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A Discrete-Event Simulation Model of the Kidney Transplantation 

System in Rajasthan, India 

We present a discrete-event simulation model of the kidney transplantation 

system in an Indian state, Rajasthan. Both the organ procurement and 

transportation process and the organ allocation processes are simulated. Organs 

are generated across the state based on the organ donation rate among the general 

population, and are allocated to patients on the kidney transplantation waitlist. 

The organ allocation algorithm is developed using official guidelines published 

for kidney transplantation, and model parameters were estimated using publicly 

available data to the extent possible. Transplantation outcomes generated by the 

model include: (a) the probabilities of a patient receiving an organ within one to 

five years of registration, (b) the average number of deaths per year due to lack of 

donated organs, and (c) the average time to transplant for waitlisted patients. 

Simulation experiments involving observing the effect of increasing the organ 

arrival rate and establishing additional transplantation centres on transplantation 

outcomes are also conducted. We also demonstrate the use of such a model to 

optimally locate additional organ procurement and transplantation centres using 

simulation optimization methods. 

KEYWORDS: KIDNEY TRANSPLANTATION INDIA, SIMULATION AND 

LOGISTICS, ORGAN TRANSPLANTATION SYSTEM SIMULATION 

1. Introduction and Literature Review 

The exact burden of end-stage renal disease (ESRD) is not known in India due to a lack 

of reliable patient registries, but recent studies estimate that 220,000-275,000 new 

patients require renal replacement therapy, or dialysis (Modi and Jha, 2011; Jha, 2013). 

Dialysis is an expensive procedure, especially when provided over a patient’s lifetime, 

and also causes substantial impairment of the quality of life of the patient. In 

comparison with dialysis, renal (kidney) transplantation has proven to be more effective 

in prolonging the lives of ESRD patients, and when lifetime costs and effectiveness in 

terms of improvement in quality of life and productivity are also considered, renal 



transplantation has been proven to be substantially more cost-effective as well (Rosselli 

et al., 2015; NKF, 2010). However, a massive shortage in donated organs in India has 

led to a precarious situation for ESRD patients on the waitlist for transplantation. In this 

paper, we describe the development of a discrete-event simulation model of the kidney 

transplantation system in Rajasthan, the largest state (province) in India, and 

demonstrate how the organ shortage in Rajasthan affects transplantation outcomes for 

waitlisted patients. We also demonstrate the use of the model to analyse new logistical 

situations for kidney transplantation, such as estimating the effect of locating additional 

transplantation centres in the state on organ transport times and organ allocation rates 

within the state. We also demonstrate the use of the model, in conjunction with 

simulation optimization methods such as the NSGS procedure (Hong et al. 2015), to 

optimally locate new transplantation centres in terms of minimizing average organ 

transport times. 

The organ donation rate in India, at 0.34 per million population in 2014 (in 

comparison to 26 and 36 per million population in the USA and Spain, respectively), is 

one of the lowest in the world (Organ India and Mohan Foundation, 2014). The 

southern states of India lead the rest of the country in terms of organ donation and 

transplantation activity, while the northern states, having traditionally lagged behind, 

are now working on establishing the required infrastructure. Due to campaigns to 

increase awareness regarding organ donation by several key stakeholders including the 

Government of India, the organ donation rate has steadily increased to 0.8 organs per 

million population in 2017 (NDTV, 2017), and is expected to continue to grow. Further, 

as part of efforts to both improve organ donation rates, avoid organ wastage, and to 

establish the infrastructure for organ procurement and transplantation in light of 

increasing organ donation rates, the government has plans to substantially increase the 



number of organ retrieval (procurement) and transplant centres across the country 

(NDTV, 2017). Therefore, it becomes important to also develop the mathematical and 

computational infrastructure to model, analyse and optimize organ transplantation 

systems in the Indian context.  We develop a simulation model of the kidney 

transplantation system in Rajasthan as a first step towards addressing this need. We 

focused on kidney transplantation due to the following reasons: (1) the high estimated 

prevalence of ESRD in the country, and (2) kidneys are the most donated organs in 

India (Rajmohan et al. 2017). We chose to model the kidney transplantation system in 

the state of Rajasthan because (a) it is the largest state in India in terms of area, and the 

eighth largest state in terms of population (Census Commissioner of India, 2011), and 

(b) the state recently established its organ transplantation network and had publicly 

available (anonymized) data regarding waitlisted patients and donors. Further, we focus 

our analysis on organ transplantation from deceased donors. This is because less than 

two percent of donated organs come from deceased donors (Rajmohan et al., 2017), and 

therefore, there is tremendous potential in increasing deceased organ donation among 

the general public.  

