Figure 5: Variation of Pcov(h,N) against number of antenna ele-
ments for different cases.

optimality in the unimodal function.

V. RESULTS AND DISCUSSIONS

Numerical evaluation of the analyses in Sections III and
IV is presented here. The hovering inaccuracy parameters
in Table I are used in simulations. The system parameter
values considered are: Ptx = 1 W, Grx = 2.10, fc =
28 GHz, Nmin = 1, Nmax = 150, hmin = 1 m, hmax = 5 m.

A. Effect of Coverage Probability

The variation of coverage probability against the number of
antenna elements N at different hovering altitudes for the two
cases (OM-only and both LM and OM) is shown in Fig. 5,
where the hovering inaccuracy occurs due to the rotational
motion of the UAV. It can be observed that the coverage
probability decreases with increase in N due to decrease
in the HPBW, which leads to a reduced size of the beam
spot wherein the sensor node cannot be covered. Moreover,
Pcov(h,N) increases with hovering altitude, because the mean
and standard deviation of the deviation in elevation angle (see
ΨOM (h) and ΨHI(h) in Table I) decreases with increase
in hovering altitude. Hence, the antenna’s beam does not
get displaced significantly at higher hovering altitude, which
ensures coverage of the sensor node within the beam spot. The
effect of coverage probability is more severe with both LM and
OM as compared to OM-only. This is because the UAV hovers
vertically above the sensor node in OM-only case. This leads
to symmetric radiation pattern of antenna’s beam about the

vertical axis in this orientation, where the effect of the yaw is
not severe. On the other hand, the antenna beam is directed
towards the distant located sensor node in case of both LM
and OM. This leads to asymmetric radiation pattern of the
beam about the vertical axis, and the rotation along the yaw
results in significant deviation in the elevation angle.

Remark 7. Hovering inaccuracy of UAV leads to reduce the
effective gain of antenna beam directed towards the sensor
node, which has strong impact on the performance.

B. Comparison of Hovering Inaccuracy Mitigation Perfor-
mance

The work reported in prior art [22] is considered for
comparison purpose. The radiation pattern of transmitter an-
tenna mounted on the UAV is: g(n, θ) = 2(n + 1) cosn(θ),
where n is the antenna exponent and θ is the elevation angle
between transmitter and receiver. The HPBW of this antenna is√
2π/(n+ 1). This directional antenna has a symmetrical ra-

diation pattern about the vertical axis as opposed to the narrow
beam having an asymmetric radiation pattern considered here
in this work. To demonstrate the mitigation capability of the
proposed framework, variation of the received power against
HPBW is shown in Fig. 6 for different cases. The transmit
power level is considered to be 1 W and the dimension of the
antenna array depends upon the HPBW value. Then, the UAV
optimizes its hovering altitude (as shown in Fig. 7) so that
the maximum power can be received at the sensor node. Fig.
6(a) reveals that LM-only case, the received power level in
the proposed framework is much higher than the prior art.
However, the gap reduces and the received power level is
almost same for both of the methods as HPBW increases.
This happens because the narrow beam offers much higher
gain, which overcomes the loss due to LM significantly in
the proposed beamforming based framework. Besides, the
loss caused by coverage probability is not here due to the
absence of rotation motion of UAV. The optimal UAV hovering
altitude variation for this case shown in Fig. 7(b) indicates
that the UAV hovers at the lowest allowable altitude in the
proposed framework, whereas the UAV needs to hover at
a higher altitude to overcome LM without beam steering,
as considered in [22]. For OM-only case where there is no
LM, Fig. 6(b) indicates that the received power level in the
proposed framework is slightly less than that in [22]. This
is caused due to reduction in the effective gain of antenna’s
beam due to coverage probability (see Fig. 5(a)). Although
the gap is nominal, it reveals that the effect of OM in the
proposed beamforming based RFET framework is more severe
than that in [22]. However, the optimal hovering altitude is
the same and the lowest allowable altitude, i.e., 1m, for both
as shown in Fig. 7(b). With both LM and OM, the received
power level variation against HPBW is shown in Fig. 6(c),
which reveals that the received power level in the proposed
framework is much higher than [22]. Optimal altitude variation
against HPBW shown in Fig. 7(c) indicates that the UAV
hovers at higher altitude for smaller values of HPBW, which
offers a larger beam spot on the ground to ensure the node’s
coverage.
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(a) LM-only (b) OM-only (c) both LM and OM

