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Abstract 

Real-time delay prediction involves providing entities arriving at a queue with an 

estimate of their wait time at the time of their arrival at the queue. This wait time 

estimate is generated as a function of the state of the system at the time of the en-

tity’s arrival to the queue. In this chapter, we present a hybrid simulation and ma-

chine learning based approach towards real-time delay prediction for complex queu-

ing systems. The approach involves using a discrete-event simulation of the queuing 

system under consideration to generate system state data that is in turn used to train 

machine learning methods that generate real-time delay predictions. We provide a 

case study illustrating this approach that involves generating real-time delay predic-

tions for end-stage renal disease patients registering on kidney transplantation wait-

lists. 

Keyword: Hybrid modeling, discrete-event simulation, machine learning, kidney 

transplantation, real-time delay prediction 
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1. Introduction 

Overcrowding is one of the most important issues faced by the healthcare facilities 

in India and elsewhere [1]. For example, long queues have become a major concern 

at state-of-the-art tertiary care centers, with 10,000 patients visiting each day [2]. 

Limited medical resources relative to the demand and the highly unpredictable na-

ture of the demand for care are a few of the many factors yielding long waits at 
healthcare facilities [3]. Empirical evidence suggest that delays not only lead to poor 

health outcomes for patients, but also cause unnecessary anxiety and inconvenience 

to patients and overburden healthcare providers [4], [5]. Delays are also expensive; 

for instance, among patients with the most acute conditions, a one-hour increase in 

wait time leads to an approximately 30% increase in medical expenses [6]. One of 

the most frequent discussions in healthcare operations research is to minimize ser-

vice delays. Informing arriving patients about their expected delay - at the time of 

their arrival to the queue, as opposed to providing patients with the average wait 

time estimate - is a relatively inexpensive technique of reducing wait-time uncer-

tainty for the patient and for service-seeking entities in queueing systems in general. 

This process is called real-time delay prediction. 
Studies on customer psychology in waiting situations reported that real-time pre-

diction of waiting time not only improved patient satisfaction and service quality, 

but also helped in effective planning of medical resources for healthcare adminis-

trators [7]. Effective and accurate prediction tools to forecast demand, predict con-

gestion level, queue-lengths, real-time delays and lengths of stay have been devel-

oped to manage patient flow and improve patient service levels [8]–[11]. In this 

work, we present a method for generating real-time predictions of wait times for 

complex queueing systems for which analytical approaches are likely to be intrac-

table. These typically include queueing systems whose queue disciplines are not 

among those commonly encountered, such as first-come first-served, last in first 

out, and so on. In such systems, data-driven approaches are often used. For example, 

queue log data recording the state of the system at or near the point in time when 
each arrival occurs is used to train statistical and/or machine learning (ML) models 

for predicting the delay. However, in many queueing systems, such queue log data 

is either not available or difficult to record. Our approach is suitable for such sys-

tems, and its development was motivated by our experience in predicting real-time 

delays for patients seeking admission to a neurosurgery ward in a large tertiary care 

hospital where such data was not available [12].  

Our approach is hybrid: we use a combination of discrete-event simulation (DES) 

and ML to generate these predictions. This approach first involves developing a 

validated DES of the queueing system under consideration, and then generating data 

capturing the state of the system at the point in time at which a service-seeking 

entity arrives in the system along with its delay prior to starting service. Such system 
state data can involve, for example, the number of entities already in the queue and 

the elapsed service time of the entity currently receiving service. This data is then 

used to train an ML model for generating real-time estimates of delay for each new 

arriving service-seeking entity.  
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In the realm of hybrid simulation (HS) and hybrid modeling (HM) literature, the 
above approach aligns with the HM paradigm. HS primarily centers on the inte-

grated use of methods originating within the modeling and simulation domain, in-

volving the simultaneous application of various simulation techniques to represent 

the system more effectively under examination. In contrast, HM is concerned with 

the integration of simulation methodologies (including DES, system dynamics, 

agent-based simulation, or HS) with other modeling and optimization techniques 

derived from the broader fields of operations research and management sciences. In 

other words, HM serves as an extension of HS, enhancing its capabilities ([13], [14], 

[15], [16]). The healthcare industry is experiencing a growing trend of employing 

hybrid models, driven by their ability to effectively depict complex service systems. 

To demonstrate our HM approach, we consider a case study in the Indian context 
involving real-time delay prediction for end-stage renal disease (ESRD) patients 

registering on a kidney transplantation waitlist. We first predict whether patients 

registering on the waitlist will receive a transplant or not. If they are predicted to 

receive a transplant, we then predict the wait time before the organ is allocated. This 

approach can be used by both patients as well as medical care providers (in case 

doctors deem it appropriate to not disclose this information to patients) in their de-

cision-making regarding seeking care at the queueing system under consideration. 

For instance, if a patient is predicted to not receive an organ, they may immediately 

start exploring options for receiving a kidney from a living donor. For those pre-

dicted to receive an organ, they can discuss plans for continuing dialysis for the 

foreseeable future. For such patients, having an estimate of the actual wait time (the 

regression problem) will be useful. Finally, the wait times for many patients are in 
the order of months, and both types of predictions are likely to be particularly useful 

for such patients. 

Overall, the HM real-time delay prediction approach that we propose is suitable 

in the context of complex queuing systems where the queue log data often lacks the 

granularity required to generate accurate real-time delay predictions. The patient 

waitlisting and kidney allocation system that we model is such a queueing system. 

Further, the proposed hybrid approach is advantageous in comparison to real-time 

simulation for generating real-time delay predictions especially in terms of speed of 

generation of the delay prediction. The proposed approach requires a single function 

evaluation, whereas the real-time simulation may need to be executed multiple 

times to generate the average real-time delay prediction. Note that in both cases – 
the proposed hybrid approach as well as the real-time simulation case, the simula-

tion driving the delay prediction would have to be reprogrammed if the queuing 

system configuration changes.  

The remainder of the chapter is organized as follows. In Section 2, we provide a 

more detailed introduction to the concept of real-time delay prediction and discuss 

the related literature. In Section 3, we briefly describe the kidney allocation process 

and discuss the development of the simulation, including input parameter estima-

tion. We later illustrate the use of the validated simulation model of the waitlist 

registration and kidney allocation process to generate real-time delay predictions 

for ESRD patients. We make concluding remarks in Section 4 wherein we summa-

rize this work, describe its advantages and limitations, and discuss avenues of future 

research. 
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2. Background and Literature Review 

2.1 Real-Time Delay Prediction: Overview and Proposed Approach 

Real-time delay prediction involves providing each entity with an estimate of their 

expected wait time - at the point in time at which they arrive at the queueing system 

- until the start of the service [17]. These estimates may be generated by either: (a) 

analyzing the delay history data for previous arrivals to the queue; (b) utilizing the 

system state information to develop closed-form expressions for mathematically 

tractable queuing systems (where possible); (c) using queue log data where such 

data is available to train statistical/ML models; (d) or, as proposed here, using vali-

dated simulation models of the queueing system in question to generate system state 

data for training statistical/ML delay prediction models. To illustrate the concept of 

real-time delay prediction, we take the example of the simple 𝑀/𝐺/1 queuing sys-

tem with a generally distributed service time. The real-time delay is estimated by 

the expression below [18].  