Based on Rajasthan’s population, we estimate that approximately 11,600 

patients require a transplant in Rajasthan every year. However, according to the data 

published by the Rajasthan Network for Organ Sharing (RNOS), the governmental 

organization that oversees organ transplantation in the state, there are only 303 patients 

on the waitlist as of December 2019 (RNOS, 2019). In Rajasthan, only 43 kidneys were 

donated in 2017 (RNOS, 2018b). Given the increasing awareness among ESRD patients 

about kidney transplantation as the optimal option, and the increase in kidney donation 

rates, a critical analysis of the kidney transplantation system in terms of its outcomes on 

patients, including answering the question of whether the existing capacity in terms of 



both organ procurement centres and transplant centres will be sufficient to 

accommodate demand, will become important. We model the kidney transplantation 

system in Rajasthan as a prototype that can be scaled up for the entire country and in the 

process identify issues that need to be addressed before doing so. 

A substantial amount of work has been conducted in applying the methods of 

operations research and simulation to improve various aspects of organ transplantation 

in many countries. A comprehensive review of the operations research literature in 

organ transplantation in its entirety is beyond the scope of this article, so we focus our 

survey of the literature on (a) a brief discussion of studies applying operations research 

methods to optimize decision-making (e.g., optimal timing of transplantations, organ 

acceptance/rejection policies), (b) simulation studies conducted to analyze and optimize 

organ transplantation systems, and (b) more specifically, on relevant operations research 

studies conducted in the Indian context. For a comprehensive account of the literature in 

organ transplantation network management (i.e., optimally locating transplantation 

centres or organ procurement centres, reorganizing the boundaries of administrative 

regions to reduce geographical disparities in organ allocation), we refer the reader to a 

detailed review of the literature on organ transplantation network management by 

Ahmadvand and Pishvaee (2017).  

Several studies applying operations research methods to optimize decision-

making in transplantation have also been published (Alagoz et al. 2004; Alagoz et al. 

2007a; Alagoz et al. 2007b; Sandikci et al. 2008; Sandikci et al. 2013; Batun et al. 

2018). To the best of our knowledge, almost all of these studies have involved liver 

transplantation. These studies range from determining the optimal timing for a living-

donor liver transplantation (Alagoz et al. 2004), the effect of the waiting list on 

cadaveric liver acceptance decisions (Alagoz et al. 2007b), the effect of incomplete 



information regarding the waiting list on organ accept/reject decisions (Sandikci et al. 

2013), to incorporating patient preferences in liver acceptance decisions (Batun et al. 

2018). Most of these studies utilize a Markov decision process framework to formulate 

the decision problem in terms of finding the optimal policy under uncertainty, and do 

not utilize simulation. Simulation models have been developed primarily to address 

issues around the policies governing the allocation of organs to waitlisted patients. A 

majority of the models have addressed liver transplantation (Pritsker et al. 1995; Kreke 

et al. 2002; Shechter et al. 2005; Comas et al. 2008), including one of the earliest 

simulation models of an organ transplantation system by Pritsker et al. (1995). Kreke et 

al. (2002) introduced the natural history of end stage liver disease patients with and 

without a transplant into their model that operated independently of any allocation 

scheme. Schechter et al. (2005) and Alagoz et al. (2005) built upon this work and used 

such a model to test changes in liver allocation policies. Similar simulation models have 

been developed subsequently to evaluate liver allocation policies, liver transplantation 

capacity, and other aspects of liver transplantation (Iyer et al. 2011; Feng et al. 2013; 

Toro-D´ıaz et al. 2015; Kilambi et al. 2018). 

