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1 INTRODUCTION

The need for efficient and flexible network access
has led to the recent proliferation of research on
multihop wireless networks. Due to the ad hoc
nature of network set up, in most cases the nodes
are randomly located with respect to each other.
Lack of any predetermined infrastructure in such a
network necessitates that any two neighbor nodes are
connected via wireless communication channel, and
a message has to go through several intermediate
‘peer’ nodes to reach its desired destination. Such an
ad hoc multihop wireless network could be mobile
or relatively static, but the random nature of node
distribution prevails.

There have been numerous works on various as-
pects of ad hoc wireless networks in the literature,
including extensive studies on ad hoc routing proto-
cols [1],[2]. Geographic location aware greedy rout-
ing approach is one of the widely studied proto-
cols [3],[4],[5]. Although greedy packet forwarding
may not guarantee minimum energy or high capac-
ity routes [6],[7], its importance lies in its simplic-
ity and scalability. There also have been numerous
variants to the greedy forwarding approach that at-
tempt to circumvent the routing voids in different
ways [3],[4],[8]- In this work, however, we focus on
simple greedy routing approach. The randomness
of node location implies that for a given source-to-
destination Euclidean distance, the number of hops is
non-deterministic, and similarly, for a given number
of hops, the Euclidean distance between a source and
a destination is non-deterministic. It is intuitive that
given a source-to-destination distance and a network
density, the number of hops would be within a cer-
tain range. A few recent papers (e.g., [9],[10],[11]) ad-
dressed the problem of establishing the relationship
between Euclidean distance and hop distance. How-
ever, the evaluation of tight bounds relating these
distances is still missing.

There are several interesting areas where the
knowledge of the relationship between source-to-
destination Euclidean distance and hop count could
be useful: (a) Given an Euclidean distance, from the
hop count distribution one can determine the end-

to-end delay, and delay jitter. (b) The average and
higher order moments of progress per hop can enable
capture the approximate transmit power consump-
tion and hence total power consumption along the
route. (¢) In a virtual coordinate based positioning
and routing approach (e.g., [9],[11],[12]), approximate
relative distance can be determined from the hop
count information. It is also possible to derive ap-
proximate positions of other nodes by combining hop
distances from the nodes whose locations are known.

In this paper, we present an analytic approach to
obtain the bounds on number of hops for a given
source-to-destination Euclidean distance. We con-
sider a greedy routing approach that attempts to
minimize the remaining distance to the destination in
each hop, we call this approach least remaining dis-
tance (LRD) forwarding. In determining the bounds
on hop count from Euclidean distance, or vice versa,
we do not consider physical layer channel condition
based link availability. Rather, if a node is within
the transmission range of another node, they are con-
sidered reachable to each other. In other words, al-
though we use the term “wireless” multihop networks
— because it is only the natural way to connect the
nodes in an ad hoc network, in this work we are not
concerned about distance and channel interference
dependent link quality/availability.

Our contributions in this paper are the following.
(i) We derive the distribution characteristics of re-
maining Fuclidean distance and forward progress in
one hop, and show that the average progress per hop
is a function of node density and current distance to
the destination. We show that the average one-hop
progress based on the initial source-to-destination
distance gives us a good approximation of average
hop count. (4¢) The bounds on hop count are evalu-
ated numerically from the distribution of remaining
distance in one hop. (i) We show that from the
characteristic of forward progress per hop it is possi-
ble to numerically compute the bounds on Euclidean
distance from a given hop count.

The rest of this paper is organized as follows. We
review the related work in Section 2. In Section 3, we
present our analytic approach to obtain the bounds
on hop count. Section 4 contains the analytic, numer-
ical, and simulation results. In Section 5, we discuss



a few potential applications of our results. Finally,
Section 6 concludes the paper.

2 RELATED WORK

Significant research have been carried out on the
formulation and optimization of ad hoc routing
protocols from energy efficiency and network ca-
pacity view point (see e.g., [1],[2] for a survey).
Mathematical modeling of ad hoc networks has also
been looked into by several researchers. We briefly
survey the works related to our present studies.

In connection to maximizing one-hop transmission
capacity, Kleinrock and Silvester [13] and Takagi and
Kleinrock [14] evaluated the average of maximum
progress towards the destination in one hop, called
most forward within radius R (MFR), where back-
ward movement of a packet is allowed in case no bet-
ter forwarding node is available. Later, Hou and Li
[15] studied MFR and a variant, called most forward
with variable radius (MVR), without allowing back-
ward progress. Again, the interest was evaluating the
one-hop capacity and the influence of interference as-
sociated with different transmission range properties.