Figure 6: Variation of optimal received power against HPBW for different cases of mismatch with Ptx = 1 W.

(a) LM-only (b) OM-only (c) both LM and OM

Figure 7: Variation of optimal hovering altitude against HPBW to receive optimal power level for different cases for proposed framework
and the work reported in [22] with Ptx = 1 W.

(a) transmit power

(b) hovering altitude

Figure 8: Comparison of optimal (a) transmit power and (b) hovering
altitude against HPBW for Po = 0.1 W.

Variation of optimal transmit power level to achieve the
objectives of the optimization problem (P1) against HPBW is

shown in Fig. 8(a) for the proposed method and [22]. One can
observe that relatively less power is needed in the proposed
framework as compared to the prior art. The saving in transmit
power level is up to 36%. To meet this performance, the
UAV hovers at a higher altitude in the proposed framework as
compared to that in prior art as shown in Fig. 8(b). Thus, the
proposed hovering inaccuracy mitigation framework is more
energy-efficient while achieving the same performance.

Remark 8. The proposed beamforming based framework
treats LM and OM very differently. It mitigates LM effectively,
whereas OM exhibits adverse effect. However, an overall gain
in performance improvement is noticed by jointly accounting
for both the mismatches.

C. Impact of Varying Hovering Inaccuracy

The analysis presented till now is based on the parameters
listed in Table I, which had been estimated using the data
collected by conducting experiments in an open space (hockey
ground). This can be thought of as an ideal deployment sce-
nario, because GPS signals from nine satellites were available.
It is quite possible that the UAV may experience different lev-
els of hovering inaccuracy in different deployment scenarios
while facilitating UAV-aided RFET, where the amount of LM
and OM can be much higher than that obtained in Table I.
It is important to investigate the mitigation capability of the
proposed framework in such a deployment scenario having
varying level of hovering inaccuracy. To this end, to model
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(a) transmit power (b) number of antenna array (c) hovering altitude

Figure 9: Variation of optimal system parameters for different level of hovering inaccuracy for Po = 0.1 mW.

the severity of the hovering inaccuracy, we have used two
tuning parameters γ > 0 and β > 0 to capture the variation
in distance and the deviation in elevation angle, respectively.

The γ-dependent distance between transmitter and receiver
is formulated as

d(γ)(h) =
√

h2 + (γ|OuOs|)2 with |OuOs| =
√
[d(h)]2 − h2.

(30)
Here, the increase in horizontal distance between the sensor
node (Os) and the ground projection of the UAV (Ou), i.e.,
|OuOs|, depicts the GPS error (see Fig. 2), whereas γ indicates
the severity of LM. γ > 1 indicates that the amount of
LM is higher than that in Table I, whereas 0 < γ < 1
indicates that the amount of LM is less than that in Table
I. The β-dependent deviation in elevation angle is formulated
as Ψ(β)(h) ∼ N

(
µHI(h), σ

2
HI(h)

)
+β ·µ0, where µ0 = 0.03

is the additional deviation in elevation angle. This indicates
that the UAV undergoes severe rotation motion along pitch,
roll, and yaw, and hence a higher deviation in elevation angle.