All of the above studies have been conducted for the United States 

transplantation system. Our search of the literature yielded one study that was not liver 

or kidney transplantation-related:  Comas et al. (2008) developed a simulation model of 

the Spanish cataract transplantation system to evaluate an alternative waiting list 

prioritization scheme in comparison with a first-in first-out system. 

Compared to liver transplantation, fewer studies involving kidney 

transplantation were identified. Zenios et al. (1999) developed a Monte Carlo simulation 

model to compare different allocation policies, and simulated the operations of a single 

organ procurement organization in the United States. They incorporated changes in 



recipient and donor characteristics, patient and graft survival rates, and quality of life in 

their model. Su et al. (2004) developed a simulation model of the kidney allocation 

system in the United States to evaluate the effect of incorporation of recipient choice to 

accept or reject a donated kidney based on the projected increase in quality-adjusted life 

years it would yield. Davis et al. (2013) developed a simulation model of the kidney 

transplantation system in the United States as part of a series of studies describing 

efforts to reduce geographical disparities in kidney allocation across the United States 

(Davis et al. 2014; Davis et al. 2015). Most recently, Sandikci et al. (2019) develop a 

new clinically and operationally detailed simulation model of the kidney transplantation 

system in the United States that reduces computational runtime in comparison to the 

simulation maintained by the United Network for Organ Sharing (the organization that 

maintains the organ procurement and transplantation network in the United States) by 

taking advantage of parallel computing methods. 

Our work represents a first step towards applying the methods of simulation and 

optimization to analyzing and optimizing organ transplantation systems in the Indian 

context. We develop a discrete-event simulation model of the kidney transplantation 

system in Rajasthan, India that models both the logistical and allocation aspects of 

kidney transplantation. From a logistical standpoint, the model incorporates the district-

wise generation of kidneys across the state of Rajasthan, and its subsequent 

transportation to the district where the transplantation to the recipient is to be 

performed. From an allocation standpoint, the model generates multiple clinical 

parameters, such as the patient age, blood group, whether the patient has had one or 

more immunological graft failures from a previous transplant, time on dialysis, and 

panel reactive antibody (PRA) levels. These parameters are used to calculate the 

patient’s Kidney Allocation Priority (KAP) score, which determines the patient’s 



position on the waitlist. Further, the removal time for a patient is also generated based 

on the life expectancy of an ESRD patient on dialysis and the time the patient has 

already spent on dialysis at the time of registration on the waitlist. Therefore, our model 

can be used in efforts to optimize both the logistical and allocation aspects of kidney 

transplantation. For example, from a logistical standpoint, our model can be used in 

conjunction with simulation optimization methods to identify optimal locations of 

transplantation centres (demonstrated in Section 4.1), and from an allocation standpoint, 

our model can evaluate multiple allocation policies to determine the policy that 

maximizes patient outcomes (e.g., maximize probability of receiving a transplant). Our 

search of the literature did not yield a model for kidney transplantation that incorporated 

both logistical and clinical parameters to the extent that we have - while Zenios et al. 

(1999) incorporated multiple clinical characteristics, they conducted their analysis for a 

single organ procurement organization. Further, to the best of our knowledge, our study 

is the first to demonstrate the use of simulation optimization methods to identify optimal 

locations for transplantation centres from a discrete set of alternatives. Thus, our study, 

in addition to being capable of evaluating allocation policies, also demonstrates its use 

to evaluate and improve logistical aspects of transplantation systems, which have 

traditionally been the domain of optimization formulations. 

To the best of our knowledge, there is only one relevant study that has been 

conducted in the Indian context for organ transplantation: the work by Rajmohan et al. 

(2017) that involved optimally locating organ procurement organizations across the 

country so that total distance (weighted by demand for organs) between transplant 

centers and organ procurement organizations is minimized using a deterministic 

framework. In comparison to this work, our approach represents variability in organ 

transplantation explicitly, and also has the advantage of being able to address problems 



in both transplantation logistics and allocation using the same model. Further, given that 

a simulation model represents variability explicitly, it enables evaluation of the effect of 

an “optimal” solution on patient outcomes in a more comprehensive manner than a 

deterministic optimization model. This can include, for example, evaluation of the 

location of a new organ transplantation or procurement centre generated by an optimal 

facility location model in terms of its effect on the distribution of organ transport time; 

or, as we demonstrate, finding the optimal location using ranking and selection 

simulation optimization methods from a discrete set of locations that may be generated, 

for instance, by a traditional continuous optimal facility location model. 