For simplifying the problem of localization and
routing using low-cost sensor nodes that are equipped
with only basic sensing and routing functionalities,
there have been recent proposals on hop count met-
ric based virtual positioning of nodes [9],[12],[16],[17],
that attempt to get away with the global positioning
system (GPS) based and other geographic localiza-
tion approaches. This hop count based virtual po-
sitioning and routing approach works on the basic
premise that given a hop count between two nodes,
a bound on Euclidean distance between them can be
found. Bischoff and Wattenhofer [11] studied posi-
tioning of field sensor nodes from the anchor nodes’
location information and based on the hop counts
from multiple anchors. They have proved that one
dimensional distance can be bounded by hop count,
but the exact bound was not shown. In context of
road networking, Mathar and Mattfeldt [18] studied
the optimal transmission range problem in one di-
mension and obtained the expected per-hop progress.

Hekmat and Mieghen [10] studied the expected hop
count as a function of channel shadowing in wire-
less ad hoc networks. In their work, for the regu-
lar two dimensional lattice networks, an expression
for obtaining the expected hop count was obtained.
However, in case of an ad hoc wireless network with
randomly located nodes, the evaluation was simula-
tion based. He et al. [19] applied greedy routing
in ad hoc networks which essentially minimizes the
remaining distance to reduce the end-to-end packet
delay. Performance evaluation in their work was sim-
ulation based.

In our work on analytically correlating Euclidean
distance and hop count we consider the greedy for-
warding approach that minimizes the remaining dis-
tance in each hop. We call this approach as least re-
maining distance (LRD) forwarding. LRD forward-
ing is different from the maximum forwarding with
fixed radius (MFR) approach that was studied in
[13],[14],[15], and the maximum forwarding with vari-
able radius (MVR) approach that was studied in [15].
In particular, as observed in [14], although MFR and
MVR are greedy approaches and ensure the maxi-
mum progress in the direction of the destination, they
do not guarantee minimizing the remaining distance
to the destination. In contrast, our LRD approach
minimizes the remaining distance. The LRD forward-
ing captures the case for the nodes with fixed trans-
mission radius as well as the case with variable radius,
i.e., without and with transmission power control.

In the following section we will analyze the distri-
bution characteristics of the remaining distance and
the distance progress in one hop in LRD forwarding.

3 ANALYSIS ON BOUNDS

We consider uniformly randomly placed nodes in
a two-dimensional space. All nodes have equal,
omnidirectional transmission pattern of range R.
Since there is a direct dependence of geometric
distance between nodes on the connectivity, the net-
work is modeled as an undirected geometric random
graph [20]. As in [15], LRD approach tries to avoid
backward movement if no forwarding node closer



to the destination is found. In case of no available
forwarding nodes, the data packet to be forwarded
is considered to be dropped (lost). For simplicity of
the analysis, we consider a node to be a potential
forwarder if it is in the half circle of the transmission
range of a node towards the destination (the entire
shaded region in Fig. 1). Precisely, this approach
does not guarantee that the remaining distance
would be always lesser than the current distance.
As shown in Fig. 1, in our analysis a neighbor of
node S located anywhere in the total shaded region
can be a potential forwarder. But, if the selected
forwarding node is located in the densely shaded
region, the remaining distance to the destination D
would be larger than the current distance between
S and D. However, as we will see in Section 3.3,
with a reasonably high node density the potential of
“backward movement” is very insignificant — even
when the densely shaded region is included.

Figure 1: Pictorial representation of LRD forwarding

We denote the distance between a node S and the
destination D by I. Referring to Fig. 1, let P be a
potential forwarder of S, randomly located at a dis-
tance r and angle 6, and let the remaining distance
from P to D be z. Our immediate goal is to find the
characteristics of z.

In the following, unless otherwise stated, a symbol
in bold denotes a random variable (RV) and a symbol
in italics denotes a realization (sample value).

3.1 Least remaining distance

With respect to the node S, the random position of
P is characterized by the following joint probability

density function (pdf) of the RVs r and 6:

f’l'9 (T7 6) =

Let € = rcos@ and y = rsin@. From (1) the joint
pdf of the transformed variables & and y is obtained
as

2 0<z<R,-R<y<R,
foy(z,9) = "F 2’ +y’ <R’ (2)
0, elsewhere.

