
1

Delay-aware Priority Access Classification
for Massive Machine-type Communication

Mayukh Roy Chowdhury and Swades De

Abstract—Massive Machine-type Communications (mMTC) is
one of the principal features of the 5th Generation and beyond
(5G+) mobile network services. Due to sparse but synchronous
MTC nature, a large number of devices tend to access a base
station simultaneously for transmitting data, leading to conges-
tion. To accommodate a large number of simultaneous arrivals in
mMTC, efficient congestion control techniques like access class
barring (ACB) are incorporated in LTE-A random access. ACB
introduces access delay which may not be acceptable in delay-
constrained scenarios, such as, eHealth, self-driven vehicles, and
smart grid applications. In such scenarios, MTC devices may be
forced to drop packets that exceed their delay budget, leading
to a decreased system throughput. To this end, in this paper
a novel delay-aware priority access classification (DPAC) based
ACB is proposed, where the MTC devices having packets with
lesser leftover delay budget are given higher priority in ACB. A
reinforcement learning (RL) aided framework, called DPAC-RL,
is also proposed for online learning of DPAC model parameters.
Simulation studies show that the proposed scheme increases
successful preamble transmissions by up to 75% while ensuring
that the access delay is well within the delay budget.

Index Terms—Massive machine-type communication, delay-
sensitive, priority access classification, random access, access class
barring, reinforcement learning

I. INTRODUCTION

MACHINE to Machine (M2M) communication or
Machine-type Communication (MTC) refers to the

technology or framework where intelligent machines commu-
nicate among themselves with little or no human intervention
[1]. Massive Internet of Things (IoT) or Massive Machine-
Type Communication (mMTC) refers to a large number of
such autonomous machines connected in a network. MTC ap-
plications include but not limited to smart metering, payment,
object tracking, remote surveillance, e-health [2], [3]. mMTC
is the core technology in modern infrastructures, such as smart
cities, smart grid, and industry 4.0 [4].

MTC is in many ways different from conventional Human
to Human (H2H) communication, for which cellular network
standards like Long Term Evolution (LTE) and LTE - Ad-
vanced (LTE-A) were designed. In LTE/LTE-A, random access
is mainly used to achieve two targets: uplink synchronization
and getting radio resources for sending higher-layer messages.
Upon powering up, an MTC device initiates the registration
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mechanism by sending Radio Resource Control (RRC) con-
nection request to the nearest base station (evolved Node B
or eNB). Random access in LTE can be categorized into two:
(i) contention-based and (ii) contention-free [5]. In this paper
the contention-based variant is considered.

In contention-based approach, MTC devices contend for
getting access to the eNB. Unique quality of service (QoS)
parameters of the MTC devices pose various challenges in
the existing LTE/LTE-A infrastructure [6]. One such challenge
arises due to a unique traffic pattern of mMTC and the limited
number of preambles available with the eNB. Usually the
MTC devices communicate among each other or to remote
cloud servers for data transmission through the eNBs at
certain periodicity. When a huge number of devices attempt
to access an eNB at the same time, random access preamble
collision increases. Hence, effective random access algorithms
are required to control the access to eNB so that maximum
possible devices are given access. Access Class Barring (ACB)
was suggested by 3GPP for tackling Radio Acess Network
overload in LTE as well as in Narrowband IoT (NB-IoT) [2],
[7]. ACB redistributes the devices over a longer period of time;
in the process it introduces considerable delay. Therefore, to
accurately evaluate efficiency of random access, it is very
important to consider the delay encountered by the MTC
devices, especially in the delay-constrained scenarios [8].

A. Related works

Complex architecture and diverse design parameters of
random access procedure makes it hard to evaluate its perfor-
mance analytically. Hence, in most of the existing literature,
its performance has been evaluated through simulations and
iterative methods. Yet, there is a consensus that the current
LTE random access is not suitable to deal with massive
MTC scenario [6], [9]–[11]. Among the few works that have
analytically modeled the random access procedure [12]–[14],
most of them lacked in accuracy owing to different reasons.
The authors in [12] modeled the random access delay, while in
[15] a lower bound of access delay was obtained by triangular
approximation of the beta distribution used for modeling
arrivals. However, these works did not consider any access
control technique like ACB. In [13], both random access
and waiting delays due to extended access barring (EAB)
were modeled with the access delay model from [12]. These
models suffer from low accuracy. On the other hand, some of
the works [14], [16] considered only average random access
delay, which may not always be useful. What can be of more
significance is delay characterization due to ACB. The authors
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in [17] presented an analytical model of ACB, which accounts
for the details of LTE-A specification. They also characterized
the access delay due to ACB and derived the delay probability
mass function (PMF) using an iterative algorithm.

Different ACB schemes have been proposed in recent lit-
erature [18]–[20]. Some standard configuration with a range
of allowed values of relevant parameters are given in 3GPP
LTE/LTE-A standards document [9]. But these specifications
do not state the optimum barring rates for the different access
classes that would maximize the system utility. A dynamic
ACB algorithm, called D-ACB, in [19] proposed to dynam-
ically tune the barring rate of MTC devices in each random
access opportunity (RAO) to maximize preamble transmission
throughput. However, D-ACB did not address delay sensitivity
of the packets and assigned same barring rate to all MTC
devices. An analysis of ACB performance was presented in
[10], where the distinctive feature is that, instead of following
only typical barring rate values used in the prior works, they
can take any value within the range suggested by 3GPP. Also,
unlike most of the prior works, the approach in [10] does not
consider barring duration to be constant. A prioritized access
scheme, named PRADA, was proposed in [21], where random
access channel resources are pre-allocated to different classes
of devices. EAB proposed in 3GPP LTE-A controls MTC
traffic congestion by disallowing access to the low priority
MTC devices based on a barring bitmap [13]. Performance
of two of the most popular access control schemes, ACB and
EAB, were compared in [22], and it was noted that ACB works
better in delay-sensitive MTC applications.

Learning based approaches have been used to tackle access
congestion in LTE random access. Massive random access
was studied in [23] using a learning automata based ACB
scheme by estimating the traffic and adjusting barring factor.
In [24], LSTM was used to predict number of preamble
transmissions in each RAO, which was considered to be a
time-series data. The authors in [25] proposed a reinforcement
learning (RL) based access control to reduce the mean access
delay. Different learning and non-learning based approaches
for predicting traffic for access control optimization were
surveyed in [26], where the authors pointed out that, as a future
research direction learning-based approaches can be explored
for priority-aware optimization in heterogeneous scenarios.

A recent work [27] proposed a QoS-based Dynamic and
Adaptive Mechanism (QDAM) algorithm for heterogeneous
scenario with different MTC devices having different delay
requirements, where priority was given to delay-sensitive
devices. QDAM uses the optimal barring rate p∗dacb using
the approach in D-ACB [19] as a baseline. Whenever the
number of preamble collisions is more than a threshold, it
does not allow any delay-tolerant devices whereas it allows
delay-sensitive devices with probability p∗dacb. On the other
hand, if collision is less than the threshold, QDAM allows
access to all the delay-sensitive devices and assigns barring
rate of p∗dacb for delay-tolerant devices.

B. Motivation and key contributions
ACB distributes the incoming traffic such that the maximum

possible number of devices get to access the eNB when

they ask for it. However, in the process, access contention
introduces additional delay. In a heterogeneous scenario like
in mMTC, where different devices have widely-varying QoS
requirements, different groups of MTC devices serving dif-
ferent applications may have their own latency budgets and
hence unique delay sensitivities. Smart grid communication is
one such use case, where different applications have widely
varying delay budgets ranging from 100 ms to 5 s [28]. Health-
related IoT applications are also time-constrained [2]. In those
applications, packets may be dropped if the random access
delay crosses the delay budgets of the respective applications.

It is notable that, although there are multiple ACB al-
gorithms proposed in the literature, most of them did not
consider delay-constrained scenarios and are not truly delay-
aware. Also, in the related works, all MTC devices are either
considered to be in the same access class (AC) [19], or even if
they are differentiated, their priorities are decided beforehand
[21]. The approach in D-ACB [19] did not consider the
delay sensitivity to adjust barring rates of devices. Although
QDAM [27] considered delay-sensitive devices, it also keeps
the priority of devices fixed. Thus, in the existing approaches,
there is no mechanism to dynamically prioritize the MTC
devices in terms of some performance metrics, such as the
respective delay budgets. We argue that, like dynamic routing
for real-time QoS support [29], dynamically accounting for
the packet access delay of the contending nodes and updating
priority of devices in ACB is expected to improve the preamble
transmission success rate and hence QoS support. To this end,
in this paper a novel delay-aware priority access classification
(DPAC) based ACB is proposed. The major contributions of
the paper and significance are as follows:

1) In the proposed DPAC for delay-sensitive mMTC appli-
cations, access priority of the devices are dynamically
assigned based on the packet delay due to ACB.

2) A parametric model is proposed to assign barring rate
corresponding to each priority access class. Optimal
values of the model parameters of DPAC are determined
by solving an optimization problem at the eNB that
maximizes the overall system utility.

3) A lower bound of the maximum achievable utility is
found analytically by its polynomial approximation and
solving the dual of the objective function.