 

                   𝑃(𝑇 ≤ 𝑡 | 𝑥) =  
𝑃(𝑥 ≤ 𝑋 ≤ 𝑡+𝑥)

𝑃(𝑋 ≥ 𝑥)
⇒ 𝐺(𝑡|𝑥) =  

𝐺(𝑡+𝑥)− 𝐺(𝑥) 

1− 𝐺(𝑥)
                     (1) 

 

In Eq. (1),  𝑇 is the random variable representing the remaining service time of 

the entity currently in service given the elapsed service time 𝑥; that is, it is the delay 

assuming no other entities are in the queue, and 𝑡 is a realisation of 𝑇. 𝑋 is the 

random variable representing the service time itself and 𝐺(𝑥) represents its cumu-

lative distribution function (𝑐𝑑𝑓).  Now the expected remaining service time given 

an elapsed service time of 𝑥 can be found as the expected value of 𝑇, given by:       

         

                                      𝐸[𝑇] = ∫ 𝑡 𝑔(𝑡|𝑥) 𝑑𝑡
 

𝑆𝑇
                                                  (2) 

In Eq. (2), 𝑆𝑇  represents the support of 𝑇. Once 𝐸[𝑇], referred to henceforth as 

𝑤 for economy of notation, is estimated, then the real-time predicted delay for the 

arriving entity, denoted by 𝑑, can be found as follows: 

 

                                            𝑑 = 𝑤 +  𝐿𝑞𝐸[𝑠]                                                   (3) 

 

In Eq. (3), 𝐿𝑞 represents the length of the queue at the time the delay prediction 

is generated, and 𝐸[𝑠] is the expected value of the service time random variable 𝑋. 

As an example, for uniformly distributed service times with parameters 𝑈(𝑎, 𝑏), 𝑤 

can be estimated as follows: 

                                   𝑤 =  ∫ (
1

𝑏−𝑥
)

𝑏−𝑥

0
𝑡 𝑑𝑡 =  

𝑏−𝑥

2
                                                      (4) 
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Depending upon the functional form of 𝐺(𝑥) in Eq. (1), the computation of 𝑤 

may be straightforward or tedious. For example, computing 𝑤 for the triangular 

distribution requires working with its piecewise 𝑐𝑑𝑓, and for the Gaussian distribu-

tion, one has to work with integrals of the Gaussian error function, which require 

numerical evaluation. Fatma & Ramamohan [8] propose an approximate real-time 

delay predictor that is agnostic to the specific service time distribution as long as it 

is symmetric and unimodal, while still using the distributional information of the 

service time. This predictor is given below in Eq. (5). 

 

                 𝑤 =  {

𝐺−1(0.5) − 𝑥,                 0 ≤ 𝑥 <  𝐺−1(0.5) 

𝐺−1(0.75) − 𝑥, 𝐺−1(0.5)  ≤ 𝑥 <  𝐺−1(0.75)
𝐺−1(𝑒𝑥𝑡)−𝑥

2
, 𝐺−1(0.75)  ≤ 𝑥 ≤  𝐺−1(𝑒𝑥𝑡)

                           (5) 

 

In Eq. (5), 𝐺−1 represents the quantile function of the service time and 𝐺−1(𝑒𝑥𝑡) 

represents an extreme right quantile. The logic underlying the development of the 

above predictor and the exact expressions of 𝑤 for few symmetric and unimodal 

service time distributions can be understood from [8]. We also refer readers to Table 

5 in [8] to learn about the wide variety of other queuing systems for which analytical 

expressions for real-time delays have been developed.  

Developing analytical expressions for real-time delay prediction can become 

challenging for complex queueing systems where queue disciplines are complex 

(for example, if it is not FCFS or LIFO), or significant non-stationarity is present in 

multiple queueing aspects – for example, if balking and/or reneging behavior in 

addition to arrival/service processes are non-stationary. For such systems, queue log 

data, if available, may be used to train statistical/ML methods for predicting delays. 

However, in cases where queue log or system state data is not available or not cap-

tured in a manner suitable for training statistical/ML methods, the hybrid approach 

that we propose in this chapter may be used. This requires the development of a 

simulation of the queueing system in question, validating the simulation, and then 

using the validated simulation to generate system state data for each arriving entity 

at the time of its arrival. This system state data, along with the actual delay infor-

mation of the service-seeking entities for which the data has been generated, is used 

to train statistical/ML methods for the purpose of real-time delay prediction. An 

example of such a queueing system can be found in Baldwa et al. [12], where the 

multi-class queueing system represented by the admission, surgery and recovery 

stay processes at the neurosurgery ward in a large public tertiary care hospital uses 

an algorithm based on patient severity to determine admission to the neurosurgery 

ward. Real-time delay prediction for this queueing system was accomplished by 

first simulating the admission and the patient stay processes at the neurosurgery 

ward. Then, the validated simulation was used to generate data to train ML algo-

rithms to predict whether the patient will be admitted or not as a function of the state 

of the simulation at the time the patient arrives seeking admission to the ward.  

The key steps involved in generating real-time delay predictions using our pro-

posed hybrid simulation and machine learning technique are given below. 
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1. Develop a DES of the queueing system under consideration. 

2. Use the DES in steady state to record for each of, say, 𝑀 entities (e.g., the 𝑘𝑡ℎ 

entity) the following information: 

– The state of the simulation at the time the 𝑘th entity arrives in the system 

(denoted by 𝑆𝑘). 

– If there exists a prespecified threshold wait time 𝑇𝑘  prior to which entity 𝑘 

must receive service before it exits the queue (i.e., a form of reneging, which 

is common for most healthcare service systems where the patient’s condition 

may deteriorate), record whether the said entity receives service within 𝑇𝑘  as 

a binary variable 𝑉𝑘  (𝑉𝑘 = 1 if service is received prior to 𝑇𝑘  and 0 other-

wise). 

– For entities receiving service prior to 𝑇𝑘  (where applicable), record the wait 

time 𝑤𝑘 before the start of their service. 

– For queueing systems where the reneging threshold 𝑇𝑘  is not applicable, rec-

ord 𝑤𝑘 for every service-seeking entity 𝑘. 

3. Construct training sets (𝑆, 𝑉) and/or (𝑆𝑤 , 𝑤) (note that 𝑆𝑤 ⊆ 𝑆) as applicable 

using the data recorded for all 𝑀 entities. 

4. Train and validate ML methods 𝑓 and 𝑓𝑤   on (𝑆, 𝑉) and (𝑆𝑤 , 𝑤), respectively. 

5. For each new service-seeking entity 𝑘(𝑛𝑒𝑤), record 𝑆𝑘(𝑛𝑒𝑤) at the time of its 

arrival to the queueing system and predict 𝑉̂𝑘(𝑛𝑒𝑤) as 𝑓(𝑆𝑘(𝑛𝑒𝑤)). If 𝑉̂𝑘(𝑛𝑒𝑤) =

1, then predict 𝑤𝑘(𝑛𝑒𝑤) as  𝑓𝑤(𝑆𝑘(𝑛𝑒𝑤)). 

In the above procedure, it is assumed that if an entity does not receive treatment 

prior to 𝑇𝑘 , they exit the queueing system (i.e., renege or leave the queue). In the 

context of the kidney transplantation system modelled in this study, this implies that 
the patient dies, or their condition deteriorates to the extent that they become ineli-

gible for a transplant.  

Recording the system state data 𝑆 for each service-seeking entity precisely at the 

time of its arrival to the queueing system may be possible if a sufficiently compre-

hensive information technology infrastructure is available to capture the required 

data. For example, in the neurosurgery ward case mentioned above, which had a 

large number of servers (beds in the ward), key system state variables involved the 

duration of occupancy of each bed at the time a new patient arrived at the ward 

seeking admission. This information is likely already tracked by the billing system 

(using the time of admission for each patient currently occupying a bed), and hence 

can be leveraged in the deployment (if not development) of the above approach.  
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2.2 Literature Review 

We now provide an overview of the literature around real-time delay prediction, 

beginning with a very brief discussion of the use of DES in modeling healthcare 

delivery. Subsequently, we briefly discuss HM literature.  