Now, the received power level is obtained from (25) using
the distance between transmitter and receiver d(γ)(h) and the
deviation in elevation angle Ψ(β)(h). The characteristics of
the received power for this case has been investigated, which
exhibits same variation as proved in Theorem 3, Lemma
5, and Lemma 6. Thus, the optimal system parameters can
be evaluated using Algorithm 1. The optimal system pa-
rameters for the ideal case without any hovering inaccuracy
is: (P opt

tx , hopt, Nopt)
∣∣
Ideal = (0.44 W, 1 m, 150). On the

other hand, the variation of the optimal system parameters
against severity of OM for different level of LM is shown
in Fig. 9. One can observe from Fig. 9(a) that it requires
to transmit significantly higher power level as the amount of
OM increases. Furthermore, the optimal number of antenna
elements reduces as β increases as shown in Fig. 9(b), because
a lower value of N offers a higher HPBW which ensures the
coverage of the sensor node within the beam spot. The optimal
hovering altitude also decreases with increase in β as shown
in Fig. 9(c) to balance the loss due to coverage probability
which reduces with β. It is also noted from Fig. 9 that the
effect of different level of OM is more severe than that of
LM, because the variation in the optimal system parameters
is not significant when amount of LM increases. However,
the proposed framework offers overall performance gain by
mitigating the effect of both LM and OM.

VI. CONCLUDING REMARKS

An antenna beam steering based mitigation strategy to
reduce the effect of hovering inaccuracy in the performance
of UAV-aided RFET has been presented. A narrow beam is
transmitted towards the ground sensor node from the antenna
array mounted at the bottom of the UAV. The center of the
narrow beam is displaced due to hovering inaccuracy, which
leads to an uncertain ground coverage by the transmitted
beam. An analytical framework to estimate the deviation in
elevation angle has been presented and its parameters have
been evaluated using data collected from the UAV-based
experimental setup. With this finding, closed-form expressions
for the received power at the ground sensor node have been
obtained for the ideal hovering condition of the UAV and in
the presence of hovering inaccuracy of the UAV. The nature
of variation of the received power has also been characterized.
Then, an optimization problem has been formulated to evaluate
the optimal values of system parameters, i.e., transmit power
level, hovering altitude, and antenna parameter. This problem
has been proven to be nonconvex, and an algorithm is proposed
to solve this. Performance analysis and simulation results
reveal that the proposed framework is more energy-efficient
in mitigating hovering inaccuracy, as the same performance
can be achieved with less transmit power level (up to 36%)
as compared to the prior art. The proposed framework also
mitigates the varying level of hovering inaccuracy.

Further investigations on the study of charging mechanism
with multi-UAV deployment scenario in the presence of hov-
ering inaccuracy would be of future research interest, where
mapping of nodes to appropriate UAVs, trajectory optimization
of each of the UAVs, and estimation of charging time required
by each node will be of major concern, while accounting for
the energy constraint of UAVs. While the analysis of LM
and OM in this paper generically captures the UAV hover-
ing inaccuracy, an interesting direction would be exclusive
investigation on the effects of environmental factors, such as
wind and fog, on the hovering inaccuracy and performance of
UAV-aided RFET. The effect of orientation mismatch due to
pitch, roll, and yaw is also very interesting and challenging
issue when the UAV communicates using beamforming with
another UAV or base station over the backhaul data link.
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APPENDIX

A. Proof of Theorem 2
For convenience, let us assume that

D(h) =d2(h), D′(h) =
∂

∂h
D(h) = 2u1h+ u2, D

′′(h) = 2u1 (see 9).
(B-1)

The Hessian matrix ZLM (h,N) is:

HLM (h,N) =

[
∂2ZLM (h,N)

∂h2

∂2ZLM (h,N)
∂h∂N

∂2ZLM (h,N)
∂N∂h

∂2ZLM (h,N)
∂N2

]
=

Λ0

[
2D(h)[D′(h)]2−[D(h)]2D′(h)

[D(h)]4 − D′(h)
[D(h)]2

− D′(h)
[D(h)]2 0

]
. The determinant

is |HLM (h,N)| = −
(
Λ0

D′(h)
[D(h)]2

)2
, which is negative and

hence ZLM (h,N) is not a convex function of h and N .