From geometry, we have z = /(I — z)? + y2. In-

troducing an auxiliary variable w = «, from (2) the
joint pdf of z and w is obtained as

I—-R<z<land

2 2 2

— 4z or
fewl@w) = mRVES0T L P R? and
0<w< P4R? 2%
W 27
0, elsewhere.
3)

Integrating (3) over w, we have the pdf of z as

ﬂ4§2 arccos(%), I—-R<z<1
fo(2) = 4z, [arcsin (1)
® —arcsin(%)] , 1<2<+I%2+ R?
0, elsewhere.
(4)
The corresponding cumulative distribution function
(cdf) is F.(2) = [°__ fx(t)dt. From (4), the remain-
ing distance from an arbitrarily located forwarding
node P to the destination D can be known proba-
bilistically.

To find the least remaining distance (LRD) to the
destination D, we have to first obtain the number
of potential forwarders, i.e., the number of nodes in
the shaded region in Fig. 1. Let this number be
n. For a uniformly random node distribution with
a given density p = %, where N is the total num-
ber of nodes distributed over a location space of area
A, using Poisson approximation we have the average

2
n = %. In the rest of the analysis, we proceed




with this constant average value of n. We denote
the remaining distances from n potential forwarding
nodes as 21, 22, *--,2Zn. 1o determine the forward-
ing node corresponding to the LRD to D, we have to
obtain § = min {21, 22, -+, Zn}. Since the nodes
are uniformly random distributed, z; Vi =1 to n are
independent and identically distributed RVs. There-
fore, the pdf of 4 is given by (see [21, Chapter 6])

fs() =nf2()RE () (5)

where f,(z) is given by (4), and R, 2 Ft=1-F,
is the complementary cdf of z. The expression for
R.(z) is given by (6). Substituting (4) and (6) in
(5), we find the pdf of the least remaining distance §
as given in (7).

3.2 Average progress in one hop

With the known characteristic of least remaining dis-
tance in one hop 9§, the maximum forward progress
can be simply obtained from the relation € = [ — 4.
Correspondingly, the pdf of progress in one hop to-
wards the destination € is given by

fe(e) = fs(1—e), (8)

where fs(-) is given in (7). From (8), the average
one-hop progress  is obtained using

tfe(t)dt. (9)

R
== [

I-VETRZ
The distribution of § in (7) (and hence that of € in
(8)) would give us the probabilistic bounds of hop
count to the destination.

Before presenting the numerical results on hop

bounds in LRD forwarding, we evaluate the error in
approximating the forwarding region.

3.3 Effect of approximating the area

As we have stated in the beginning of Section , refer-
ring to Fig. 1, for simplicity of analysis we included
the densely shaded region in the potential forward-
ing zone, although a selected forwarding node from
that region actually increases the remaining distance

to the destination. Below we will show, given a node
density, what is the chance of increased remaining
distance when the nodes in the densely shaded re-
gion are also considered. The same approach will also
show the effect of node density on successful greedy
forwarding.

It is intuitively clear that as the destination node
is approached, the area of densely shaded region and
hence the chance of increased remaining distance in-
creases. Fig. 2 shows the extreme case when S and D

Figure 2: Probability of increased remaining distance

are marginally beyond each other’s range that gives
us the maximum chance of increased remaining dis-
tance.

Poisson approximation of node distribution gives:

Pr[at least one neighbor in an area a]
N-1 k
(P2)" _pa o1 _ o—ra

k=1

with N > 1 and a € A, where p = % is the node
density in the network. Thus, referring to Fig. 2, if
only the LRD forwarding zone, i.e., the lightly shaded
region with area a; were considered, the probability
of successful LRD forwarding p; would have been

pl = 1 — e—p(ll (10)

where, from simple geometry we have a1 =
V3

2R? (g - ) When entire shaded region of area
wR2

ay = "5~ is considered, the probability of successful

forwarding p, becomes
pe=1—e P22,

(11)

Note that, given a node density, p; in (10) is the
least possible success probability, as the area a; is the