DES is one of the most commonly used methods for modeling healthcare delivery 

operations across the world, and we refer readers to [19] and [20] for a comprehen-
sive discussion of the relevant literature. Specifically, since we use the DES of a 

kidney transplantation system to illustrate our approach, we refer to [21]–[23] for 

examples of the application of simulation and operations research methods to ana-

lyze and optimize different aspects of organ transplantation systems and allocation 

policies systems in multiple countries.  

Researchers investigated delays using queueing theory, game theory and data-

driven approaches at call centres, airports, construction sites, retail industries, 

healthcare facilities, and others [24]–[29]. Primarily, two types of approaches have 

been adopted: (a) analytical approaches grounded in queueing theory, and (b) data-

driven statistical learning approaches that are trained on queue log data [17]. With 

regard to queueing theoretic approaches, most studies focused on developing sys-
tem state and/or delay history-based predictors for queuing systems ranging from 

𝑀/𝐺/1 to 𝑀(𝑡)/𝐺𝐼/𝑠(𝑡) + 𝐺𝐼 systems. System state-based predictors estimated 

real-time delays using queue length, elapsed service time, number of servers, or the 

quantiles of the service time distribution. One of the earliest studies on the applica-

tion of system state-based delay estimation was conducted by Whitt in 1999 [18], 

where customers were communicated information on expected delays in single and 

multiserver queues. Additionally, information about various other system parame-

ters such as the arrival rate, the abandonment rate, and the number of servers were 

considered by Whitt in [30]. Nakibly studied ways to predict waiting times based 

on information about the system state upon arrival mainly for queueing models with 

priority [31]. Fatma & Ramamohan ([8], [32]) developed novel approximate system 
state-based delay predictors for simple queueing systems with symmetric and uni-

modal service time distributions and used the predictions for diverting patients in a 

healthcare facility network. Delay history information such as the delay of the last 

entity to receive service, wait-time elapsed at the head of the line, etc. were dis-

cussed in [33]–[35]. Ibrahim & Whitt [36]–[38] highlighted the better performance 

of queue length-based system state delay prediction methods over the delay history-

based estimators in simple and complex queueing systems.  

The limitations of queueing-theoretic analyses such as assumptions that are often 

used to make the analysis mathematically tractable led to recent interest in data-

driven methods such as ML algorithms and data mining techniques for complex 

queuing systems [26], [29], [39], [40]. ML-based predictors, which consist of clas-
sification and regression methods trained on queue log data, were discussed in 

Senderovich et al. and Thiongane et al., respectively [41], [42]. Ang et al. [43] and 

Arora et al. [29] combined process mining and queueing-theoretic results for pre-

dicting waiting times in the emergency departments (EDs) of the healthcare facili-

ties. Baldwa et al. [12] proposed a hybrid simulation and machine learning method 
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for real-time delay prediction where adequate queue log data for training a predictor 
is not maintained. Further, robust ML based prediction models were developed for 

predicting real-time lengths of stay of patients, which is a metric of quality, effi-

ciency, and hospital performance [44], [45]. The effectiveness of predictors was 

quantified using mean absolute deviation, mean absolute percentage error score, and 

other metrics via computer simulation models. 

With respect to the HM literature, Harper and Mustafee [46] demonstrated the 

applicability of an HM approach involving DES and time-series forecasting in a 

real-life setting to support short-term decision making in an urgent care network. 

Similarly, other studies, such as those by Ordu et al. [47] and He et al. [48] devel-

oped hybrid frameworks that incorporated DES, system dynamics, and optimization 

techniques like integer programming to address both the operational (short-term) 

and strategic (long-term) objectives of healthcare facilities. However, for delay pre-

diction, except for the study by Baldwa and colleagues [12], there has been limited 

exploration of hybrid methods.  

The majority of the empirical work on delay prediction involved using historical 

data regarding the queuing system under consideration and training statistical/ML 

predictors using this data. However, in situations where such data is not available, 

or sufficient information regarding system state data required for training an accu-

rate prediction is not maintained in the queuing system logs, the data may be gen-

erated from a DES model of the system. From our review of the literature, only one 
previous study [12] has incorporated DES with ML for real-time delay prediction. 

This is summarized in Table 1. An example of such a system is the kidney trans-

plantation system that we consider as a case study to illustrate our proposed ap-

proach. In this chapter, we build upon the work by Baldwa et al. [12], which to our 

knowledge is the only study that uses a DES of the queueing system under consid-

eration for generating the system state data for training data driven predictors. How-

ever, unlike their approach, we do not use predetermined reneging thresholds for 

service-seeking entities (patients); we instead use patient-specific ‘personalized’ re-

neging thresholds that are based on patient characteristics. Our approach may be 

used by healthcare providers to help advise ESRD patients on the best course of 

action from the standpoint of obtaining a kidney transplant.  

Finally, our approach resembles metamodeling methods to some extent. A meta-

model 𝑓 has an explicit form, deterministic output, and once fitted, is computation-

ally inexpensive to evaluate  as they serve as proxies for evaluation, thereby replac-

ing the need for conducting computationally expensive and stochastic simulation 

runs [49]. A relevant study by Fatma et al. [50] explored the use of stochastic met-

amodels in developing primary healthcare delivery network systems, resulting in 

reduced execution times while maintaining comparable results. In this work, similar 

to metamodeling, we use DES to generate a dataset for training classifiers and re-

gressors. However, in the case of metamodeling, the system simulation (e.g., a DES) 

is executed multiple times with different sets of input parameters, while we generate 

a dataset only once with a single set of input parameters for training the delay pre-

dictors. 
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Table 1. Studies utilizing machine learning algorithms and simulation methods for real-time de-

lay prediction.  

Study Problem description Methodology Predictor variables 

Baldwa et al. 

[12] 

Prediction of 

whether a patient 

seeking admission  

receives admission 

within a prespeci-

fied duration 

Simulation, ML 

(ensemble 

bagged trees, 

gradient 

boosted 

trees, neural 

network, deci-

sion tree) 

Patient type, waitlist-

related features and 

operational system 

state features such as 

number of empty 

beds  

Balakrishna 

et al. [51] 

Estimation of aver-

age taxi-out times at 

airport 

 

Stochastic dy-

namic program-

ming with rein-

forcement 

learning 

Features describing 

the airport and run-

way state  

Arora et al. 

[29] 

Estimation of proba-

bility distribution of 

individual patient 

wait times 

Quantile regres-

sion using deci-

sion trees 

Calendar effects, de-

mographics, staff 

count, ED workload, 

severity of patient 

condition 

Ang et al. 

[43] 

Wait time prediction Data mining, 

queuing theory 

(Q-Lasso tech-

nique) 

Patient visit data, 

mode of arrival, tri-

age level 

Senderovich 

et al. [39] 

Delay prediction for 

single class setting 

(homogeneous cus-

tomers) and multi-

class setting (differ-

ent class of custom-

ers) 

Queue mining,  

regression-

based predic-

tors  

Time of event occur-
rence, instance of ser-

vice process, service 

transition, customer 

class  

 

 

Arik et al. 