4) Further, a RL aided framework, named DPAC-RL, is
proposed which uses a RL agent to update the model
parameters of DPAC in an online learning setup by taking
feedback from the dynamic environment.

5) Performance of the proposed DPAC and DPAC-RL based
ACB schemes are compared with the existing static ACB,
barring bitmap based EAB [13], D-ACB [19], and QDAM
[27] algorithms via extensive simulations.

6) In homogeneous scenario with only delay-sensitive MTC
devices, compared to the closest D-ACB algorithm,
DPAC offers up to ∼ 40% gain in preamble transmission
success rate, whereas DPAC-RL achieves up to 75%
improvement. In heterogeneous scenario with both delay-
sensitive and delay-tolerant MTC devices, DPAC-RL is
able to gain up to ∼ 60% compared to the closest
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Table I: RB available for different bandwidth

Available bandwidth (MHz) 1.4 5 10 20
Total RB 6 25 50 100

competitive scheme QDAM.

C. Paper organization

The layout of the paper is as follows. In Section II, an
overview of the LTE random access and the proposed system
model are presented. Section III contains the proposed DPAC
algorithm and related analysis. System utility optimization to
find the optimal model parameters is presented in Section IV.
Section V introduces a RL-aided framework (DPAC-RL) of the
proposed scheme. Performance results are discussed in Section
VI, followed by the concluding remarks in Section VII.

II. SYSTEM MODEL

In this section, first a brief overview of contention-based
random access in LTE from mMTC context is given. Then, the
proposed modification in the protocol architecture is outlined.

A. Contention-based random access in LTE

At the beginning of each RAO, the eNB broadcasts all basic
configuration parameters through SystemInformationBlock-
Type2 (SIB2). The MTC device (a type of user equipment
(UE)) chooses one of the available preambles randomly and
sends it to the eNB over physical random access channel
(PRACH). In contention-based random access, 54 such pream-
bles are available to one eNB. Preambles are orthogonal
signatures generated using Zadoff-Chu sequences [30].

A single resource block (RB, the minimum unit of resource
in LTE) is constituted by one sub-frame (1 ms) and twelve
sub-carriers (12 × 15 = 180 kHz). The number of RBs in
each RAO depends on the available bandwidth, as shown
in Table I. The limit on maximum number of successive
preamble transmission attempts of an MTC device is decided
by SIB2 parameter preambleTransMax. If more than one MTC
devices choose the same preamble and simultaneously transmit
them to the eNB, it leads to a collision, which is discussed
in below. Once the preamble is successfully detected, in
the second step, eNB sends random access response (RAR)
message to the MTC device which includes information related
to the uplink transmission, namely, timing alignment, uplink
resources reserved for the MTC device, and an identifier. After
the RAR is received, the MTC device does the necessary
time synchronization using the received time correction. In
step three, the MTC device transmits L2/L3 message (RRC
connection request) to eNB, which also includes its identity.
Lastly, in step four, eNB sends a contention resolution message
to all those MTC devices with packets successfully decoded.

Due to orthogonality of preambles, different MTC devices
can access an eNB simultaneously in a RAO using different
preambles. As the MTC devices choose preambles randomly,
there may be a scenario when multiple MTC devices trying
to connect to the same eNB choose the same preamble in a
random access slot. This event may lead to two possibilities:

Table II: Standard access classes in ACB

AC Type
0− 9 Normal UE
10 Emergency Calls
11− 15 Higher priority services (PLMN, Security, Public Utilities, Emergency, PLMN Staff)

the collision is detected either in Step 1 or in Step 3 of random
access procedure. Similar to what most researchers have
considered [14], [21] and also as per what 3GPP specification
suggests, the following assumptions are taken: while sending a
preamble to the eNB, MTC devices do not send any identifier.
If multiple MTC devices ask for the same preamble to connect
to an eNB in the same RAO, it goes undetected in Step 1.
Consequently, the eNB provides them with the same RB to
transmit random access data in Step 3 which may lead to
collision. When the packet transmission succeeds, eNB sends
a contention resolution message to MTC device indicating
successful detection. If the preamble transmission fails due to
collision, the MTC device waits for a random back-off time
tbo ∼ U(0, bi), where the back-off indicator, bi can take any
value in between 0 and 960 ms and is decided by the eNB.

B. Overload / Congestion control

In MTC, while the amount of data to be sent is very less, the
number of devices simultaneously accessing a single eNB can
be much higher than that in conventional H2H communication.
The frequency at which these MTC devices try to send data
is also much higher than that in H2H scenario. However,
the number of preambles is limited; 54 for contention-based
random access, which are shared by M2M and H2H com-
munications [31]. As suggested in [9] and [19], MTC and
H2H devices are considered to choose from separate sets of
preambles. The devices suffering from collision re-attempt for
access at a later RAO, thus adding to the load. Also, there may
be scenarios where one event may trigger different types of
MTC devices, which may worsen the congestion. Therefore, in
mMTC, with the increasing incoming traffic, the LTE random
access can be unstable, which necessitates the requirement of
an efficient congestion/overload control technique.

C. Access class barring in mMTC

Among the 3GPP recommended solutions for congestion
control, ACB is one of the most effective techniques [9].
All UEs are assigned one of the 16 access classes AC0
to AC15 which is stored in the UE’s Subscriber Identity
Module (SIM/USIM). Different UEs are grouped together
in different access classes (ACs) based on their specific
applications. The standard set of ACs suggested by 3GPP
are shown in Table II. In the existing convention, an MTC
device is considered as normal UE and hence it is assigned
one of the classes from ACs 0-9 [10]. At the beginning of
each RAO, eNB broadcasts the ACB parameters: barring rate
pacb ∈ {0.05, 0.1, · · · , 0.3, 0.4, · · · , 0.7, 0.75, 0.8, · · · , 0.95},
and mean barring time tacb ∈ {4, 8, 16, · · · , 512} (s) of every
AC through SIB2 [10]. The MTC devices wanting to send data
to the eNB randomly generate a uniformly distributed random
number ru between 0 and 1. If ru is less than pacb, then
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3. Assign pacb(k) of each AC k using x̄

Figure 1: Random access with proposed DPAC-based ACB.

it clears the ACB and gets to contend in the current random
access phase. Else, it has to wait for a random back-off period
of time [7], which is calculated as tacb(0.7 + 0.6ru2

), where
ru2

is a uniform random number in [0, 1). Every trao subframe
has a RAO and each subframe is of duration tsf = 1 ms. To
support mMTC along with H2H, 3GPP suggests separate (one
or more) AC(s) may be used for MTC devices [9].

D. Proposed modification for delay-sensitive scenarios

In conventional ACB, the access classes are hard-coded in
the devices, usually in the SIM/USIM. Hence their access
priorities are fixed beforehand and never change throughout
the random access procedure. However, there may be scenarios
where the same MTC device may be barred multiple times in
consequent random access attempts, and hence it encounters
higher delay. In delay-constrained applications, these devices
must be given higher priority in access contention, and hence
the standard ACB technique needs to be modified. To this end,
in the proposed DPAC-based ACB scheme, priority classes of
MTC devices are decided dynamically based on their current
delay. Thus, the same MTC device may be put in different
access classes dynamically in consecutive RAOs based on the
waiting delay encountered. As shown in Fig. 1, the proposed
scheme modifies the access control stage before random access
procedure, by introducing the DPAC strategy.

III. ANALYSIS OF PROPOSED DPAC-BASED ACB

In this section, the proposed delay-aware access prioriti-
zation in ACB is presented in detail, along with the related
analysis and performance characterization.

A. Proposed priority access classification (DPAC)

The proposed DPAC scheme dynamically assigns barring
rate pacb to the MTC devices in two steps. Firstly, it assigns
priority class to an MTC device based on the delay criticality
of the HoL packet in its transmit buffer. If total K classes
are available, dB is the delay budget, and d is the delay

encountered by the MTC device due to ACB, then its access
class is assigned according to the following rule:

If dB
k − 1

K
< d ≤ dB

k

K
, then AC = k,∀k ∈ {1, · · · ,K}.

Subsequently, barring rate is assigned for each access class.
It might be noted that pacb, which is conventionally called
barring rate, is actually the success probability of ACB. A
higher value of pacb (i.e., a higher access priority) is assigned
for the classes of devices which are on the verge of crossing
their respective delay budgets. Thus, the barring rate pacb(k)
of access class k is an increasing function of k. The barring
rate of class k device is proposed as:

pacb(k)
∆
= pk = x1k

x2 + x3. (1)

Optimal values of the parameters x1, x2, x3 are obtained via
an optimization problem formulation as presented in Section
IV. The optimal parameters x1, x2, x3 are broadcast as part
of the SIB2 message by eNB at the beginning of each
RAO slot. The MTC device asking for access in a RAO,
assigns the corresponding AC based on its current delay
and the priority-based AC assignment logic available with it.
Subsequently, it can compute its barring rate pacb using the
optimal parameters received from eNB and the AC assigned to
it. Once the incoming MTC device is assigned an AC and the
corresponding probability, the conventional ACB mechanism
follows. If the packet delay of any MTC device crosses its
allowed delay budget, the packet is dropped, and that MTC
device does not take part in ACB contention in that RAO. The
flow of the proposed DPAC-based ACB technique is presented
in Algorithm 1.