( 17 z < l— R
s [%\/4l2R2 — (I2 + R? — 22)* — 2% arccos (#)
() +R? arcsin (%)] , I-R<2z<I1 ©)
z %)= < 2 2 2
2 [%\/4Z2R2 — (12 + R? — 22)® + 22 arcsin (72 =R )
—z%arcsin (L) + R? arcsin (%) — 2 - l2] , 1<2<+VI2+R?
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[ 26m (%5)" arccos (W) [%\/4Z2R2 —(I2+R2 —82)°
2,42 2 2 2 <2 n—1
—62 arccos (%) + R? arcsin (%)] , I-R<6<LI
£5(8) = 4 26n (#)n [arcsin (%) — arcsin (%)L o (7)
[%\/4I2R2 — (12 + R? — §%)® + 6% arcsin <75 L )
2 2 <2 n—1
—6% arcsin () + R? arcsin (%) — 162 — l2] , 1<6<VP2+R?
L 0, elsewhere.

minimum when S and D are just R distance apart.
Correspondingly, the probability of error in successful
greedy forwarding p., i.e., the chance of increased
remaining distance when the densely shaded region
is included, is

De P2 —p1 =€ P —e P92,

(12)
Using (10), (11), and (12), for a given node den-
sity, the chance of increased remaining distance due
to approximating the area of greedy forwarding can
be obtained. Also, the effect of node density on min-
imizing the chance of increased remaining distance
pe can be found from (10). In other words, to mini-
mize p,, we can determine from (10) how much node
density we need such that p; approaches to one.
Numerical results on analytic approximation error
and the effect of node density on successful greedy
forwarding will be shown in the next section. Before
we go on presenting the results, we must point out
that similar analytic approach can be taken to com-

pute hop distance bounds associated with the nearest
forward progress [15].

4 RESULTS AND DISCUSSION

In this section, we present the results from analysis,
and wherever necessary, we verify the analysis with
network simulations. In the simulation we consider
a 400m x 400m location space, where the nodes are
uniformly random distributed. The transmission
range of a node is fixed at R = 10m. The total
number of nodes is varied appropriately to attain a
desired node density p = %, i.e., to have the same
average number of potential forwarding neighbors of
a node n as in the analysis. To reduce the “border
effect” [22], the source and destination nodes are
considered twice the range inside the boundary.



4.1 Average number of hops

We first study the nature of the remaining distance
in LRD forwarding. Fig. 3 shows the probabilistic
variation of the remaining distance d in a single hop,
where n = 10, I = 100m. The corresponding pdf of

Analysis
*  Simulation/

o
©
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°
3
T

Pdf of remaining Euclidean distance [scaled]
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Remaining Euclidean distance (in m)
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Figure 3: Pdf of remaining distance in one hop

distance progress in one hop € will have the nature
complementary to that of §.

Using (7) and (8), in Table 1 we show the average
progress in Euclidean metric towards the destination
for different source-to-destination distance [/ and dif-
ferent node densities p (or, average number of for-
warding neighbors n). The data in Table 1 indicate

Table 1: Average distance covered in one hop, Z (in m).

l(inm) [ n=5 n=10 n=15
30 7.164  8.128 8.548
100 7.366  8.275 8.667
400 7.422 8315  8.699

that average progress is slowly varying with respect
to [ and a function of p and R. We study the average
number of hops recursively as well as via a simple
approximate approach, using (7) and (8). In the nu-
merical recursion approach, the least remaining dis-
tance § obtained from (7) at each hop is considered as
the current distance [ to the destination in the next

hop, and the process is repeated until the destina-
tion is reached. The approximate approach is based
on the observation in Table 1. Considering the slowly
varying nature of the average progress € with respect
to the source-to-destination distance I, we evaluate
Z only once using (9) and (8), where we substitute /
with % To cover a distance [, the approximate aver-
age number of hops h is obtained as h = é Table 2
shows that the approximate hop count matches well
with the recursively obtained data. This implies that
for a given source-to-destination Euclidean distance
one can have an estimate of number of hops from
the average progress in only one hop, obtained with
a suitably set distance to the destination, which is
much simpler and less time consuming than the re-
cursive approach. As we will see in Section 4.2, these
results are also corroborated via network simulation.

4.2 Bounds on number of hops

For obtaining the upper and lower limits on number
of hops for a given source-to-destination distance, we
conduct numerical (Monte-Carlo) simulations using
(8) and verify the results via network simulations.
Figs. 4 and 5 show the probability mass function
(pmf) of number of hops for different node densities
and source-to-destination distances. It is observed
that in general, compared to the upper limit, the
lower range of number of hops is characterized by
sharper decay of discrete probabilities. This is be-
cause, for any node distribution and density there is a
deterministic lowest possible lower limit [%] , whereas
because of random distribution there is no such de-
terministic upper limit. In the simulation results,
’Sim:appx’ corresponds to the LRD with analytic ap-
proximation of the forwarding area, and ’Sim:greedy’
corresponds to the actual greedy forwarding.