B. Proof of Lemma 1

The derivative of ZLM (h,N) with respect to h for a
given value of N = N0 is obtained as: ∂

∂hZLM (h,N0) =

−Λ0N0
D′(h)
[D(h)]2 . From the parameters listed in Table I, one can

deduce that D′(h) > 0 ∀h. Hence, ∂
∂hZLM (h,N0) < 0 ∀h,

which proves the decreasing nature of ZLM (h,N0) against h.

C. Proof of Lemma 2

The derivative of ZLM (h,N) with respect to N for a given
value of h = h0 is: ∂

∂NZLM (h0, N) = Λ0
1

D(h0)
. From the

parameters listed in Table I, one can deduce that D(h) > 0 ∀h.
Hence, ∂

∂NZLM (h0, N) > 0 ∀N , which proves the increasing
nature of ZLM (h0, N) against N .

D. Proof of Theorem 3

For convenience, let us denote

V (h,N) =
−θB(N)

2 + µOM (h)

σOM (h)
,W (h,N) =

θB(N)
2 + µOM (h)

σOM (h)
.

(E-1)

The derivatives of V (h,N) with respect to h and N are

Vh(h,N) =
∂

∂h
V (h,N) =

∂

∂h

(
µOM (h)− π

2
√
N

σOM (h)

)

=
σOM (h)µ′

OM (h)− (µOM (h)− π
2
√
N
)σ′

OM (h)

[σOM (h)]2
,

VN (h,N) =
∂

∂N
V (h,N) =

π

4σOM (h)
N−3/2,

Vhh(h,N) =
∂2

∂h2
V (h,N)

=

σ2
OM (h)[σOM (h)µ′′

OM (h)− σ′′
OM (h)(µOM (h)

− π
2
√
N
)]− 2σOM (h)σ′

OM (h)[σOM (h)µ′
OM (h)

− (µOM (h)− π
2
√
N
)σOM (h)]

[σOM (h)]4
,

VNh(h,N) = VhN (h,N) =
∂2

∂N∂h
V (h,N) = −π

4

σ′
OM (h)

σ2
OM (h)

N−3/2,

VNN (h,N) =
∂2

∂N2
V (h,N) = − 3π

8σOM (h)
N−5/2,

(E-2)

where µ′
OM (h) = ∂

∂hµOM (h), σ′
OM (h) =

∂
∂hσOM (h), µ′′

OM (h) = ∂2

∂h2µOM (h), σ′′
OM (h) =

∂2

∂h2σOM (h).
The derivatives of W (h,N) with respect to h and N are

Wh(h,N) =
∂

∂h
W (h,N) =

∂

∂h

(
µOM (h)− π

2
√
N

σOM (h)

)

=
(µOM (h) + π

2
√
N
)σ′

OM (h)− σOM (h)µ′
OM (h)

[σOM (h)]2
,

WN (h,N) =
∂

∂N
W (h,N) = − π

4σOM (h)
N−3/2,

Whh(h,N) =
∂2

∂h2
W (h,N)

=

σ2
OM (h)[σ′′

OM (h)(µOM (h) + π
2
√
N
)− σOM (h)

µ′′
OM (h)]− 2σOM (h)σ′

OM (h)[(µOM (h)+
π

2
√
N
)σ′

OM (h)− σOM (h)µ′
OM (h)]

[σOM (h)]4
,

WNh(h,N) = WhN (h,N) =
∂2

∂N∂h
W (h,N)

=
π

4

σ′
OM (h)

σ2
OM (h)

N−3/2,

WNN (h,N) =
∂2

∂N2
W (h,N) =

3π

8σOM (h)
N−5/2.