B. Arrival and delay characterization

The proposed DPAC-based ACB scheme allows a fraction
of the contending MTC devices. Therefore, it is required to
model the number of devices contending for access in each
RAO (both new arrivals and backlogged ones from previous
RAOs). In mMTC, a huge number of devices can be activated
simultaneously within a very short activation interval τA. Beta

Algorithm 1: Proposed DPAC-based ACB

1 At the beginning of a RAO, eNB broadcasts barring
time tacb, total number of allowed classes K, and the
optimal parameter set x1, x2, x3;

2 for each MTC device repeat
3 Assign priority class based on delay d of MTC

device and its delay budget dB :
if dB

k−1
K < d ≤ dB

k
K then AC = k,

∀k ∈ {1, · · · ,K};
4 Each device in class k is assigned access

probability pacb(k) = x1k
x2 + x3;

5 Generate a uniform random number ru ∼ U [0, 1);
6 if ru ⩽ pacb then Random Access is initialized;
7 else Generate new random number ru2 ∼ U [0, 1);
8 Waiting time calculated as tacb(0.7 + 0.6ru2

);
9 until Random Access for the MTC device is initialized;
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Figure 2: Number of new MTC access requests in ith RAO.

distribution is considered as the most appropriate to character-
ize the bursty arrivals in mMTC [9]. In beta distributed traffic
model, activation time of the MTC devices follows a scaled
beta distribution in [0, τA], which is given by:

fA(i) =
iα−1(τA − i)β−1

τAα+β−1B(α, β)
, 0 ≤ i ≤ τA (2)

where B(α, β) = Γ(α)Γ(β)

Γ(α+ β)
and,Γ(n) = (n− 1)!.

Traffic model 2 in [9] is used in this work. It follows Beta(3, 4)
distribution over 10 s duration, which accounts for τA RAOs.

fA(i) =
60i2(τA − i)3

τA6
, 0 ≤ i ≤ τA. (3)

The total number of access requests in RAO-i includes the
new arrivals in that RAO and the attempts from the backlogged
devices. Random variable (RV) A denotes the RAO in which
an MTC device is active for the first time, and the RV D
denotes the delay due to ACB in terms of number of RAOs.
If n(i, pt) denotes the number of MTC devices attempting ptth

preamble transmission, then it can be expressed as:

n(i, 1) = N · Pr(A+D = i) = N

i∑
q=0

fA(q)fD(i− q) (4)

where N is the total number of MTC devices having preamble
transmission requests over the duration of τA RAOs and fD is
the probability density function (PDF) of D, computed using
a recursive technique, as shown in Appendix A.

The number of preamble re-transmission attempts n(i, pt)
∀pt ∈ {2, 3, · · · , preambleTransMax} is found using re-
cursion [17], starting from (4), as derived in Appendix B.
Subsequently, the total number of MTC devices contending
for access in ith slot is given by:

n(i) =

preambleTransMax∑
pt=1

n(i, pt). (5)

The number of devices contending for preamble transmis-
sion for the first time in different RAOs is shown in Fig. 2.

C. Poisson binomial distribution and binomial approximation

Here, the MTC devices arrival modeling in Section III-B is
used for further analysis of the proposed DPAC-based ACB.
Maximization of the number of successful transmissions in
each slot will lead to minimization of total service time.

Let the RVs Λi and Λp
i respectively denote the number of

MTC devices attempting access and the number of devices
passing the ACB check in the ith RAO. If Υi denotes the total
number of successful preamble transmissions in ith RAO, then
the expected number of successful transmissions is given by:

E[Υi|Λi = n] =

n∑
j=1

E[Υi|Λp
i = j]P (Λp

i = j|Λi = n). (6)

If total Npr preambles are available, only those preambles
which are chosen by only one MTC device will result in
successful transmission. Let Ψq be the RV denoting the
number of MTC devices choosing the qth preamble. Then,

E[Υi|Λp
i = j] =

Npr∑
q=1

P (Ψq = 1|Λp
i = j)

= Npr

(
j

1

)
1

Npr

(
1− 1

Npr

)j−1

. (7)

If all the MTC devices have the same barring rate pacb, then
it results in a binomial distribution constituted by independent
and identically distributed (i.i.d.) Bernoulli trials, given by:

P (Λp
i = j|Λi = n) =

(
n

j

)
pacb

j(1− pacb)
n−j . (8)

In contrast, in the proposed DPAC-based ACB, the mth

MTC device is assigned barring rate pm, based on its delay
encountered. Hence the individual Bernoulli trials are not
necessarily identical here. This results in Poisson binomial
distribution [32] which is characterized by:

P (Λp
i = j|Λi = n) =

∑
S∈Fj

∏
s∈S,|S|=j

ps
∏

u∈U,|U |=n−j

(1− pu). (9)

S and U are respectively the sets of successful and unsuc-
cessful MTC devices, Fj is the set of all subsets of j integers
that can be selected from {1, 2, 3, · · · , n}, and ps and pu are
respectively the barring rates of successful and unsuccessful
MTC devices. U = Sc = {1, 2, · · · , n} − S. A closed-form
expression for the probability in (9) is obtained as [32]:

Pr(Λp
i = j|Λi=n)=

1

n+1

n∑
l=0

C−lj
n∏

m=1

(
1+(Cl−1)pm

)
(10)

where C = exp

(
2iπ

n+ 1

)
and i =

√
−1 .

In the proposed model, the values of pm for all m ∈
{1, 2, · · · , n} are not different. Instead, all the devices belong-
ing to class k are assigned the same probability pk. Thus, if
Lk denote the number of devices assigned class k then,

Pr(Λp
i = j|Λi = n) =

n∑
l=0

C−lj

n+ 1

K∏
k=1

(
1 + (Cl − 1)pk

)Lk

=
1

n+ 1

n∑
l=0

C−ljxl =
1

n+ 1
Xj (11)

where xl =
K∏

k=1

(
1 + (Cl − 1)pk

)Lk and {Xj} = DFT{xl}.
Due to mathematical intractability of the Poisson binomial

distribution, it is approximated as a binomial distribution
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Figure 3: Binomial approximation of Poisson binomial distribution.

[33] in the rest of the paper. The success probability p̄ of
the approximated binomial distribution is the average success
probability of all the n active devices, given by:

p̄ =
1

n

n∑
m=1

pm =
1

n

K∑
k=1

Lkpk =
1

n

K∑
k=1

(nck)(x1k
x2 + x3)

=

K∑
k=1

ck(x1k
x2 + x3) (12)

where ck is the probability that a device belongs to class k.
Hence, probability of j devices getting through ACB filtering
among n active MTC devices can be expressed as:

P (Λp
i = j|Λi = n) =

(
n

j

)
p̄j(1− p̄)n−j . (13)

Using (7) and (13) in (6), we have the expected number as:

E[Υi|Λi = n] = np̄

(
1− p̄

Npr

)n−1

. (14)

Fig. 3 by compares the values of E[Υi|Λi = n] from the
actual and the approximate distributions at different values
of n, showing that the binomial distribution with success
probability p̄ is able to approximate the equivalent Poisson
binomial distribution very well. Also, it was observed in [33]
that the approximation of Poisson binomial distribution with
binomial distribution works well if the ratio of variances of
the actual and the approximated distributions tends to 1.0. In
the current context this ratio is 0.9968, which is close to 1.0.

The analysis and the expressions derived in this section are
used in the following section to maximize the system utility.

IV. OPTIMIZATION OF MODEL PARAMETERS

In this section an optimization problem is formulated to
obtain the model parameters that maximize the system utility.
These parameters are computed by the eNB at the start of each
RAO and broadcast to the MTC devices. The active devices
then determine their respective barring rates for their access.

A. Problem formulation
The utility in the proposed setup is a combination of

throughput maximization and packet drop probability mini-
mization from the devices due to violation of the respective
delay budget dB . The throughput T, defined as the average
rate of successful preamble transmissions (where the number
of arrivals in each slot n ≤ nmax), is defined as:

T =

nmax∑
n=1

E[Υi|Λi = n] · Pr[Λi = n]

=

nmax∑
n=1

np̄

(
1− p̄

Npr

)n−1

Pr[Λi = n]. (15)

The corresponding packet drop probability Pcross, i.e., the
probability that the access delay d > dB , is defined as:

Pcross = Pr(d > dB) = 1− FD(dB) (16)

where FD is the cumulative distribution function (CDF) of the
delay due to ACB, modeled using a recursive algorithm [17]
(see Appendix A). The probability of n devices being active
in ith RAO, i.e., Pr[Λi = n], is modeled using the expression
of number of arrivals in each RAO, given by (5).