The simulation results have a good match with the
analysis except for a little slower decay in the proba-
bility mass on the higher side of number of hops and
a little faster decay in probability mass on the lower
side of number of hops. This could be mainly due
to the border effects in the simulation, which is not
captured in the analysis. Although the source and
destination nodes are chosen well inside the bound-
ary, the intermediate nodes along the route may hit



Table 2: Average number of hops & required to cover a distance.

l n=>5 n =10 n=15

(in m) Recursion | Approximate | Recursion | Approximate | Recursion | Approximate

30 4.37 4.434 4.042 3.839 4.006 3.622

100 13.947 13.727 12.496 12.17 12.0 11.601

400 54.504 54.031 48.684 48.185 46.559 46.042

(a) | = 50m (b) | = 2300m
1 o =
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Figure 4: Distribution of number of hops for a low node density; n =5
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Figure 5: Distribution of number of hops for a given higher node density; n = 15

the boundary and the potential forwarding region for
those nodes is less than that assumed in the analy-
sis. For the border nodes, the chance of finding the

44

best possible forwarding node is less than that with-
out the border effect. Therefore, a route constituted
by the border nodes may be longer. Another possi-



ble reason of minor discrepancy between the analysis
and simulation results could be that in the analysis
the chance of finding a forwarding node is assumed
independent of previous hop. However, in reality (in
the simulation), there is a one hop memory, so the
chance of finding a forwarding node at one stage is
partly determined by the process in the previous step.

Numerically obtained bounds on number of
hops along with the mean for different source-to-
destination distances and different node densities are
shown in Fig. 6. Note that distinct upper and lower
bounds on hop count for a given Euclidean distance
can be obtained analytically. Also, the lower bound
with random topology is quite tighter than the de-
terministic lower limit [4], which is achievable only
when the per-hop progress in Euclidean distance is
exactly R.

4.3 Effect of analytic approximation

We note that greedy forwarding should ideally ap-
proach to reduce the remaining distance to the desti-
nation node. Referring to Fig. 1, this can be ensured
only if the forwarding node lies within the lightly
shaded region. However for simplicity in the anal-
ysis we have considered the greedy forwarding zone
to be the half circle (the entire shaded region). Fig. 7
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°
o
=2

0.008

0.006

0.004

Analytic approximation error, P,

o°
o
S
S

o

5 10 15 20
Average number of forwarding neighbors, n

Figure 7: Effect of node density on the forwarding error

captures the LRD forwarding error (cf. (12)) due to

approximating the area of greedy forwarding in the
analysis. It is noted that the error becomes increas-
ingly insignificant as the node density increases. This
observation is also corroborated with the supporting
result in Figs. 4 and 5, where it is found that with
low node density the simulated pmf plot with the area
approximation (’Sim:appx’) does not match well with
the pmf of actual greedy forwarding (’Sim:greedy’).

4.4 Bounds on Euclidean distance
from hop count

From the analytic expression in (8) one can also com-
pute the bounds on Euclidean distance from a given
hop distance. Numerically obtained results plotted in
Fig. 8 shows how the tightness of bounds varies (in
unit of nodal range, R) with node density for different
network size. It also shows that for a given network
size and a given node density, one can set a max-
imum limit in distance ambiguity while estimating
the distance between any two nodes from the known
hop count between them. For example, if the average
number of forwarding neighbors is n = 15 (the corre-
sponding node density is p = :ﬁz) and the maximum
hop count between any two nodes in the network is
30, the maximum ambiguity in distance estimation is
bounded to three times the nodal range.

10 !

—£— 100 hops
—&— 60 hops
—k— 30 hops

Difference between two bounds in distance

1 L L L L L L L L
5 10 15 20 25 30 35 40 45 50

Average number of forwarding neighbors, n

Figure 8: Variation of bounds with node density
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Figure 6: Bounds on hop distance

5 POTENTIAL APPLICATIONS

An idea of the relation between hop count and the
Euclidean distance may lead to the understanding
to several networking aspects in ad hoc multihop

networks. In this section we briefly outline a few
such areas.
5.1 Node localization in sensor net-

works

In an ad hoc wireless network, the knowledge of rel-
ative positions of nodes is very useful in delivering
message from one point to the other at a low network
cost. As recently studied in [12], the field nodes can
learn their respective virtual position in terms of hop
counts from three or more elected anchors. We note
that from the known relationship between hop count
and the Euclidean distance, it is also possible to ob-
tain an approximate relative geographic location of a
field node with respect to the anchor nodes’ positions.
More precisely, if a field node knows its distance in
hop count from an anchor, the corresponding Eu-
clidean distance can be estimated analytically. The
estimated average distances of the field node from
the three anchors can then be used to calculate its ap-
proximate relative location via trilateration approach