The remainder of the paper is organized as follows: in section 2, we describe the 

kidney allocation algorithm modelled in this article. In section 3, we describe the 

development of the simulation model and the estimation of its parameters. In section 4, 

we describe simulation experiments conducted using the model and their results. We 

conclude in section 5 with a brief summary of the article, with its limitations, and a 

discussion of future work. 

2. Overview of Kidney Transplantation in India 

The principal governmental authority overseeing organ and tissue transplantation in 

India is the National Organ and Tissue Transplantation Organization (NOTTO), 

headquartered in New Delhi, the Indian capital. Five regional authorities, each called 

the Regional Organ and Tissue Transplantation Organization (ROTTO), were set up 

under the umbrella of NOTTO to oversee organ donation and transplantation in five 

principal geographical regions of the country. Each ROTTO oversees organ donation 

and transplantation in several states, and its activities include coordination for organ 

procurement and distribution, preservation of organs, quality management in organs, 

records maintenance, data protection and confidentiality, etc. ROTTOs also assist 



NOTTO in developing guidelines for organ procurement and allocation. The guidelines 

for kidney procurement and allocation that we use in this model to perform kidney 

allocation were developed and published by NOTTO (NOTTO, 2018). 

Kidney allocation is a complex process, influenced by a number of factors 

including medical urgency and donor-recipient matching. According to the guidelines 

published by NOTTO, the patient should be less than 75 years of age at the time of 

registration, should be a case of ESRD on maintenance dialysis for more than three 

months on a regular basis and should be registered only in one approved hospital (a 

transplantation centre). When a patient is registered in a hospital (a transplantation 

centre), he/she is added to the corresponding state’s waitlist and is assigned a KAP 

score that determines his/her position on the waitlist. The KAP score is calculated 

according to a scoring system designed by NOTTO, depicted in the Table 1 below 

(sourced from the kidney allocation guidelines published by NOTTO, page 2) (NOTTO, 

2018). 

 Table 1. Scoring system for prioritizing waitlisted patients for organ allocation 

SI No. Criteria for scoring Points allotted 

1 Time on dialysis (+1) for each month on dialysis 

2 Previous immunological graft failure 

within 3 months of transplantation 

(+3) for each graft failure 

3 Age of recipient (+3) for less than 6 years 

(+2) for 6 to less than 12 years 

(+1) for 12 to less than 18 years  

4 Patient on temporary vascular access  

    a) With failed all AV Fistula sites (+2) 

    b) With failed AV Graft after all failed 

AVF sites 

(+4) 

5  PRA (Panel Reactive Antibody) (+0.5) for every 10% above 20% 

6 Previous living donor now requiring 

kidney transplant 

(+5) 

7 Near relative (as per definition of 

THOTA) of previous deceased donor 

requiring kidney transplant  

(+5) 

 



We note here that we do not consider items 6 and 7 in the calculation of KAP 

scores for patients in the model, as we assumed that the likelihood of the associated 

scenarios being encountered is very low. 

According to the allocation guidelines, a cadaveric kidney retrieved in a 

government (public) hospital is first considered for allocation only to patients registered 

in government transplant hospitals in that state; if an appropriate recipient is not found, 

then a waitlist comprised of patients registered in private transplant hospitals alone in 

that state is considered. If the retrieving hospital is privately owned/managed, then the 

same recipient selection process is followed, but in the reverse order. Thus the type of 

transplant hospital (public or private) in which a patient is registered can impact their 

chances of receiving a transplant. 

Within the waitlist comprising patients registered in government or private 

hospitals, the allocation will be done first based on the associated district’s waiting list 

(where the organ was retrieved). If no recipient is eligible in the retrieval district’s 

waiting list, then allocation will be done considering the state’s waitlist. If a match is 

not found in the state’s waitlist, then the organ is considered for allocation to other 

states administered by the associated ROTTO, and then to other ROTTOs nationally. 