A multi-objective optimization problem is formulated and
solved using weighted sum method. Combining the throughput
and delay factors with equal weights, the formulation is:

(P ) :minimize
x̄

f0 = −T̃+ Pcross

s.t. C1 : 0 ≤ pk ≤ 1,∀k ∈ {1, 2, · · · ,K}
C2 : Npr ≤ np̄ ≤ n (17)

where the optimization variable is the vector: x̄ = [x1, x2, x3],
T̃ is the normalized value of the actual throughput T, f0 is
the composite objective function, pk and p̄ are given by (1)
and (12), respectively, while ck can be obtained as:

ck = Pr

(
dB

k − 1

K
< d ≤ dB

k

K

)
= FD

(
dB

k

K

)
− FD

(
dB

k − 1

K

)
(18)

The first set of constraints C1 corresponds to pk, which
is a probability in [0, 1]. C2 makes sure that the preambles
are not under-utilized. If n MTC devices ask for access in
one RAO and n ⩾ Npr, then among them the number of
devices allowed by ACB should not be less than the number
of preambles Npr. It is notable that, if n < Npr, the barring
mechanism is not enabled, i.e., pk = 1 for all classes. Since
Pcross is a probability, it is in [0, 1]. To make sure that the other
term in the objective function also lies within this range, T is
normalized to T̃. In multi-objective optimization, each of the
individual objective functions is normalized by their respective
optima. Therefore, in this work normalizing factor of T is
computed by using the expression for the maximum possible
expected number of preamble transmission for a given n active
devices, which is obtained in Lemma 1.

Lemma 1. The maximum value of the expected number
of successful preamble transmissions E[Υi|Λi = n] for a
given number of active MTC devices n is upper bounded

by
nNpr

n− 2

(
1− 1

n− 2

)n−1

, where Npr is the number of

available preambles.

Proof. See Appendix C.

Closed-form expression cannot be achieved for the objective
function f0 as the CDF FD is computed using a recursive
function. For a lower bound of f0, a polynomial approximation
is used, as presented in the following subsections.
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(a) Delay budget, dB = 1 s (b) Delay budget, dB = 5 s (c) Delay budget, dB = 10 s

Figure 4: Polynomial (cubic) approximation of the objective function at different delay budgets. N = 30000 and Npr = 40.

It may be noted that the delay PMF in [17] models the
delay encountered by the devices at the end of the observa-
tion window. Hence, the utility maximization, which includes
throughput optimization as well, should also be done over the
whole period, not for a single RAO. To take care of this,
the optimization framework is made arrival-based, i.e., the
optimization variables or the model parameters are tuned based
on the arrival in a RAO. In that case, the system needs to know
the arrival distribution of different RAOs beforehand, so that
it can optimize the parameters based on that. How the primal
problem is quasi-convex and how it is solved is explained in
Appendix D as part of the proof of Lemma 2.

Lemma 2. The composite objective function f0 is a quasi-
convex function in x̄.

Proof. See Appendix D.

The optimal model parameters which are obtained by
solving the primal problem (17) are used to evaluate the
performance of the proposed algorithm in Section VI.

B. Polynomial approximation

As explained in the previous section, due to recursive
techniques being used, a closed-form expression cannot be
achieved for the composite objective function f0. For some
analytical insight on the optimization problem, its polynomial
approximation is used. It is observed that, for all values of
delay budget dB , f0 can be approximated by a cubic function
of p̄, given as: f0 ≈ αp̄3+βp̄2+γp̄+δ, where the parameters
α, β, γ, δ are obtained by curve fitting. From Fig. 4 it can
be noted that the approximation is reasonably good, with R2

value of the fit more than 0.99 in all cases. The polynomial fit
is shown in Fig. 4 for different delay budgets with N = 30000
and Npr = 40. Similar fits have been observed for other values
of N and Npr as well, which are not shown here.

Lemma 3. The composite objective function f0 can be ap-
proximated by a cubic polynomial function in p̄. The optimal
value of the primal problem, p∗ is lower bounded by:

d∗ = α

(
−β ±

√
β2 − 3αγ

3α

)3

+ β

(
−β ±

√
β2 − 3αγ

3α

)2

+

γ

(
−β ±

√
β2 − 3αγ

3α

)
+ δ

where α, β, γ, δ are the parameters of the cubic model.

Proof. See Appendix E.

The lower bound of f0, as computed in Lemma 3, shows
that the best performance achievable by DPAC depends on the
model parameters of the cubic polynomial approximation.

The effect of utility maximization achieved using the opti-
mization framework is analyzed in the Section VI.

V. RL AIDED FRAMEWORK (DPAC-RL)

The DPAC framework proposed and optimized in Sections
III and IV may give sub-optimal output because of dynamic
nature of the system. For example, as the delay distribution
changes, the assigned pacb is updated, leading to a change in
the expected number of devices arriving in each slot, which
in turn changes the delay distribution. In such scenarios RL is
usually preferred because of its ability to collect feedback from
the past experiences and act accordingly. We consider a RL
agent at the eNB that decides the optimal actions, i.e., optimal
values of the set of model parameters x1, x2, x3 to maximize
the percentage of successful preamble transmissions in each
RAO, based on the values of some state variables.

A. Modeling as a RL problem

The basic entities of any RL framework are defined here
as: State s ∈ S, Action a ∈ A and Reward r ∈ R,
where S,A and R are the corresponding sets they are chosen
from. The state vector at the ith RAO, si comprises of the
following observations from the previous RAO: number of
active MTC devices n(i−1), number of collided preambles
m

(i−1)
c , number of MTC devices which passed in ACB n

(i−1)
p ,

number of unused preambles m(i−1)
u , number of MTC devices

which successfully transmitted preamble n
(i−1)
succ , and number

of devices dropped due to exceeding delay budget n(i−1)
d . The

action taken at the ith RAO, denoted by ai, corresponds to
a triplet that consists of the values chosen for each of the
three model parameters of DPAC: x1, x2, and x3. For the sake
of simplicity a discrete action space is considered. Values of
the three model parameters x1, x2, x3 are chosen from three
different sets X1,X2, and X3, respectively. The reward r gives
an indication to the agent about how far the action taken in
one step can contribute to the long-term goal of achieving the
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system utility. The reward assigned to the agent on choosing
action ai, is given by:

ri+1 =


n
(i)
succ

Npr
, if n(i) ⩾ Npr

n
(i)
succ

n(i)
, if 0 < n(i) < Npr

(19)

where n
(i)
succ denotes the total number of MTC devices which

succeed in preamble transmission among n(i) active devices in
the ith RAO. It may be noted that, to make sure that constraints
C1 and C2 in (17) are satisfied, very high negative reward is
assigned for violation of either of them.

Based on the feedback from the environment in the form of
state variables, the agent has to take decision, i.e. chose from
the available set of actions. This is characterized by the policy
function π(s) = a. To find the optimal policy, an agent has to
quantify how good it is to take action a at state s, which is
done through state-action value function q(s, a). The optimal
policy is learned using Q-Learning algorithm which is one of
the most popular RL techniques.

B. Q-Learning

To estimate the value function for a given policy π, Q-
Learning is used, which is an off-policy temporal difference
(TD) control algorithm [34]. TD methods are advantageous
compared to Monte-Carlo or dynamic programming (DP)
methods because of their faster convergence and model-free
approach. Also, Q-Learning is preferred over on-policy algo-
rithms like SARSA because its output is independent of the
policy being followed.

In Q-Learning, the action-value function Q is learned ac-
cording to the Bellman optimality equation, by the following
update equation in ith RAO [34]:

Q(si, ai)← Q(si, ai) + η[ri+1 + γq max
a

Q(si+1, a)

−Q(si, ai)] (20)

where η is the learning rate and γq denotes the discount factor.
In the basic tabular Q method, a table of Q values for each

state action pair (s, a) is maintained, which is updated in each
step following (20). But in complex scenarios with very large
size of state space, tabular Q method is not scalable, leading to
the need of a function approximator, which is discussed next.

C. Deep Q Network (DQN)

Although Q-Learning helps to get rid of the model de-
pendence, it suffers from the curse of dimensionality due to
large state space in real-life problems [35]. Consequently, it
might be difficult to achieve the optimal policy with time and
resource constraints. Hence, a suitable function approximator
is required for the approximation of value function for state-
action pairs. Deep Neural Networks (DNN) are well reputed in
different applications to approximate complex functions even
in large dimensional scenarios. A DNN used to model the
state-action value function of Q-Learning is called a Deep
Q Network (DQN). We consider the basic fully-connected
architecture for the DNN, which takes state as the input and

Algorithm 2: Proposed DPAC-RL framework

Input: DQN related hyper-parameters, barring time
tacb, total number of allowed classes K

1 Local Q network initialized with weights w;
2 Target Q network initialized with weights w− = w;
3 Replay buffer is initialized to its full capacity BR;
4 for each episode do
5 State vector is initialized as {0, 0, 0, Npr, 0, 0};
6 for each RAO slot do
7 Predict action values from current state;
8 With probability ϵ randomly choose an action,

otherwise, with probability 1− ϵ choose action
corresponding to maximum action value;

9 Broadcast tacb, K, and {x1, x2, x3} (as per the
action chosen in Step 8);

10 for each active MTC device do
11 Steps 3− 8 of DPAC based ACB

(Algorithm 1)
12 Save experience < si, ai, ri+1, si+1 > in replay

buffer;
13 if at least LM samples available in the replay

buffer then Randomly sample mini-batch of
experiences ;

14 Minimize loss function in (21) using ADAM
optimizer to update weight w of local
network;

15 Once in every UT steps, copy updated weights
of local network w to weights w− of target
network;

outputs the action values. As the activation function, rectified
linear unit (ReLU), given by fReLU (x) = max(0, x), is used.