(E-3)

Using (E-1) and (E-2), the derivatives of Q(U(h,N)) with
respect to h and N are obtained as

Qh(V (h,N)) =
∂Q(V (h,N))

∂h

=− 1

2π
exp(−[V (h,N)]2/2)Vh(h,N),

QN (V (h,N)) =
∂Q(V (h,N))

∂N

=− 1

2π
exp

(
− [V (h,N)]2

2

)
VN (h,N),

Qhh(V (h,N)) =
∂2Q(V (h,N))

∂h2

=
1

2π
exp

(
− [V (h,N)]2

2

)
·[

V (h,N)(Vh(h,N))2 − Vhh(h,N)
]
,

QNN (V (h,N)) =
∂2Q(V (h,N))

∂N2

=
1

2π
exp

(
− [V (h,N)]2

2

)
·[

V (h,N)(VN (h,N))2 − VNN (h,N)
]
,

QhN (V (h,N)) =QNh(V (h,N)) =
∂2Q(V (h,N))

∂h∂N

=
1

2π
exp

(
− [V (h,N)]2

2

)
·[

V (h,N)Vh(h,N)VN (h,N)− VhN (h,N)
]
.
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(a) |HOM (h,N)| (b) |HOM (h,N)| (c) |HHI(h,N)| (d) |HHI(h,N)|

Figure 10: Variation of maximum and minimum eigenvalue against hovering altitude h and antenna array N .

Using (17) and (E-4), the derivatives of Pcov(h,N) are

hP
(OM)
cov (h,N) =

∂

∂h
P (OM)
cov (h,N)

= Qh(V (h,N))−Qh(W (h,N)),

NP (OM)
cov (h,N) =

∂

∂N
P (OM)
cov (h,N)

= QN (V (h,N))−QN (W (h,N)),

hhP
(OM)
cov (h,N) =

∂2

∂h2
P (OM)
cov (h,N)

= Qhh(V (h,N))−Qhh(W (h,N)),

NNP (OM)
cov (h,N) =

∂2

∂N2
P (OM)
cov (h,N)

= QNN (V (h,N))−QNN (W (h,N)),

hNP (OM)
cov (h,N) = NhP

(OM)
cov (h,N) =

∂2

∂h∂N
P (OM)
cov (h,N)

= QhN (V (h,N))−QhN (W (h,N)).
(E-4)

Similarly, the derivatives of Q(W (h,N)) with respect to h
and N can be obtained using E-2, E-3, and (E-4).

Now, the Hessian matrix of ZOM (h,N) is given as

HOM (h,N) =

[
∂2ZOM (h,N)

∂h2

∂2ZOM (h,N)
∂h∂N

∂2ZOM (h,N)
∂N∂h

∂2ZOM (h,N)
∂N2

]
= Λ0

[
κ11 κ12

κ21 κ22

]
.

Using (B-1) and (E-4), the elements of the Hessian matrix
HOM (h,N) are obtained as

κ11 = N

[D(h)]2
[
D(h)hhP

(OM)
cov (h,N)−

P
(OM)
cov (h,N)D′′(h)− 2D′(h)hP

(OM)
cov (h,N)

]
+ 2[D′(h)]2P

(OM)
cov (h,N)D(h)

[D(h)]4
.

κ12 = κ21 =

D(h)
[
hP

(OM)
cov (h,N) +NNhP

(OM)
cov (h,N)

]
−D′(h)

[
P

(OM)
cov (h,N) +NNP (OM)

cov (h,N)
]

[D(h)]2
.

κ22 =
2NP (OM)

cov (h,N) +NNNP (OM)
cov (h,N)

D(h)
.

ZOM (h,N) is continuous, hence κ12 = κ21. For convexity,
the Hessian matrix of the function should be positive semidefi-
nite. The variation of the eigenvalues of |HOM (h,N)| against
h and N is shown in Fig. 10 (a) and (b). The presence of
eigenvalues of opposite sign ensures that HOM (h,N) is not
a convex function of h and N .

E. Proof of Lemma 3

The derivative of ZOM (h,N) with respect to h for a given
value of N = N0 is obtained as

∂

∂h
ZOM (h,N0) = N0

D(h)hP
(OM)
cov (h,N0)−D′(h)P

(OM)
cov (h,N0)

[D(h)]2
.