[40] 

Prediction of the 

time to meet with 

the first provider at 

hospital 

Supervised 

learning (con-

gestion graphs 

of two types- 

heavy traffic 

approximations 

of congested 

systems, Mar-

kovian state 

representation 

of queues) 

Clinical state of pa-

tients and conges-

tion-related features  
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Chocron et 

al. [52] 

Prediction of the 

wait time for service 

at the time of arrival  

ML models,  

queueing theory 

Arrival-related fea-

tures, service-related 

features, queue-re-

lated features, short-

term history-related 

features 

 

3. Case Study 

We discuss a case study through which we illustrate our HM approach for real-time 

delay prediction. The case study involves predicting whether a patient registering 

on the kidney transplant waitlist – at the time of registration on the waitlist - will 

receive a kidney transplant or not, and if predicted to receive a transplant, then their 

wait time to allocation of a kidney is also estimated.  

3.1 Kidney Transplantation System: Problem Introduction 

Large urban public tertiary care hospitals in India typically face significantly more 

demand than their available capacity. Kidney transplantation is the most effective 

long-term treatment option for ESRD patients undergoing maintenance dialysis. 

The substantial shortage of donated kidneys in India causes an increasingly long 

waitlist of ESRD patients awaiting a transplant.  According to the Indian Ministry 

of Health, the number of Indian ESRD patients who need kidney transplants range 

between 200,000 – 300,000, with only 6,000 donors available [53]. A kidney patient 

who gets on the state government's waiting list typically waits for at least four years 

to get a cadaveric donor transplant, thereby aggravating uncertainties among pa-

tients regarding whether they will receive a transplant before their health deterio-

rates to a critical level [54]. A first step towards alleviating the uncertainty is to 

provide ESRD patients and/or their medical care providers with information regard-

ing whether they will receive a transplant or not - at the time of their registration on 

the kidney transplantation waitlist - and if the patient is predicted to receive a trans-

plant, the wait time of the candidate before receiving the transplant. This will help 

patients and/or their medical care providers make an informed decision about 

whether they should wait or seek treatment elsewhere (e.g., seek living donors). We 

list the specific objectives associated with the case study below.  
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1.    Development of a DES of the patient arrival and registration, organ arrival and 
organ allocation processes. 

2.    Classification of waitlisted patients to predict whether they will receive a trans-

plant within a ‘personalized’ patient characteristic based duration. 

3.    Regression to estimate the time to allocation of an organ for patients predicted 

to receive a transplant. 

 

We use publicly available domestic data based on real-world reports from kidney 

transplantation organizations in Indian states, namely Rajasthan, Kerala and Tamil 

Nadu, for developing and parameterizing the DES of the kidney transplantation sys-

tem in the South Indian state of Kerala. We now describe the development of this 

DES, beginning with a description of the cadaveric donor kidney allocation process. 
We note here that considering kidney transplantation from living donors is beyond 

the scope of this work. 

3.2 Patient Registration, Organ Arrival and Organ Allocation 

Process Simulation Development 

The allocation of cadaveric kidneys to transplant candidates is a complex process 

determined by a variety of organ and patient characteristics, including time spent 

on the waitlist. As per kidney allocation guidelines published by the Indian govern-

ment’s National Organ and Tissue Transplantation Organization (NOTTO) [55], 

ESRD patients eligible for registering on the waitlist must be aged less than 75 years 

at the time of registration, must have undergone regular maintenance dialysis for at 

least three months, and must be registered in a single approved transplantation cen-

tre. Upon registration in a transplantation centre, the patient is assigned a kidney 

allocation priority (KAP) score after registering in the respective state and district 

waitlists that determine the position of the patient on the transplantation waitlist. 

The KAP score is computed based on a scoring algorithm provided in NOTTO’s 

kidney allocation guidelines [55]. If a cadaveric kidney is retrieved in a government 

hospital, then patients registered in the government transplant centres within the 

state are given higher priority for allocation and patients registered in private hos-

pitals are considered for allocation only if a suitable recipient is not found on the 

government hospital waitlist. The same recipient selection process is followed if the 

kidney is retrieved from the deceased donor in a private hospital, but in reverse 

order. Therefore, whether the patient is registered with a government or a private 

hospital affects their probability of transplant. 

Further, patients registered in transplant centres within the district where the or-

gan was retrieved are given higher priority. In other words, organs are first consid-

ered for allocation to patients registered in the same district where the organ is re-

trieved, and patients registered in other districts in the state are considered for 

allocation only if a suitable recipient is not found in the district of retrieval.  
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In the event that the kidney is retrieved from a donor aged less than 18 years, 

then patients aged less than 18 years are first considered for allocation. Finally, for 

each ‘subwaitlist’ (i.e., district and then state waitlist), donor/recipient matching is 

done on the basis of the blood groups of the donor and the patients. A blood group 

O (universal donor) kidney is first matched to a recipient with group O, then to the 

other compatible blood groups - first, it is allocated to group A, then to group B, 

and finally to a blood group AB (universal recipient) patient. Group A or B kidneys 

are allocated to patients with the same blood groups; else it is allocated to a group 

AB patient. An AB group kidney is only allocated to an AB patient. More details 

regarding the kidney allocation process, including an algorithmic representation of 

the above process, can be found in Shoaib et al. [56]. 

The advancement of the DES of the kidney allocation process is dependent on 
three principal events: patient arrival, removal of patients due to death, and organ 

arrival. Organ arrival drives removal of patients via organ allocation and transplan-

tation. The mechanisms that determine the removal of patients are as follows: either 

the patient receives a transplant, or the patient dies, implying that we do not consider 

baulking in our model. We represent districts in each state by their district head-

quarters, and hence travel times between districts (for calculating organ transport 

times) are also calculated between the district headquarters. We now describe the 

estimation of two primary types of model parameters: (a) those related to patients, 

and (b) those related to organs. 

3.2.1 Patient-related parameters  

The patient’s position on the waitlist (district as well as state, government as well 

as private ‘subwaitlists’) are determined by the KAP score. Thus, a key set of pa-
rameters that need to be estimated with respect to patient characteristics are those 

that constitute the KAP score. These parameters include the following:  

1. Time spent on dialysis; 

2. Whether the patient has had a previous immunological graft failure, and if 

so, the number of such failures; 

3. Age of the recipient; 

4. Patient with all failed arteriovenous (AV) fistula) sites; 

5. Patient with failed AV graft after all failed AV fistula sites; 

6. Panel reactive antibody level; 

7. Whether the patient under consideration has previously donated a kidney 

or not. 

The time spent on dialysis, which is a key driver of the KAP score, is estimated 
from the data available for this parameter from the waitlist data for the state of Ra-

jasthan, because similar data was not available on the waitlist for Kerala. Because 

this is a clinical parameter, its distribution is assumed to not change substantially 

across states in India. The exponential distribution was found to fit the time on di-

alysis data best under a 𝜒-squared goodness of fit test, with a 𝑝-value of 0.581. 

Parameter 7 was not considered in our analysis since it was highly unlikely to en-

counter a patient with this characteristic in the kidney transplantation process, based 
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on discussions with clinicians involved in organ transplantation. Other parameters 
- i.e., parameters 2 through 6 – were estimated from the clinical literature, and the 

sources, along with the parameter estimates are given in Table 1 below. The patient 

interarrival time was estimated from the patient waitlist data available on the state 

organ transplantation authority website (Kerala Network for Organ Sharing 

(KNOS), [57]). The interarrival time was found to follow the exponential distribu-

tion with a mean of 1.382 days, which was estimated by applying the 𝜒-squared 

goodness of fit test on the KNOS waitlist data, using information regarding the date 

of patient registration. Patient blood group data was estimated from waitlist data 

available on the neighboring Tamil Nadu state organ transplantation authority web-

site (TNOS, the Tamil Nadu Network for Organ Sharing) [58]. Indian census data 

was used to assign the district in which a newly arriving patient was registered, and 
the transplant centre of registration was also assigned based on the transplant hos-

pital set available in the KNOS dataset.  