10

[23]. Considering the bounds in Euclidean distance,
the estimated relative position of the node will have
a zone of ambiguity, as depicted by the shaded re-
gion in Fig. 9. In this figure, two concentric arcs
corresponding to an anchor node refer to the bound
in Euclidean distance of a node for a given (known)
hop count. The distance between the two concentric
arcs is the maximum bound for a given node density
and a network size, and is approximately the same
for any hop count within the network. Additionally,

Z
[ ]

approximate location
of a field node

oY

Figure 9: Estimation of a field node’s location

if the actual geographic locations of the anchor nodes
are also known, an estimate of a field node’s actual
geographic location can also be derived — the estima-
tion error being a function of the node density. As
it is clear from Figs. 8 and 9, the zone of ambiguity
becomes smaller with increased node density.



5.2 Power consumption

Another important parameter determining the net-
work lifetime in wireless ad hoc networks is the power
consumption along a route. Without any transmis-
sion power control, end-to-end total power consump-
tion Py, along a multihop route is a linear function
of number of hops h. Thus, the known distribution
of h will directly give the distribution of P, from
P,, = (P; + P.)h, where we have assumed that any
node within a node’s transmission range is reachable
without error, and P; and P, are transmit and re-
ceive power consumptions (constants), respectively,
of a node.

With transmit power control on the other hand, for
a given signal-to-interference-and-noise ratio (SINR)
at the receiver, the transmit power consumption P; is
a function of transmitter electronics power consump-
tion K (a system-specific constant), transmitter-to-
receiver distance, path loss factor, and activity of
the neighboring nodes. The distribution of per-
hop progress in greedy routing gives the variation
of distance between two communicating neighbors.
Based on the transmit-receive neighbor distance € (a
RV), power decay factor a (a channel-specific con-
stant), and channel condition (white noise N and
interference from the neighboring transmissions I),
power consumption at the transmitter is a RV: P, =
SINR(N + I)e* + K. From the known distributions
of € (in (8)), the distribution of P; is obtained by
standard method of transformation of random vari-
ables. Considering the constant receiver electronics
power consumption P,, the distribution of end-to-
end total power consumption P, along an h hop
route can be numerically obtained using the relation:
Ptr = (Pt + Pr)h

5.3 Delay and delay jitter

End-to-end delay is an important parameter in
quality-of-service applications like multimedia traf-
fic, and lowering the delay is one of the motivating
factors in adapting greedy routing. Likewise, delay
jitter is also a critical parameter in real-time appli-
cations. If internodal propagation delay and per-hop
trans-receive latency (known from the device speci-

11

fications) at all nodes are assumed constant, end-to-
end delay and delay variation is a linear function of
hop count. Thus, for a given source-destination Eu-
clidean distance, hop count distribution will directly
give the delay distribution, from which average end-
to-end delay and delay jitter can be estimated. In
practical cases, the effects of network congestion and
node failure rate can be added on top of this basic es-
timate. Depending on the nature of applications, the
delay jitter can be controlled as desired by suitably
adjusting the network density.

6 CONCLUSION

In this paper, we presented an analytical approach
to compute the bounds on number of hops be-
tween two nodes at a given Euclidean distance in
a greedy forwarding approach that minimizes the
remaining distance to the destination in ad hoc
wireless networks. We obtained the characteristics
of least remaining distance and showed that the
average distance progress per hop is a function
of node density and slowly varies with respect to
current, distance to the destination node. From this
observation, a simple approximate approach was
provided to obtain the average hop count. From
the distribution characteristics of per-hop progress
towards the destination, lower and upper bounds on
hop count were obtained via numerical simulation.
We further demonstrated that one can numerically
compute the bounds on Euclidean distance from a
given hop count. Our observations from analysis and
numerical simulations were verified through network
simulations. We anticipate that our approach to
evaluating bounds on hop count from FEuclidean
distance and vice versa would be useful in estimating
important multihop network parameters like end-to-
end delay, delay jitter, power consumption, etc., and
in virtual coordinate based node localization.
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