Further, if the kidney is donated by a paediatric donor (less than 18 years), it will first 

be allocated to a paediatric waitlisted patient. If no paediatric patient is eligible, then the 

kidney will be allocated to an adult patient. Allocation is then done by matching blood 

groups of the deceased kidney donor and the patients. A blood group O kidney will be 

allocated to a recipient with group O, then to the next available patient on the waitlist of 

other compatible blood groups - that is, first to group A, then to group B, and lastly to 

group AB in that sequence. If the kidney is of blood group A or B, the organ will be 

allocated to the same blood group failing which it will be allocated to blood group AB. 



An AB group kidney will only be allocated to an AB patient. This allocation process is 

depicted in algorithm below, and is incorporated by the model to the extent that the 

organ is allocated to a patient within the state (Rajasthan).



Kidney allocation process 

1. Let the retrieval hospital type be ‘G’ (government), and if there are patients on the state 

waitlist registered in ‘G’ type hospitals, then the allocation process for patients registered 

in ‘G’ type hospitals is followed, as described below. Initialize flag = 0. 

1.1. Set current waitlist = district waitlist 

1.1.1.  If the current waitlist is not empty: 

1.1.1.1. Call Age Check Subroutine in (2)  

1.1.1.2. If no recipient is found, go to (1.2) 

1.1.2. If the current waitlist is empty: 

1.1.2.1. Go to (1.2)  

1.2. Set current waitlist = state waitlist 

1.2.1.  If the current waitlist is not empty: 

1.2.1.1. Call Age Check Subroutine (2) 

1.2.1.2. If suitable recipient is not found, set flag = flag + 1 and go to (1.3) 

1.2.2.  If the current waitlist is empty: 

1.2.2.1. Go to (1.3) 

1.3. If flag < 2, change hospital type from ‘G’ to ‘P’ (or vice versa) in the district waitlist 

1.3.1.  Repeat allocation procedure in (1.1) 

1.3.2.  If suitable recipient is not found:  

1.3.2.1. Organ unallocated, terminate allocation for this organ, reset flag = 0 

2. Age Check Subroutine: Check for the age of donor 

2.1.  If donor age < 18 years: 

2.1.1.  Check whether the current waitlist contains patients with age < 18 years. If yes:  

2.1.1.1. Filter waitlist to keep only patients with age < 18 years  

2.1.1.2. Call Blood Group Matching Subroutine (3) 

2.1.1.2.1. If a suitable recipient is not found, go to 2.2.1  

2.2. If donor age > 18 years: 

2.2.1.  Set current waitlist to contain patients of all ages  

2.2.2.  Call Blood Group Matching Subroutine (3) 

2.2.2.1.  If a suitable recipient is not found, return  

3. Blood Group Matching Subroutine: Check for the blood group of donor and match against 

the patients in the current waitlist 

3.1. If one or more matches are found, allocate the organ to the match with the highest 

KAP score  

3.1.1.  Update patient list and organ donated list, stop allocation process 

3.2. If no match is found, return  

 

Finally, the allocation guidelines published by NOTTO consider two additional 

aspects that we do not incorporate into the model: (a) the consideration of an “urgent” 

patient waitlist, which can accommodate a very small number of patients in immediate 

need of a kidney, and (b) consideration of patients requiring multiple organs (e.g., a 



heart and a kidney transplant). Given that the size of these waitlists is typically small, 

and hence are likely to not affect average behaviour of the model to a great extent, we 

do not incorporate these into the model at this stage. 

 

3. Model Development and Parameter Estimation 

3.1 Model structure 

We now describe the structure of the discrete-event simulation developed to model 

kidney transplantation in Rajasthan, India. The structure of the simulation model is 

depicted in Figure 1. 

The model is initialized with patients randomly chosen from the waitlist of all 

patients registered for kidney transplants in the state of Rajasthan that is maintained by 

the RNOS, downloaded from the RNOS website in December 2019 (RNOS, 2019). 