A critical patient parameter in this context is the patient removal time due to death, 

occurring due to unavailability of a cadaveric kidney. We used survival data of 

ESRD patients from the clinical literature [56] and the KAP score computation pro-

cess to estimate this parameter. This computation process is described below.  

 

Algorithm: computation of patient removal time due to death 

• Input: KAP score data of a waitlisted patient 

• Output: Removal time of the patient under consideration 

 

1.    Generate a large sample of KAP scores by generating multiple random real-

izations of the KAP score components and combining them according to the 

KAP score computation algorithm given in the NOTTO kidney allocation 

guidelines.  

2. Find the distribution that best fits this sample. This was determined to be a 

beta distribution with 𝛼 = 0.89; 𝛽 = 33.99 (best fit out of alternatives). 

3. For each new patient registering on the waitlist, using the distribution of the 

KAP score estimated using steps 1 and 2, do the following: 

3.1 Compute the patient’s KAP score based on their randomly assigned 

KAP score component values. 

3.2 Find the percentile of the KAP score for a given patient from its distri-

bution estimated in Steps 1 and 2. Let this percentile be 𝑥. 

3.3 A patient in the 𝑥𝑡ℎ percentile of KAP scores is likely to be in the 

(100 − 𝑥)𝑡ℎ percentile of removal times. Thus, the patient’s removal 

time percentile = 100 − 𝑥. 
4. Estimate the mean removal time 𝜇𝑟𝑡  of the patient by determining the 

(100 − 𝑥)𝑡ℎ quantile of the removal time distribution, which we assume to 

a beta distribution with limits 𝑎 = 3 months and 𝑏 = 67 months and mean 

= 40.31 months, yielding 𝛼 = 4.38 and 𝛽 = 3.51 for this distribution. The 

removal time distribution was estimated based on the mean and standard 

deviation of the mean survival time of patients on hemodialysis as reported 
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in Lakshminarayana et al. [59] (40.31 months and 26.69  months, respec-

tively).   

5. Using this estimate of the mean removal time, define another beta distribu-

tion with limits 𝑎 = 0.67 × 𝜇𝑟𝑡  and 𝑏 = 1.33 × 𝜇𝑟𝑡 . 𝛼 and 𝛽 for this beta 

distribution were estimated via the beta-PERT three point estimation proce-

dure. This was done in order to avoid making the removal time a determin-

istic function of the KAP score. 

6. The assigned removal time value for the patient is a random sample from 

the beta distribution for the removal time estimated in Step 5. 

3.2.2 Organ-related parameters 

All organ-related parameters were estimated using data pertaining to kidney trans-

plantation alone. Key organ-related parameters involve the interarrival time of kid-

neys, the district in which the organ originates, the deceased donor’s blood group, 

and the number of kidneys retrieved from an organ (i.e., 1 or 2). With regard to the 

organ interarrival time, a parameter critical to the analysis, precise data regarding 

the dates of arrivals of organs were not publicly available on the organ-sharing web-

sites. Hence, we estimated the parameters of the interarrival times of the kidneys 

from deceased donors using the published annual aggregate organ donation data 

after assuming it to be exponentially distributed. According to the aggregate organ 

donation data published on the KNOS website [57] , the number of organs donated 

in the years 2016, 2017, and 2018 were 113, 34, and 14 respectively, and hence the 

mean interarrival time in days was estimated as 365 divided by the average of the 

number of organs arriving in those three years (this average amounts to approxi-

mately 33 kidneys being donated every year). Thus, the estimate of the mean inter-

arrival time, assuming an exponential distribution, was 11.17 days per organ. We 

estimated the other organ related parameters, such as the donor blood group and 

age, which are required to determine the kidney allocation, according to the propor-

tions of various blood groups and age ranges in the population of the entire state. 

We estimated the probabilities of retrieving a kidney in a public or private hospital 

in a given district based on the proportion of each type of hospital in each district. 

We list all the patient-related and the organ-related parameters, along with their 

distributions and estimates and corresponding sources in Table 2.  

 

Table 2. Patient and organ related parameters.  

Parameter Distribution Estimate Source 

Patient related parameters 

Patient interarrival time Exponential Mean = 1.382 days [57] 

District origin (14 dis-

tricts in the state of Ker-

ala) 

Discrete P(0)=0.128, P(1)=0.096, 

P(2)=0.023, P(3)=0.041, 

P(4)=0.018, P(5)=0.100, 

P(6)=0.055, P(7)=0.064, 

[57] 
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P(8)=0.091, P(9)=0.050, 

P(10)=0.055, P(11)=0.164, 

P(12)=0.091, P(13)=0.013 

Age Gaussian µ = 49.74;  𝜎 = 7.423 [57] 

Blood group Discrete O=0.458, A=0.238, 

B=0.224, AB=0.079 

[58]  

 

Time on dialysis Exponential Mean = 260.3 days [57] 

Removal time Beta µ = 40.31;  𝜎 = 26.69 

Random sampling (beta) 

𝛼 = 0.66 ∗ µ; 𝛽 = 1.33 ∗ µ 

[59] 

PRA level Discrete P(PRA level=0) = 0.65, 

P(1-20)= 0.05; P(21-79) = 

0.136, P(80-100) = 0.158 

[60] 

 

Probability of  a previ-

ous immunological 

graft failure within 3 

months of transplant 

With failed all AV Fis-

tula sites 

With failed AV Graft 

after failed AVF sites 

 

 

 

Discrete 

 

Discrete 

 

Discrete 

 

 

 

P(yes)=0.020, P(no)=0.980 

 

P(yes)=0.052, P(no)=0.948 

 

P(yes)=0.031, P(no)=0.968 

 

 

 

[61] 

 

[62] 

 

[62] 

Organ-related parameters 

Donor interarrival time Exponential Mean = 11.17 days/organ [63] 

Donor blood group Discrete P(AB)=0.069, P(A)=0.192, 

P(B)=0.254, P(O)=0.485 

[58]  

 

District in which organ 

originates 

Discrete P(0)=0.067, P(1)=0.098, 

P(2)=0.033,      P(3)=0.075, 

P(4)=0.039, P(5)=0.078, 

P(6)=0.059,      P(7)=0.092,  

P(8)=0.123, P(9)=0.084, 

P(10)=0.035,   P(11)=0.099,  

P(12)=0.093,   P(13)=0.024 

[64] 

 

Number of kidneys re-

trieved from an organ 

Discrete P(1) = 0.777; P(2) = 0.223 [63] 

µ: 𝑚𝑒𝑎𝑛;  𝜎: standard deviation; PRA: panel reactive antibody, a screening test to identify the 

immunological sensitization of a transplant recipient for estimating likelihood of finding a com-

patible donor. 
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3.3 Simulation Model Outcomes 

Using the parameters reported in Table 1 and the kidney allocation process de-

scribed earlier, we programmed the simulation on the Python computing platform. 