In each epoch or RAO slot, given a state, the agent uses
the DQN to predict the Q values corresponding to each of the
actions. The action corresponding to the highest Q value is
chosen by the agent. In the learning phase, the DQN model
computes the loss, i.e. the mean squared error between the
actual and the target Q values. The mean squared error (MSE)
loss function at the jth training iteration is given by:

Lj(wj) = Esi,ai,ri+1,si+1
[(ri+1 + γq max

a
Q(si+1, a;wj)

−Q(si, ai;wj))
2] (21)

Subsequently, this error is back-propagated to update the
weights of the model such that the loss is minimized. To update
parameter w of the DQN approximator for loss minimization,
ADAM optimizer [36] is used, which combines the advantages
of the adaptive gradient (AdaGrad) and root means square
propagation (RMSProp) algorithms. Flow of the proposed
DPAC-RL framework is shown in Algorithm 2.

In order to maximize reward the agent chooses the action
corresponding to the maximum Q value. But if it always does
so, it might miss out some actions which could have produced
higher reward but were never tried. To address this issue, a
balance between exploitation (choose an action that is known
to give best result) and exploration (choose a random action
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Table III: DQN hyper-parameters

Hyper-parameters Values
Learning rate η 5× 10−4

Discount factor γq 0.5
Mini-batch size LM 64
Replay buffer size BR 105

Exploration probability ϵ 1 to 0.01
Decay rate of ϵ 0.995
Target network update frequency UT 4

which may help to choose better actions in future) is practiced.
In this work, ϵ−greedy approach [37] is used to maintain
this trade-off, where the agent chooses a random action with
probability ϵ and selects the action corresponding to highest
Q value with probability 1− ϵ.

A basic assumption of most of the machine learning al-
gorithms like neural networks is that the training data is
independent and identically distributed (i.i.d.). If the model is
trained with sequentially correlated data, which is very much
possible in real-life scenarios, it may affect the convergence
and performance of the DQN. To combat this we use the
concept of experience replay [38], where training data is
randomly sampled from a large buffer of past experiences. The
expectation in (21) is done over a mini-batch of previous sam-
ples randomly chosen from the replay buffer. RL algorithms
may also suffer from policy oscillation due to the fact that
even a small change in Q may lead to significant change in
the policy. To counter this instability issue, the concept of Q-
Learning update with target networks is used [38]. The weights
of the target Q network w− are updated once in every UT steps
by copying weights of the local Q network w. The MSE loss
function at the jth training iteration with target networks is
given by:

Lj(wj) = Esi,ai,ri+1,si+1
[(ri+1+γq max

a
Q(si+1, a;w

−
j )

−Q(si, ai;wj))
2]. (22)

Performance of the proposed DPAC-RL framework along with
that of the proposed DPAC based ACB are evaluated through
extensive simulation in the following section.

VI. PERFORMANCE EVALUATION

In this section the performance of DPAC-based ACB is
evaluated in terms of the key performance indicators (KPIs)
that are described in the following subsection. Next, the
DPAC-based ACB is compared with the existing static ACB,
EAB [13], and D-ACB scheme [19], to find the achievable
gain by the DPAC. Note that the output of the optimization
framework is the set of optimal model parameters for each
possible number of arrivals. In a real system, the number of
arrivals n in a RAO is not exactly known. Instead, the eNB
will have to estimate it in each RAO. For fair comparison, the
same estimation algorithm is used as in [19] to estimate n.
The system parameter values are: preambleTransMax = 10,
K = 6, tacb = 4 s, trao = 5 sub-frames = 5 ms, bi = 20ms.
Hence, the beta distribution interval of 10 s is equivalent
to τA = 2000 RAOs. It is also notable that, following the
existing literature, fixed barring rate pacb is kept at 0.5 for

(a) Delay budget = 1 s (b) Delay budget = 5 s

Figure 5: Successful devices versus Npr . N = 60000.

(a) N = 30000 (b) N = 60000

(c) N = 90000

Figure 6: Successful MTC devices versus delay budgets. Npr = 40.

the static ACB. DQN related hyper-parameters used in this
performance evaluation are listed in Table III. The discrete
values of the action elements are chosen from three different
sets X1 = {0.01, 0.02, 0.03, 0.05}, X2 = {0.05, 0.1, 0.5, 1},
and X3 = {0.1, 0.3, 0.5, 0.7}. The values in each of the
sets are chosen such that the corresponding pacb(k) values
are within 0 and 1 for all classes and also pacb(k) increases
with k such that devices with higher priority are assigned
higher success probability in ACB. The DQN is constituted
of two hidden layers with 64 nodes in each of them. The RL
agent is trained for multiple episodes till convergence, where
each episode consists of 8000 RAOs which is same as the
observation interval τO introduced in Section VI-A.

A. Key performance indicators (KPI)

The DPAC framework is used to reduce the access conges-
tion in delay-sensitive mMTC. The following three key per-
formance indicators (KPIs) capture the system performance:

1) Success percentage: The percentage of MTC devices that
are able to successfully transmit the preambles in the
observation period τO = 8000 RAOs.

2) Mean delay of served devices: Mean ACB delay of the
successful MTC devices that are successful in preamble
transmission within the observation period.

3) Drop percentage: Fraction of devices having packets
dropped because of the delay encountered in ACB ex-
ceeding their delay budget.

B. Homogeneous traffic scenario

In homogeneous MTC scenario, all the devices are consid-
ered delay-sensitive with the same delay budget.
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Success rate: In Fig. 5, percentage of successful preamble
transmissions are compared with the competitive schemes for
two different delay budgets 1 s and 5 s with total number of
arrivals N = 60000. DPAC based ACB offers up to 40% more
successful preamble transmission compared to the nearest
competitive D-ACB; this gain is 49% compared to static ACB
scheme. When the number of available preambles Npr is 40,
the proposed DPAC-RL framework is able to achieve up to
19% gain compared to D-ACB algorithm. As the number of
available preambles is decreased, DPAC-RL is able to achieve
up to 38%, 54% and 75% gain with Npr = 30, 20 and 10,
respectively, compared to D-ACB. Notably, as the number of
preambles Npr decreases, i.e., in more constrained scenario,
the gain of the proposed algorithm increases.

It is observed that, percentage of successful preamble trans-
mission in EAB is much lower; as low as one-third of DPAC-
based ACB. This finding also corroborates the claims in [22]
that in delay-sensitive MTC, ACB works better than EAB.

Effect of increasing total number of arrivals: As the
number of preambles is limited, performance of ACB algo-
rithms get affected by the number of arrivals in each RAO
slot, which is again impacted by the total number of arrivals
in an interval. DPAC performance at different total number of
arrivals is shown in Fig. 6, for different delay budgets. It shows
that, even when a higher number of preambles are available,
e.g., with Npr = 40, the gain of the proposed DPAC-based
ACB in terms of throughput increases as the total number of
MTC devices N increases. When N = 30000, the throughput
of the proposed algorithm is about 3% higher than that with D-
ACB. At N = 60000 and further at N = 90000, the gain of the
proposed algorithm is increased to 14% and 39%, respectively.
Fig. 6 also shows that the corresponding gains of DPAC-RL
compared to D-ACB are 15%, 19% and 51%, respectively.

Delay performance: The mean delay of served devices with
different delay budgets is shown in Fig. 7a with varying N , and
in Fig. 7b with varying Npr. The proposed DPAC-based ACB
is observed to have lower delay performance compared to that
of D-ACB. The reason is that, in DPAC as the encountered
delay of an incoming MTC device increases, the system keeps
on increasing its priority. The devices having delay bordering
the budget are given the highest priority and hence they have
the highest probability of success. This, in turn, brings down
the average delay of the served devices. In the scenario where
highest gain is achieved in terms of success percentage, i.e., in
more constrained scenario with Npr = 10, the delay of DPAC-
based ACB is about 10% lower than that of D-ACB. It is
observed that in order to achieve higher success percentage in
preamble transmission, DPAC-RL encounters higher average
delay compared to DPAC in some cases. However, it is not of
much significance as still the delay is within the delay budget
in all scenarios.

Packets dropped performance: MTC devices drop the
packets that encounter delay greater than their respective delay
budgets. The proposed DPAC algorithm gives higher priority
to those MTC devices which are on the verge of crossing
their respective delay budget. To quantify the benefit of DPAC,
the drop percentage is also evaluated and the performance
is compared in Fig 8. In Fig. 8a different values of N are

(a) Number of total arrivals
as parameter; Npr = 40

(b) Number of preambles
as parameter; N = 30000

Figure 7: Average delay of the served devices.