The variation of ∂
∂hZOM (h,N0) is shown in Fig. 11(a) at

different N0. It is notable that ∂
∂hZOM (h,N0) is negative,

which proves decreasing nature of ZOM (h,N0) against h.

F. Proof of Lemma 4

The derivative of ZOM (h,N) with respect
to N at a given h = h0 is obtained as:
∂

∂NZOM (h0, N) =
P (OM)

cov (h0,N)+NNP (OM)
cov

(h0,N)

D(h0)
. The

variation of ∂
∂NZOM (h0, N) is shown in Fig. 11(b)

for different values of h0. It may be observed that
∂

∂NZOM (h0, N) is positive, which proves the increasing
nature of ZOM (h0, N) against N .

G. Proof of Theorem 4

For convenience, we denote

X(h,N) = −
θB(N)

2 − µHI(h)

σHI(h)
, Y (h,N) =

θB(N)
2 + µHI(h)

σHI(h)
.

(H-1)

The derivatives of X(h,N) and Y (h,N) can be obtained by
following the same procedure as in (E-2) and (E-3). Then, the
derivatives of P (HI)

cov (h,N) can be obtained from (E-4). These
expressions will be used during the estimation of the Hessian
matrix of ZHI(h,N), but they are not given here for brevity.

Now, the Hessian matrix of ZHI(h,N) is given as

HHI(h,N) =

[
∂2ZHI(h,N)

∂h2

∂2ZHI(h,N)
∂h∂N

∂2ZHI(h,N)
∂N∂h

∂2ZHI(h,N)
∂N2

]
= Λ0

[
h11 h12

h21 h22

]
.

(H-2)
The elements of the Hessian matrix HHI(h,N) are found as

h11 = N

[D(h)]2
[
D(h)hhP

(HI)
cov (h,N)− P

(HI)
cov (h,N)D′′(h)−

2D′(h)hP
(HI)
cov (h,N)

]
+ 2[D′(h)]2P

(HI)
cov (h,N)D(h)

[D(h)]4
.

h12 = h21 =

D(h)
[
hP

(HI)
cov (h,N) +NNhP

(HI)
cov (h,N)

]
−

D′(h)
[
P

(HI)
cov (h,N) +NNP (HI)

cov (h,N)
]

[D(h)]2
.
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Figure 11: Variation of different derivatives.

h22 =
2NP (HI)

cov (h,N) +NNNP (HI)
cov (h,N)

D(h)
,

For a function to be convex, the Hessian matrix should be
positive semidefinite. The variation of the eigenvalues of
|HHI(h,N)| against h and N is shown in Fig. 10 (c) and
(d). The presence of eigenvalues of opposite sign ensures that
HHI(h,N) is not a convex function of h and N .

H. Proof of Lemma 5

For unimodality of a function, the sign of its
derivative changes only once. The derivative of
ZHI(h,N) in (26) with respect to h at N = N0 is:
∂
∂hZHI(h,N0) = N0

D(h)hP cov
(h,N0)−D′(h)Pcov(h,N0)

[D(h)]2 . The
variation of ∂

∂hZHI(h,N0) is shown in Fig. 11(c) at different
N0. We note that ∂

∂hZHI(h,N0) changes its sign at most
once, which proves unimodality of ZHI(h,N0) against h.

I. Proof of Lemma 6

For a function to be unimodal, the sign of the derivative
changes only once. The derivative of ZHI(h,N) in (26) with
respect to N for a given h = h0 is found as: ∂

∂NZHI(h0, N) =
Pcov(h0,N)+NNP

cov
(h0,N)

D(h0)
. The variation of ∂

∂NZHI(h0, N)
is shown in Fig. 11(d) for different values of h. It may be
noted that ∂

∂hZHI(h0, N) changes its sign at most once, which
proves the unimodal nature of ZHI(h0, N) against N .
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