We ran the simulation on a workstation with an Intel i7 10th generation processor 

system with 16 gigabytes of memory. We used a warm-up period of 12 years of 

simulation time before collecting the results over a period of 18 years. We per-

formed 20 replications for collecting and reporting the results. The length of the 

warm-up period was determined by observing when the average simulation out-

comes became stable. A data collection period spanning 18 years was selected as it 

provided enough time to calculate all the outcomes to the necessary precision. The 

decision to use 20 replications was influenced by the observation that the variances 

of the outcomes changed minimally when the number of replications were increased 

beyond 15. These choices were also influenced by the availability of computational 

resources. The key outputs collected from the simulation include (for all patients, 

by blood group and by the type of hospital (government or private) in which the 

patient is registered): (a) the probability of receiving a kidney transplant; (b) the 

average wait time to allocation for those who received an organ; (c) the average 

number of deaths; and (d) the average number of allocated organs.  

  The probability of receiving a transplant, which is possibly the most critical output 

from a patient and provider standpoint, was estimated as follows. For a set of pa-

tients who register in a given year (the registration year), we record the proportion 

of those patients who receive a transplant over the next year, the second year after 

the registration year, and so on for a period of five years. We then average these 

probabilities for patients registering every year after the warm-up period to obtain 

the within replication estimate of the average probability of receiving a transplant 

within 1 year, 2 years, and so on up to 5 years. The across replication average values 

of these probabilities are then calculated by averaging the within replication average 

probability estimates. These probabilities are depicted in Figures 1a and 1b.    
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Figure 1a. Year-wise probabilities of             Figure 1b. Year-wise probabilities of 

receiving a transplant for all patients and         receiving a transplant by patient blood 

by the type of hospital where they are            group. 

registered. 

   

  From Figure 1a, the 5-year probability of receiving a transplant, which is negligi-

bly different from the overall probability of receiving a transplant (before death 

from ESRD) is approximately 21%. It is also evident that patients with blood group 

AB and blood group B are the most likely to receive a transplant, with 5-year prob-

abilities exceeding 25% (nearly 40% for blood group AB). Patients with blood 

group AB have the highest transplant probabilities because they are universal recip-

ients. Patients with blood group O have the lowest probability of transplant likely 

because of the large volume of patients on the waitlist compared to the lower num-

ber of organs of the blood group being donated. This low likelihood reflects the 

disparity between the organ (including kidneys) donation rate and the number of 

patients needing transplants. Further, patients registered in a private hospital are 

significantly less likely to receive a transplant than those registered in a government 

hospital. This reflects the interaction between the number of government transplant 

centres versus the number of private transplant centres and the number of govern-

ment organ retrieval centres versus the number of private retrieval centres.  

  We report the other outcomes collected from the simulation model in Table 3. Av-

erage organ transport time is defined as the average time required to transport an 

organ from the organ retrieval location to a transplant centre where the recipient is 

registered. The average time to transplant was calculated only for patients who re-

ceived a transplant during the post warm-up (steady state simulation) period. We 

calculated the number of deaths by counting those removed from the waitlist with-

out receiving a transplant.  

Based on the results in Table 3, we observe significant variations in the allocation 

based on the patient’s blood group and the hospital type. This supports the outcomes 

in Figure 1b. For example, while patients with blood group O receive the highest 

number of allocations compared to those with other blood groups. However, be-
cause the number of patients with the blood group O is the highest (it is the most 
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common blood group in India), as evident from the highest probability of a patient 
being of blood group O, the probability of receiving a transplant for patients with 

blood group O is the lowest.  

 

Table 3. Simulation outcomes for Kerela.  

Outcomes (year) Average (95% CI) 

Average number of deaths per year 203.81 (1.57) 

Average organs allocated per year 58.31 (1.14) 

Average wait to allocation (hours) 19175.10 (215.43) 

Average time to transportation (minutes) 200.73 (4.21) 

Average number of allocations in government hospitals  24.45 (0.63) 

Average number of allocations in private hospitals 33.68 (0.93) 

Average number of allocations to blood group A patients 14.34 (0.46) 

Blood group AB allocations 8.17 (0.34) 

Blood group B allocations  14.91 (0.49) 

Blood group O allocations 20.72 (0.61) 

Average number of unallocated organs 0.35 (0.09) 

 

  We now discuss validation of the model outcomes prior to describing the process 

of generating real-time delay predictions from the DES. Validation of the DES of 

the kidney transplantation system in Kerala is challenging due to the lack of data 

regarding waitlist and transplantation outcomes for the state, and in general for the 

Indian transplantation system. For example, in our knowledge, no data suitable for 

validating simulation results for outcomes such as time to allocation or the proba-

bility of receiving an organ are available. Since kidney transplantation outcomes 

data was not available for validation, we decided to validate the patient and organ 

arrival outcomes against a portion of the publicly available patient arrival data that 

we reserved for this purpose. We recall here that publicly available waitlist data was 

available for the years 2016-2019, and that we used data from 2016-2018 for calcu-
lating patient arrival rates. A similar approach was followed for organ and donor 

arrivals as well; however, we must recall that organ arrival data was much more 

limited in comparison to patient arrival data. In fact, for 2016-2018, we only had 

access to three values; that is, the number of organs donated and donors arriving in 

each year. Hence, we validated our patient arrival and organ outcomes – i.e., the 

number of patients arriving in one year against the actual values for 2019. We pro-

vide the results of this validation exercise in Table 4 below. 

 

Table 4. Simulation validation outcomes.  

Parameters Actual [57] Simulation (UL, LL) 

Number of patients registered in 2019 264 261.61 (265.90, 257.32) 

Patient in blood group A 82 61.56 (63.71, 59.40) 

Patient in blood group AB 13 21.22 (22.37, 20.08) 

Patient in blood group B 51 59.43 (61.29, 57.56) 

Patient in blood group O 118 119.41 (122.60, 116.22) 

Organ arrived in 2019 32 57.61 (60.45, 54.77) 
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Donor arrived in 2019 [63] 19 32.70 (34.32, 31.09) 

UL is upper limit, LL is lower limit 

 

From the results from the above validation exercise, we can see that the patient 

arrival process is reasonably well represented by our DES. This is particularly the 

case when patients from all blood groups are considered together, and even when 

breaking down arrivals by blood group, we see that for blood groups with larger 

numbers of patients, such as O and B, the simulation outcomes and validation out-

comes are reasonably close. Note that while we report the confidence intervals for 

the simulation outcomes, formal statistical inference based on these CIs and the ac-

tual simulation outcomes may not be advisable because only a single value of the 

actual number of organs is available for each year for each blood group. In other 

words, the actual value is also a realization of a random variable (the number of 

organs arriving in a year), and given the small sample size (3), sufficient data is not 

available to conduct formal inference – for example, a two-sample nonparametric 

test for equality of means.  

We also perform a comparison between the probabilities of allocation from the 

simulation versus an approximate value of this outcome calculated from the organ 

and patient arrival data. The average probability of receiving a transplant calculated 

across years 1 – 5 from the simulation data is approximately 14% (ranging from 7% 

to 21% from 1 to 5 years and taking their average), and the value of this outcome 

from the validation data is approximately 12.2% (obtained by dividing the yearly 

organ arrivals with the patient arrivals). We computed the average probability of 

transplant in this manner because while the information regarding the average num-

ber of patients registering is known, it was unclear when the patients who registered 

in these three years (2016, 2014, 2013) will undergo the transplant. Therefore, we 

took the average of the yearly probabilities to make a comparison between the sim-

ulated data and the actual data. This indicates that our DES of the kidney transplan-

tation system appears to approximate the actual system to an acceptable level.  