(a) Total number of arrivals
as parameter; Npr = 40

(b) Number of preambles
as parameter; N = 30000

Figure 8: Unserved MTC devices due to exceeded delay budget.

considered while Npr is fixed at 40. In Fig. 8b Npr is varied
while keeping N unaltered at 30000. Both the plots show
decrease in percentage of dropped devices with increased delay
budget. This is intuitive because, as budget is increased the
system becomes more flexible in dropping packets. In all
the scenarios drop percentage with the proposed DPAC is
significantly lower, ranging 5 to 100% less compared to D-
ACB. Fig. 8 also clearly shows that DPAC is most effective
in reducing packet drop when delay budget is moderate.

As shown in Fig. 8a, when the delay budget is very high,
e.g., 10 s in case of N = 30000, 15 s in case of N = 60000,
and 25 s in case of N = 90000, the budget looses its
significance. At such a high delay budget, the system tends to
serve almost all packets, and the performance of the proposed
technique in terms of drop rate converges with that of D-ACB.
A similar trend is observed in Fig. 8b where Npr is varied.
The figures also show that percentage of devices dropped
due to DPAC-RL is higher in most cases compared to DPAC
based ACB. It is notable here that the dropped devices are
also taken into consideration while calculating the percentage
of successful preamble transmission in Figs. 5 and 6. That
is, even after dropping more devices, overall percentage of
successfully served devices is higher in DPAC-RL. Even if a
device is not dropped due to exceeding delay budget, it can be
unserved at later stage due to ACB or preamble collision. The
target of the RL agent in DPAC-RL is to maximize the overall
percentage of successful preamble transmission, irrespective of
how many devices are dropped due to exceeding delay budget.

C. Heterogeneous traffic scenario

Unlike the homogeneous scenario where all nodes have the
same delay budget, there may be scenarios where some of the
MTC devices are more delay-tolerant than the others. In this
section, system performance with such heterogeneous traffic
is studied. Three levels of heterogeneity are considered where
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(a) Scenario 1 : 80% sensitive (b) Scenario 2 : 60% sensitive (c) Scenario 3 : 20% sensitive

Figure 9: Fraction of successful MTC devices in heterogeneous scenarios for different delay budgets. N = 30000 and Npr = 40.

(a) Scenario 1 : 80% sensitive (b) Scenario 2 : 60% sensitive (c) Scenario 3 : 20% sensitive

Figure 10: Fraction of successful MTC devices in heterogeneous scenarios for different delay budgets. N = 60000 and Npr = 40.

(a) Scenario 1 : 80% sensitive (b) Scenario 2 : 60% sensitive (c) Scenario 3 : 20% sensitive

Figure 11: Fraction of successful MTC devices in heterogeneous scenarios for different delay budgets. N = 90000 and Npr = 40.

(a) Scenario 1 : 80% sensitive (b) Scenario 2 : 60% sensitive (c) Scenario 3 : 20% sensitive

Figure 12: Fraction of successful MTC devices in heterogeneous scenarios for different delay budgets. N = 30000 and Npr = 10.

the percentage of delay-sensitive devices are: 80% (Scenario
1), 60% (Scenario 2), 20% (Scenario 3). In the heterogeneous
scenario, the performance of the proposed DPAC based ACB
and DPAC-RL framework is compared with EAB [13], static
ACB, D-ACB [19], as well as with QDAM [27] that specifi-
cally considered heterogeneous traffic.

The percentage of successful MTC devices in three different
scenarios is studied in Figs. 9, 10, and 11 for number of
preambles Npr = 40 and total number of arrivals N =
30000, 60000, and 90000, respectively. Figs. 9 and 12 gives
a comparative picture of performance number of preambles
Npr is varied from 40 to 10, while total number of arrivals is
kept constant at N = 30000. It can be seen that, DPAC has
better throughput performance compared to EAB, static ACB
and D-ACB. Whereas, QDAM performs as good as or even
better than DPAC in some cases. But it is evident from Figs.

Figure 13: Convergence of DPAC-RL with N = 60000,
Npr = 40, dB = 1 s for different heterogeneous scenarios.

9 - 12 that, DPAC-RL beats all other comparative schemes
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in all scenarios, with performance improvement being up to
∼ 60% compared to both D-ACB and QDAM in terms of
percentage of MTC devices successful in preamble transmis-
sion. Intuitively, the reason behind the success of DPAC-RL is
its ability to continuously learn by taking feedback from the
dynamic environment.

Time-complexity of the proposed DPAC-RL scheme de-
pends on the complexity of DQN which is given by the
number of episodes taken by the agent to converge [39]. In Fig.
13, the number of episodes taken by DPAC-RL to converge
in different scenarios with N = 60000 and Npr = 40 is
shown . It can be seen that in all scenarios, DQN converges
after 200 episodes. The complexity of the DPAC scheme is
primarily determined by the optimization framework described
in Section IV. The optimization problem in (17) was solved
in MATLAB using interior point methods which has time
complexity of O(N3

dL), where Nd is dimension of the vector
being optimized and L is the bit length of input data [40]. In
DPAC, dimension of the vector being optimized is 3, and the
default bit length used in MATLAB is 32. Consequently, the
time complexity of the optimization in Section IV is O(1).

VII. CONCLUSION

In this paper a novel DPAC-based ACB scheme has been
proposed towards access congestion control in LTE random ac-
cess for delay-constrained mMTC applications. The proposed
framework assigns higher priority and hence higher success
probability to those MTC devices that are close to crossing
their respective delay budgets. An optimization framework
has been used to find optimal model parameters that max-
imize the system utility function. Using Lagrangian duality,
a lower bound for the utility has been obtained. Extensive
simulations have been performed to evaluate efficiency of the
proposed DPAC in homogeneous as well as heterogeneous
QoS scenarios. Compared to state-of-the-art D-ACB algorithm
and the conventional static ACB approach, performance of
the proposed DPAC scheme in terms of successful preamble
transmission has been found to gain up to ∼ 40% and ∼ 50%,
respectively, in homogeneous traffic scenario. In heteroge-
neous scenario, where the percentage of delay-sensitive MTC
devices is varied, the gain is up to ∼ 30%. Further, the
proposed DQN based online learning framework (DPAC-RL)
is able to achieve up to ∼ 75% improvement over D-ACB
with homogeneous arrival and up to ∼ 60% gain over closest
competitive QDAM algorithm in heterogeneous scenario.

APPENDIX A
DERIVATION OF CDF OF DELAY DUE TO ACB

As mentioned in Section III-B, D is the RV that defines
the delay due to the ACB scheme in sub-frames. Let T be
the RV defining the number of RAOs that the first preamble
transmission of an MTC device is delayed due to ACB, i.e.,
the delay induced by ACB in terms of number of RAOs. Thus,
the PDF of delay D can be obtained as:

fD(itrao) = Pr {D = itrao} = Pr{T = i} = fT (i). (A.1)

Let Y be the RV in the domain y that represents the number
of barring checks performed by an MTC device. If the MTC
device succeeds in its very first barring check, i.e., (Y = 1),
the preamble is transmitted immediately. Probability of this
event is pacb, and the PMF of T given Y = 1 is: fT |Y (i |
1) = δ(i), where δ(·) is the Dirac delta function.

Also, the PMF of T given Y = 2 is positive between
iT ,min =

⌈
0.7tacb
trao

⌉
and iT ,max =

⌈
1.3tacb
trao

⌉
. Its PMF is:

fT |Y (i | 2)=
1

0.6tacb

itrao − 0.7tacb, i = iT ,min

trao, iT ,min < i < iT ,max

1.3tacb−(i−1)trao, i= iT ,max.
(A.2)

PMF of T given Y > 2 can be calculated recursively as:

fT |Y (i | y>2)=

iT ,max∑
ℓ=iT ,min

fT |Y
(
ℓ | 2)fT |Y (i− ℓ | y − 1). (A.3)

The probability of an MTC device succeeding in Y barring
checks is given by: fY (y) = pacb (1− pacb)

y−1
, ∀y =

1, 2, · · · , from which PMF of T can then be calculated as:

fT (i) =

∞∑
y=1

fT |Y (i | y)fY (y), for i = 0, 1, 2, . . . (A.4)

To truncate the infinite sample spaces of Y , the maximum
number of allowed barring checks ymax is found [17]. Hence
the MTC devices, which fail in the first ymax barring checks,
put an end to ACB and do not take part in the random access
contention. ymax is calculated as: ymax =

[
log pEacb

log(1−pacb)

]
where

pEacb
, the probability that an MTC device terminates the ACB

scheme, is given as: pEacb
= (1− pacb)

ymax . A certain value
for pEacb

is chosen empirically, which truncates the summation
up to some ymax. By truncating (A.4), fT (i) is approximated
as:

fT ′(i) = fT |Y≤ymax
(i)

=
1

1− (1− pacb)
ymax

ymax∑
y=1

fT |Y (i | y)fY (y).

It is notable that fT ′(i) is a PDF, and in fact, fT (i) ≈
fT ′(i), if pEacb

≪ 1. Hence, the PDF of delay due to ACB
fD(·) is computed using the approximated PMF fT ′(·) and
then the CDF is obtained as: FD(d) =

∫ d

−∞ fD(d).