 Overall, it is clear that the probability of receiving a transplant, even at 5 years 

on the waitlist, is low. However, it is also clear that there is significant variation 

based on patient and operational characteristics such as blood group and the type of 

transplant hospital where the patient is registered. This motivated us to develop a 

classification model that will predict whether a patient on the waitlist will receive a 

transplant at the time of registration on the waitlist – i.e., real-time delay prediction 

of transplant registration outcomes. We discuss this now.  
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3.4 Real-time Delay prediction for Waitlisted ESRD Patients: 

Classification 

  As described in previous sections, we now use the DES of the ESRD patient reg-

istration, waitlisting, and organ allocation process to generate the dataset required 

to train ML based methods to predict whether a patient will receive an organ at the 

time of their registration on the waitlist. At the point in time at which a patient reg-

isters on the waitlist, we record three types of features for this patient: clinical, op-

erational and waitlist related features. Clinical features primarily include those that 

determine the patient’s KAP score and their blood group, and operational features 

include those features such as the district of registration, the hospital type, the hos-

pital name, and so on. Waitlist related features include the total number of patients 
above the current patient on the waitlist and the numbers of patients of different 

blood groups that are above the current patient on the waitlist. The label for the 

classification exercise was whether the patient received a transplant or not before 

they were removed from the waitlist due to death. Note that data was recorded only 

for patients who were allocated an organ or those who were removed due to death. 

There could be patients still in the model with neither of these outcomes at the end 

of the model time horizon, but the data for such patients are not recorded. For those 

who did receive an organ, we recorded the time to allocation from their time of 

registration. This formed the label for the regression exercise. The feature set con-

sisted of both continuous as well as categorical features, and we list them in Table 

5. 
 

Table 5. Input features for the machine learning models.  

Feature type Features 

Continuous Clinical: age, KAP score, PRA level, time on dialysis,  

Waitlist related: position on waitlist, patients above this patient, 
A patients above, B patients above, O patients above, AB pa-

tients above, total patients on the waitlist, total A patients, total 

B patients, total O patients, total AB patients 

Categorical Operational: district name, hospital name, hospital type  

Clinical: blood group, PRA type, AVG, AVF, PIGF 

AVG: Arteriovenous grafts; AVF: arteriovenous fistula; PIGF: placental growth factor 

 

The training dataset thus consisted of a total of 23 features representing the pa-

tient characteristics and the queueing system state at the time of registration of the 

patient and the classification/regression labels. We split the input data into training 

and test sets with a 75/25 split ratio. The data was scaled – after it was split to 

prevent data leakage – using the MinMaxScaler function of the scikit-learn ML 

package in the Python programming platform. The input dataset consisted of 929 

patients who received an organ out of a total of 3945 patients, which indicated a 

dataset imbalance. Hence we used the Synthetic Minority Oversample Technique 

(SMOTE) to balance the dataset so that it does not negatively impact the accuracies 
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of the classification models [65]. SMOTE is an oversampling technique that al-

lowed us to generate synthetic samples for the label 1 class (minority class, those 

who received an organ) until the number of samples became equal to the majority 

class. Note that SMOTE was applied only on the training dataset and the validation 

(test) dataset was left untouched by the dataset balancing technique. 

We trained several ML methods for the classification exercise such as support 

vector machines, decision tree methods such as bagging and random forest classifi-

ers, and artificial neural networks to find the method that performed best on the 

dataset. Before training the model, we optimized the hyperparameters of each of 

these classifiers via the GridSearch hyperparameter tuning method. For example, 

the gradient boosting classifier implementation contained 100 boosting stages with 

a learning rate of 0.1, while the bagging classifier implementation contained 1000 

estimator trees. We also trained the artificial neural network with 2 hidden layers 

using the adam optimizer with a batch size of 10 [66].  

To measure the performance of the classification models, we used the ROC-AUC 

(Receiver Operator Characteristics- Area Under Curve) and F1 performance 

measures. The ROC is a probability curve that plots the true positive rate against 

the false positive rate at various threshold values. The AUC score, which is used as 

a numerical characterization of the ROC curve, is the measure of the ability of the 

classifier to distinguish between classes. We compute the F1 score instead of using 

the classifier accuracy alone as it calibrates the trade-off between sensitivity and 

specificity at the best-chosen threshold. The F1 score is the harmonic mean of pre-

cision and recall. Precision is the number of correct positive predictions relative to 

total positive predictions, while recall is the ratio of the number of correct positive 

predictions relative to the total number of actual positives. The F1 score provides a 

measure of both the Type I (false-positive) and Type II (false-negative) errors in the 

model. We provide the classification results in Table 6, where the mean and the 

standard deviation of the AUC score of the model along with the precision, recall, 

and F1 scores for both cases where a transplant is received (target = 1) and a trans-

plant is not received (target = 0) are listed. We also show the ROC curve for the 

gradient boosted trees classifier in Figure 2. 

 

Table 6. Classification results for status of transplant. LR = logistic regression. SVM = support 

vector machine. ANN = artificial neural network. 

Mean LR SVM Bagging 

classifier 

Random 

forest 

classifier 

ANN Gradient 

boosted 

trees 

AUC 

score 

0.91 

(0.010) 

0.91 

(0.010) 

0.90 

(0.009) 

0.90 

(0.008) 

0.90 

(0.018) 

0.91 

(0.011) 

Preci-

sion (tar-

get = 0) 

0.97 

(0.007) 

0.97 

(0.006) 

0.96 

(0.007) 

0.96 

(0.005) 

0.97 

(0.018) 

0.96 

(0.007) 

Recall 

(target = 0) 

0.91 

(0.013) 

0.91 

(0.012) 

0.93 

(0.011) 

0.94 

(0.007) 

0.92 

(0.031) 

0.94 

(0.011) 
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F1 score 

(target = 0)  

0.94 

(0.007) 

0.94 

(0.007) 

0.95 

(0.006) 

0.95 

(0.005) 

0.94 

(0.011) 

0.95 

(0.007) 

Preci-

sion (tar-

get = 1) 

0.76 

(0.030) 

0.76 

(0.0280) 

0.80 

(0.028) 

0.82 

(0.021) 

0.77 

(0.063) 

0.81 

(0.030) 

Recall 

(target = 1) 

0.91 

(0.019) 

0.91 

(0.015) 

0.87 

(0.016) 

0.87 

(0.012) 

0.89 

(0.057) 

0.87 

(0.017) 

F1 score 

(target = 1) 

0.83 

(0.018) 

0.83 

(0.018) 

0.83 

(0.016) 

0.84 

(0.013) 

0.82 

(0.021) 

0.84 

(0.019) 

 

  The mean and the standard deviation of the performance measures were generated 

by training and validating each model over 10 random permutations of the dataset. 

From these results, we see that the classifiers, especially the decision tree ensembles 

(bagging and random forest) and gradient boosting techniques, are performing well 

in classifying the data. We achieve over 80% precision for patients receiving a trans-

plant (varied between 76% to 82% for different classifiers) and around 90% recall 

(varied between 87% to 91% for different classifiers), implying around 90% of 

those who receive a transplant are identified correctly.  

 

 
 

 

          Figure 2. ROC curve for gradient boosted tree classifier. 