APPENDIX B
RECURSION TO DERIVE ARRIVAL DISTRIBUTION

Let S and C be the RVs denoting the number of preambles
transmitted respectively by one successful and by multiple
unsuccessful MTC devices. Their joint probability distribution
for a given n(i), pS,C (s, c;n(i)) is recursively calculated as:

pS,C (s, c;n(i))

=

(
Npr − s+ 1− c

Npr

)
pS,C (s− 1, c;n(i)− 1) (B.1)

+
c

Npr
pS,C (s, c;n(i)−1)+ s+1

Npr
pS,C (s+1, c−1;n(i)−1)

for s = 0, 1, · · · , smax, and c = 0, 1, · · · , cmax with the initial
condition pS,C(0, 0; 0) = 1. The marginal PMFs of S and C
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for a given n(i), i.e., pS(s;n(i)) and pC(c;n(i)) are calculated
by integrating their joint distribution.

Let RS(i) and RC(i) be the RVs that define the number of
preambles transmitted by exactly one and by multiple MTC
devices at the ith RAO, respectively. Their respective PMFs
are derived from the PMFs of S and C by linear interpolation.

Decoding probability for the kth transmitted preamble by
an MTC device is pD;k, modeled in [9] as:

pD;k = 1− 1

ek
. (B.2)

The average preamble detection probability at the ith RAO,
by a little abuse of notation from (B.2), is denoted as:

pD:i =
1

E [n(i)]

kmax∑
k=1

pD;kE [n(i, k)] . (B.3)

Subsequently, the expected value of number of decoded
preambles at the ith RAO, RD(i), and the number of MTC
devices that will receive an uplink grant in response to a
preamble transmitted at the ith RAO, MU (i), are obtained
using their respective PMFs defined in [17].

Intuitively, E [MU(i)] is indeed the expected number of
MTC devices to successfully complete the first two steps of
the random access procedure. Hence, the expected number of
devices successfully completing the first two steps of random
access in their kth preamble transmission is obtained as:

E [MU(i, k)] =
E [MU(i)]E [n(i, k)] pD;k

E [n(i)] pD,i
.

Then, the expected number of failed accesses is found as:

E [MF(i, k)] = E [n(i, k)]− E [MU(i, k)] .

The conditional PMF pB|K , defined in [17], is used to model
the back-off process at each RAO by means of the following
recursion, where B is the RV denoting the number of RAOs
that an MTC device has to wait due to back-off and K is
the RV denoting the number of preamble transmissions by the
device:

E [n(i, k)] =

jmax∑
j=jmin

E [MF(i− j, k − 1)] pB|K(j | 2) (B.4)

where i = 1, 2, · · · , imax, k = 2, 3, · · · , kmax, imax =
tdist + (kmax − 1) iB,max + (xmax − 1) iT,max is the last
RAO when a preamble transmission can occur, jmin =
min {iB,min, i} , jmax = min {iB,max, i}, and E [n(1, k)] = 0.

APPENDIX C
PROOF OF LEMMA 1

Here, an upper bound of the expected number of successful
preamble transmissions for a given number of contending
MTC devices n is obtained. The expected number of suc-
cessful preamble transmissions for a given n is given by:

E[Υi|Λi = n] = np̄

(
1− p̄

Npr

)n−1

. (C.1)

To maximize (C.1), the objective function f0,T =

−np̄
(
1− p̄

Npr

)n−1

is minimized over the feasible set defined

by the constraints in (17). To find the lower bound, Lagrangian
duality is used. The Lagrangian function L is expressed as:

L(x̄, λ̄) =f0,T +

K∑
k=1

(
λ+
k (pk − 1) + λ−

k (−pk)
)

+ λ+
K+1(p̄− 1) + λ−

K+1(
Npr

n
− p̄)

where the Lagrange multipliers are the components of the
vector λ̄ = [λ+

1 , · · · , λ
+
K , λ−

1 , · · · , λ
−
K , λ+

K+1, λ
−
K+1].

The derivatives of p̄ =
∑K

k=1 ck(x1k
x2 + x3) with respect

to the optimization variables can be computed as:

∂p̄

∂x1
=

K∑
k=1

ckk
x2 ,

∂p̄

∂x2
=

K∑
k=1

ckx1k
x2 ln k,

∂p̄

∂x3
=

K∑
k=1

ck.

Also,
∂f0,T
∂p̄

= n

(
1− p̄

Npr

)n−2(
np̄

Npr
− 1

)
. (C.2)

Using the chain rule, the gradient of L can be computed as:

∇L =

 ∂L
∂x1
∂L
∂x2
∂L
∂x3

 =


∑K

k=1

(
ckξ + λ+

k − λ−
k

)
kx2∑K

k=1

(
ckξ + λ+

k − λ−
k

)
x1k

x2 ln k∑K
k=1

(
ckξ + λ+

k − λ−
k

)


where ξ =

(
∂f0,T
∂p̄

+ λ+
K+1 − λ−

K+1

)
.

To satisfy the Karush–Kuhn–Tucker (KKT) conditions,

∇L = 0 =⇒
K∑

k=1

(
ckξ + λ+

k − λ−
k

)
= 0 =⇒ (

∂f0,T
∂p̄

)csumk +

K∑
k=1

(
λ+
k − λ−

k

)
+
(
λ+
K+1 − λ−

K+1

)
csumk = 0

=⇒ (
∂f0,T
∂p̄

)csumk + w̄λ̄ = 0, where csumk =

K∑
k=1

ck and

w̄ = [1, · · · , 1,−1, · · · ,−1, csumk ,−csumk ].

=⇒ n

(
1− p̄

Npr

)n−2(
np̄

Npr
− 1

)
+

w̄λ̄

csumk

= 0

=⇒
(
1− p̄(n− 2)

Npr

)(
1− np̄

Npr

)
=

w̄λ̄

ncsumk

=⇒
(
p̄− Npr

n− 2

)(
p̄− Npr

n

)
=

w̄λ̄

ncsumk

.

The roots of (p̄− α)(p̄− β) = γ are:

p̄ =
α+ β

2
± 1

2

√
(α− β)2 + 4γ =

α+ β

2
±
√

(α− β)2

4
+ γ

where α =
Npr

n− 2
, β =

Npr

n
, γ =

w̄λ̄

ncsumk

.

∴ α+ β =
Npr

n− 2
+

Npr

n
=

2Npr(n− 1)

n(n− 2)
;α− β =

2Npr

n(n− 2)

Hence, p̄(x̄∗) =
Npr(n− 1)

n(n− 2)
±

√
Npr

2

n2(n− 2)2
+

w̄λ̄

ncsumk

.

By complementary slackness condition,

λ+
k

∗
(pk(x̄

∗)− 1) = 0, λ−
k

∗
(−pk(x̄∗)) = 0,
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λ+∗

K+1(p̄(x̄
∗)− 1) = 0, λ−∗

K+1

(
Npr

n
− p̄(x̄∗)

)
= 0. (C.3)

The dual function can be written as:

gd(λ̄) =min
x̄
L(x̄, λ̄) = L(x̄∗, λ̄) = −np̄(x̄∗)

(
1− p̄(x̄∗)

Npr

)n−1

.

To maximize gd(λ̄), the dual problem is formulated as,

(D) :max
λ̄

gd(λ̄) = L(x̄∗, λ̄) s.t. λ̄ ≥ 0. (C.4)

The maxima of the dual objective correspond to the value
of λ̄, for which:

∂gd(λ̄)

∂λ̄
= 0, i.e.,

∂

∂λ̄
L(x̄∗, λ̄) = 0

=⇒

(
n

(
1− p̄(x̄∗)

Npr

)n−2(
np̄(x̄∗)

Npr
− 1

))
∂p̄(x̄∗)

∂λ̄
= 0

=⇒ p̄(x̄∗) =
Npr

n

=⇒ Npr(n− 1)

n(n− 2)
±

√
Npr

2

n2(n− 2)2
+

w̄λ̄

ncsumk

=
Npr

n

=⇒ ±

√
1

(n− 2)2
+

n2w̄λ̄

ncsumk Npr
2 = − 1

n− 2

=⇒ λ̄∗ = 0 =⇒ p̄(x̄∗)

∣∣∣∣
λ̄=λ̄∗

=
Npr(n− 1)

n(n− 2)
± Npr

n(n− 2)

=⇒ p̄(x̄∗)

∣∣∣∣
λ̄=λ̄∗

=
Npr

n− 2
, (OR), p̄(x̄∗)

∣∣∣∣
λ̄=λ̄∗

=
Npr

n
.

Hence, d∗ = max
λ̄

gd(λ̄) = max
λ̄
L(x̄∗, λ̄) = L(x̄∗, λ̄∗)

=

(
−np̄(x̄∗)

(
1− p̄(x̄∗)

Npr

)n−1
)∣∣∣∣

λ̄=λ̄∗

= −nNpr

n− 2

(
1− 1

n− 2

)n−1

,∀ n > 2. (C.5)

Thus, E[Υi|Λi = n] is upper bounded by
nNpr

n− 2

(
1− 1

n− 2

)n−1

for a given number of arrivals

n (when n ≤ 2, anyway the DPAC algorithm will not be
enabled as pk = 1 is assigned in those instances where
n ≤ Npr) and number of available preambles Npr.