 

  After generating the above predictions, we performed additional computational 

experiments around generating similar predictions for: (a) whether patients receive 

transplants within 2 years or 5 years (referred to subsequently as the 2-year and 5-

year analyses), and (b) individual patient blood group-based classification. We also 

performed feature selection analyses by estimating the variance inflation factor 

(VIF) of all features and by identifying features with statistically significant associ-

ation with the classification label via logistic regression models trained on the entire 

dataset. We estimated the accuracy metrics for successfully receiving transplants in 

5 years and 2 years for different blood groups.  
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  The results for the 5-year organ transplant status classification were similar in 

comparison to the overall organ transplant status results, reflecting a low chance of 

receiving a transplant in time (before removal) if not received in 5 years. We ob-

served that the precision and recall values for the 2-year analysis crossed 90% while 

the AUC score exceeded 95% for patients receiving an organ. Note that the classi-

fication label for these analyses was determined by whether a patient received an 

organ or not within the period of interest. With regard to the classification exercises 

for datasets with a single blood group, we observed that the AUC score of the blood 

group AB was the highest but with the lowest precision, while blood group O had 

the lowest AUC score with greater precision. This can be attributed to the difference 

in organ and patient arrival rates for the blood groups, which affects the size of the 

training dataset for these blood groups.  

  With regard to the feature selection analysis, we observed that the precision and 
recall values for the 2-year analysis crossed 90% while the AUC score exceeded 

after removing: (a) the age and KAP score features based on the 𝑅2 estimate of the 

classification models, and (b) the age, KAP score, and hospital name, respectively, 

for the VIF and logistic regression feature selection analyses. The former result can 

be attributed to the fact that the KAP score is a function of its components, which 

are also features in the dataset.  

We now discuss the real-time prediction of the time to allocation for patients 

predicted to receive a transplant.  

3.5 Real-time Prediction of Time to Allocation 

In order to predict the time to allocation for patients predicted to receive a transplant, 

we used a subset of the simulation-generated dataset developed for classification, 

obtained by restricting the dataset to only those cases where a transplant was suc-

cessful. We used the time to allocation as the label for the same feature set. Before 

training, we preprocessed and balanced the input data and later conducted hyperpa-

rameter tuning to optimize the hyperparameters, similar to the exercise conducted 

earlier for classification. Once again, we applied several ML methods, including 

standard support vector regressors, decision tree methods such as bagging and ran-

dom forests used as regressors, and artificial neural networks, to find the best per-

forming method. Once a model was trained, we estimated the coefficient of deter-

mination (𝑅2error), root mean squared error (RMSE), and mean absolute percentage 

error (MAPE) scores on the validation dataset to compare the relative performance 

of the regressors. We present the accuracy metrics of the regression models in Table 

7.  

 

Table 7. Regression results for time to allocation. LR = logistic regression. SVM = support vec-

tor machine. ANN = artificial neural network. 

Accuracy metrics SVM Bagging Random forest ANN 
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𝑅2 0.87 0.87 0.84 -1.42 

RMSE 193.29 193.62 208.61 856.4 

MAPE 80.31 89.01 190.39 91.49 

 

It is evident that the regression models do not perform well, as evidenced by the 

high MAPE values (MAPE values up to 20-25% are considered acceptable in the 

regression literature). Further, the negative 𝑅2 value for the ANN indicates signifi-

cant overfitting. The ensemble bagging decision tree classifier yielded the best re-

sults, without the presence of any negative predictions.  

In order to better understand the regression performance, we created tolerance 

ranges around the prediction label (i.e., the time to allocation for a patient predicted 

to receive a transplant) to determine the tolerance range at which we observe rea-

sonable performance. For example, a 20% tolerance range implied that we measure 

whether our predictions are within 20% of the actual time to allocation. This is then 

treated as a classification problem, wherein a prediction within the tolerance range 

is treated as ‘acceptable’ and predictions outside this range are ‘unacceptable’. The 

results of this exercise are depicted in Figure 3 below.  

 

Fig. 3. Tolerance range analysis for real-time prediction of time to allocation of an organ. 

 

As expected, larger tolerance values yielded better performance. We see that at 

a tolerance range of 25%, more than 50% of predictions are acceptable, and at a 

tolerance range of 40%, more than two-thirds of the predictions are acceptable.  

Following this analysis, we performed an outlier detection and elimination exer-

cise on the dataset and retrained the ensemble bagging decision tree classifier on the 

revised dataset. This retrained model yielded significantly better MAPE scores. Re-

moving these outliers caused the MAPE score to improve to 22%. As part of the 

outlier detection process, we determined that the worst-performing prediction cases 

were predominantly due to disproportionately fast transplants - in all such cases, the 

target time to allocation was orders of magnitude less than the predicted time to 
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allocation. We provide the blood-group-wise and total MAPE and MAD scores after 

outlier removal in Table 8. 

 

Table 8: Blood-group wise and entire dataset regression performance after outlier removal. 

Blood groups MAPE MAD 

A 19.830 121.779 

AB 29.862 186.055 

B 18.049 160.645 

O 18.532 162.548 

Grand total 22.041 154.409 

                          MAD = mean absolute deviation. MAPE = mean absolute percentage error. 

 

We describe the above process to highlight the importance of outlier detection in 

training regression models on the dataset generated by the simulation for real-time 

delay prediction. 

4. Discussion and Conclusions 

In this study, we present a hybrid modeling approach for real-time delay predic-

tion. This approach is suitable for generating real-time delay predictions for com-

plex queueing systems which are not amenable to analytical approaches and also do 

not maintain adequate queue log data required for directly training ML/statistical 

methods for delay prediction. HM involves combining research approaches or 

methods from other disciplines with one or more stages of the simulation modeling 

process [16]. Our approach towards real-time delay prediction for complex queue-

ing systems involves developing a DES of the queueing system in question, vali-

dating it, and then using this validated DES to generate system state and other rele-

vant data (e.g., characteristics of the service-seeking entity) and train a 

statistical/ML method on this dataset as a real-time delay predictor. Our approach, 

given its combination of DES and ML, fits in well within the hybrid modeling par-

adigm. 

A natural question that arises with regard to our approach is this: given that the 

ML real-time delay predictor is trained and validated on a synthetic dataset gener-

ated by the DES, how does simulation error affect the ‘real-world’ performance of 

the real-time delay predictor? Answering this question definitively is beyond the 

scope of this study; however, our preliminary analytical work on the first question 

yields the answer that simulation error and ML method error add linearly to form 

the total error associated with the prediction. Further, we have shown that for a val-

idated simulation wherein ‘validated’ implies that the expected value of the simu-

lation error is zero, then the expected value of the total error of the real-time delay 

predictor then depends only on the expected value of the ML method error. Another 
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important question is as follows: while the above result holds for the average total 

error of prediction (that is, the average total error of the prediction, averaged across 

the total errors of individual predictions, will tend to zero for validated simulations), 

how does simulation error affect an individual prediction? These questions and 

more will need to be answered as this approach matures.  

The approach proposed in this study also will need appropriate IT infrastructure 

for deployment. For example, in the kidney transplantation case, the state of the 

waitlist will have to be queried each time a new patient registers on the waitlist for 

generation of the real-time delay prediction. Thus, a suitable software set up for 

generating the feature set required for input into the ML real-time delay predictor 

will be required. The process of setting up the IT infrastructure required to record 

the input data for each service-seeking entity may lead to the generation of adequate 

queue log data capturing the system state so that an ML model can directly be 

trained. In that case, the hybrid DES-based approach may eventually be phased out. 

This approach will be of use until such queue log data is generated; however, prior 

to its phasing out, comparing the performances of both approaches may be useful 

as the hybrid approach may outperform the direct ML approach depending upon the 

extent of the inaccuracy in the recording of the queue log system state data. 

Note that the DES of the queueing system in consideration may not need to be 

developed specifically for this purpose – the DES may a priori be developed for 

routine operational analysis of the system and can be repurposed for generating the 

synthetic dataset. On the other hand, even if it is developed de novo for the real-

time delay prediction purpose, it can later be repurposed for routine operational and 

policy evaluation analyses. 
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