APPENDIX D
PROOF OF LEMMA 2

It is shown here that the primal problem (P) in (17) is quasi-
convex in the model parameter vector x̄ = [x1, x2, x3].

1) Set of constraints C1: In the set of inequality constraints
C1, the constraint functions are given by:

pk(x̄) = pk(x1, x2, x3) = (x1k
x2 + x3), ∀k ∈ {1, 2, · · ·K}.

First bordered Hessian matrix of pk is:

HB
pk

(1)
=

[
0 p′k1(x̄)

p′k1(x̄) p′′k11(x̄)

]
=

[
0 kx2

kx2 0

]
.

∴ D1,pk
= Determinant of first bordered Hessian matrix

= −(kx2)2 < 0.

Second bordered Hessian matrix of pk is:

HB
pk

(2)
=

 0 p′k1(x̄) p′k2(x̄)
p′k1(x̄) p′′k11(x̄) p′′k12(x̄)
p′k2(x̄) p′′k21(x̄) p′′k22(x̄)


=

 0 kx2 x1k
x2 ln k

kx2 0 kx2 ln k
x1k

x2 ln k kx2 ln k x1k
x2(ln k)2

.
∴ D2,pk

= Determinant of second bordered Hessian matrix

= x1(k
x2)3(ln k)2 ⩾ 0,∀x1 ⩾ 0.

Third bordered Hessian matrix of pk:

HB
pk

(3)
=


0 p′k1(x̄) p′k2(x̄) p′k3(x̄)

p′k1(x̄) p′′k11(x̄) p′′k12(x̄) p′′k13(x̄)
p′k2(x̄) p′′k21(x̄) p′′k22(x̄) p′′k23(x̄)
p′k3(x̄) p′′k31(x̄) p′′k32(x̄) p′′k33(x̄)



=


0 kx2 x1k

x2 ln k 1
kx2 0 kx2 ln k 0

x1k
x2 ln k kx2 ln k x1k

x2(ln k)2 0
0 0 0 0

.
∴ D3,pk

= Determinant of third bordered Hessian matrix = 0.

Therefore, Dn,pk
⩽ 0 when n is ODD and Dn,pk

⩾ 0 when
n is EVEN; hence, pk is quasi-concave in x1, x2, x3. This can
also be proven from the concept of level set. The super level
set of pk is convex. Hence, pk is quasi-concave when x1 ⩾ 0.

2) Constraint C2: In the inequality constraint C2, the
constraint function p̄ is given by:

p̄(x̄) = p̄(x1, x2, x3) =

K∑
k=1

ckpk =

K∑
k=1

ck(x1k
x2 + x3).

First bordered Hessian matrix of p̄ is:

HB
p̄

(1)
=

[
0 p̄′1(x̄)

p̄′1(x̄) p̄′′11(x̄)

]
=

[
0

∑K
k=1 ckk

x2∑K
k=1 ckk

x2 0

]
.

∴ D1,p̄ = Determinant of first bordered Hessian matrix

= −

(
K∑

k=1

ckk
x2

)2

< 0.

Second bordered Hessian matrix of p̄ is:

HB
p̄

(2)
=

 0 p̄′1(x̄) p̄′2(x̄)
p̄′1(x̄) p̄′′11(x̄) p̄′′12(x̄)
p̄′2(x̄) p̄′′21(x̄) p̄′′22(x̄)


where p̄′2(x̄) = x1

K∑
k=1

ckk
x2 ln k,

p̄′′12(x̄) = p̄′′21(x̄) =

K∑
k=1

ckk
x2 ln k, and

p̄′′22(x̄) = x1

K∑
k=1

ckk
x2(ln k)2

∴ D2,p̄ = Determinant of second bordered Hessian matrix

=x1

(
K∑

k=1

ckk
x2 ln k

)(
K∑

k=1

ckk
x2

)(
K∑

k=1

ckk
x2 ln k

)
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⩾ 0,∀x1 ⩾ 0.

Similar to the case of pk,
D3,p̄ = Determinant of third bordered Hessian matrix = 0.
Therefore, p̄ is also quasi-concave when x1 ⩾ 0.

3) Objective function f0: If g is quasiconcave and h is non-
increasing real-valued function on the real line, then f = h◦g
is quasiconvex. The non-increasing nature of f0 is evident
from Fig. 4 by observation. Hence, p̄ being a quasiconcave
function and f0 a non-increasing real-valued function, f0 is
quasiconvex in {x1, x2, x3}. Hence the primal problem (P) is
a quasiconvex optimization problem which can be solved by
a family of convex feasibility problems [41].

APPENDIX E
PROOF OF LEMMA 3

Here a lower bound of the primal objective function f0 is
obtained. The primal problem (P) is transformed into its dual
problem (D) to accommodate the constraints. Then Lagrangian
duality [41] is used to obtain a lower bound, i.e., the minimum
value, the optimal solution of primal problem p∗ can achieve.

The Lagrangian function L can be expressed as:

L(x̄, λ̄) = f0 +

K∑
k=1

(
λ+
k (pk − 1) + λ−

k (−pk)
)
+ λ+

K+1(p̄− 1)+

λ−
K+1(

Npr

n
− p̄) = αp̄3 + βp̄2 + γp̄+ δ +

K∑
k=1

(λ+
k (pk − 1)+

λ−
k (−pk)) + λ+

K+1(p̄− 1) + λ−
K+1(

Npr

n
− p̄).

The derivatives of p̄ =
∑K

k=1 ck(x1k
x2 + x3) with respect to

the optimization variables can be computed as:

∂p̄

∂x1
=

K∑
k=1

ckk
x2 ,

∂p̄

∂x2
=

K∑
k=1

ckx1k
x2 ln k,

∂p̄

∂x3
=

K∑
k=1

ck.

Using the chain rule, the gradient of L can be computed as:

∇L =


∑K

k=1

(
ckξ + λ+

k − λ−
k

)
kx2∑K

k=1

(
ckξ + λ+

k − λ−
k

)
x1k

x2 ln k∑K
k=1

(
ckξ + λ+

k − λ−
k

)
,

where ξ =
(
3αp̄2 + 2βp̄+ γ + λ+

K+1 − λ−
K+1

)
.

For the KKT conditions to be satisfied,

∇L = 0 =⇒
K∑

k=1

(
ckξ + λ+

k − λ−
k

)
= 0

=⇒ (3αp̄2 + 2βp̄+ γ)csumk +

K∑
k=1

(
λ+
k − λ−

k

)
+
(
λ+
K+1 − λ−

K+1

)
csumk = 0

=⇒ (3αp̄2 + 2βp̄+ γ)csumk + w̄λ̄ = 0

where csumk =

K∑
k=1

ck, and w̄ = [1, · · · , 1,−1, · · · ,−1,

csumk ,−csumk ]

=⇒ 3αp̄2 + 2βp̄+

(
γ +

w̄λ̄

csumk

)
= 0

∴ p̄(x̄∗) =

−β ±
√
β2 − 3α

(
γ + w̄λ̄

csum
k

)
3α

. (E.1)

By complementary slackness condition,

λ+
k

∗
(pk(x̄

∗)− 1) = 0, λ−
k

∗
(−pk(x̄∗)) = 0,

λ+∗

K+1(p̄(x̄
∗)− 1) = 0, λ−∗

K+1

(
Npr

n
− p̄(x̄∗)

)
= 0. (E.2)

The dual function can be written as:

gd(λ̄) =min
x̄
L(x̄, λ̄) = L(x̄∗, λ̄)

=αp̄3(x̄∗) + βp̄(x̄∗)2 + γp̄(x̄∗) + δ. (E.3)

To maximize gd(λ̄), the dual problem is formulated as:

(D) :max
λ̄

gd(λ̄) = L(x̄∗, λ̄) s.t. λ̄ ≥ 0. (E.4)

The maxima of gd(λ̄) corresponds to value of λ̄, for which:

∂gd(λ̄)

∂λ̄
= 0, i.e.,

∂

∂λ̄
L(x̄∗, λ̄) = 0

=⇒
(
3αp̄2(x̄∗) + 2βp̄(x̄∗) + γ

) ∂p̄(x̄∗)

∂λ̄
= 0

=⇒ p̄(x̄∗)

∣∣∣∣
λ̄=λ̄∗

=
−β ±

√
β2 − 3αγ

3α

∴ d∗ = max
λ̄

gd(λ̄) = max
λ̄
L(x̄∗, λ̄) = L(x̄∗, λ̄∗)

=
(
αp̄3(x̄∗) + βp̄(x̄∗)2 + γp̄(x̄∗) + δ

) ∣∣∣∣
λ̄=λ̄∗

= α

(
−β ±

√
β2 − 3αγ

3α

)3

+ β

(
−β ±

√
β2 − 3αγ

3α

)2

+ γ

(
−β ±

√
β2 − 3αγ

3α

)
+ δ. (E.5)

If p∗ is the solution to the primal problem (P), then d∗ ⩽ p∗,
i.e., d∗ is the lower bound of the primal minimization problem.
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