Waitlists of patients registered for kidney transplants in each district of Rajasthan are 

generated from the overall state waitlist. We provide more details regarding 

initialization of the simulation in Section 4. In the meanwhile, a snapshot of the 

information contained in the state waitlist is depicted in Figure 2 below. The 

information in the waitlist - in particular, the date of registration with RNOS, date of 

dialysis, registered hospital, blood group - is used to estimate multiple model 

parameters, as we discuss in Section 3.2. Advancement of the simulation is dependent 

on three principal events: patient arrival, patient removal due to death, and organ 

arrival. The next patient arrival time and the next organ arrival times are generated 

using appropriate interarrival time distributions (see Section 3.2). Removal of a patient 

from the waitlist occurs in one of two ways: the patient receives a transplant, or the 

patient dies (i.e., we do not consider patients balking or reneging from the waitlist). 
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Patient removal due to transplantation is governed by whether the patient is allocated an 

organ and undergoes a subsequent successful transplant, and patient removal due to 

death is determined using the literature-based removal time assigned to the patient when 

they are added to the waitlists in the model. The patient removal time due to death 

assigned to the patient is calculated taking into account the time the patient has already 

spent on dialysis at the time of entry into the waitlist. More details regarding input 

parameter estimation are provided in Section 3.2. The distances, and therefore the 

average travel times, between the districts of Rajasthan are acquired from Google Maps, 

and the travel time matrix generated in this manner is also part of the initialization of 

the simulation. In our model, the districts are assumed to be at point locations (at their 

respective district headquarters). 

When a patient arrives, his/her KAP score is calculated, a removal time due to death is 

assigned, and the district and the transplant center (hospital) where the patient is 

registered is also assigned. The values of the clinical parameters required to calculate 

the patient’s KAP score are generated by distributions that are primarily estimated from 

clinical literature (see Section 3.2). The patient is then added to both the state waitlist 

and his/her district waitlist for kidney transplantation.  



 

Figure 1. Simulation model structure. 

 

Figure 2.  RNOS kidney transplant waitlist: a snapshot



The position of each patient in both waitlists are determined by his/her KAP score. 

After the patient is added to the state and district waitlists, the time of the next patient 

removal due to death is updated (which may change depending on the removal time due 

to death assigned to the newly arrived patient), the time of arrival of the next patient is 

generated and the overall simulation time is updated accordingly. 

If patient removal due to death is the next event to occur (i.e., the patient has not 

received a transplant), then the patient is removed from both the state and district 

waitlists. The total number of patients who have died without receiving a transplant is 

then updated. The time of the next patient removal due to death is then identified from 

the state waitlist and is updated in the system. The overall simulation time is then 

updated. 

If the next event to occur is an organ arrival, then the district where the kidney is 

donated is determined using the population-based probability of donation assigned to 

each district of Rajasthan. Values of associated parameters such as donor age, donor 

blood group, and type of hospital (government/private or retrieval/transplant center) 

where the kidney is retrieved are also generated (see Section 3.2). The organ is then 

allocated according to the allocation algorithms developed by NOTTO (Section 2).  If a 

suitable recipient is identified, then the patient is removed from the state waitlist and 

also from the corresponding district waitlist. The total transportation time from the 

kidney procurement center to the transplantation hospital where the patient has been 

registered is calculated and the average transportation time of kidneys in Rajasthan is 

updated.  On the other hand, if no suitable patient is found according to NOTTO’s state-

level allocation algorithm, then the kidney is considered for allocation in Rajasthan’s 

associated ROTTO. The number of organs not allocated within the state is then updated 



in the system, the time of the next organ arrival is scheduled, and the overall simulation 

time is updated. 

3.2 Estimation of model parameters 

We identify two primary types of model parameters: those related to patients, and those 

related to organs. We now describe how these parameters are estimated and their 

associated data sources. 

3.2.1 Patient-related parameters 

Patient-related parameters are estimated using data published on the RNOS website 

(including the patient waitlist), and also using information obtained from the literature.  

We estimate multiple parameters from the waitlist published on the RNOS 

website (RNOS 2019), downloaded in December 2019. The waitlist consisted of patient 

entries from January 2015 onwards; however, the data available for 2015 was of poor 

quality (relatively fewer patients were registered in 2015 than in subsequent years and 

arrived in batches, indicating that patients may have been registered in batches into the 

waitlist even if they had arrived according to a regular pattern), and hence data from 

patients registering in the waitlist from 2016 to the end of 2018 was used to estimate 

model parameters. Data for patients registering in the waitlist in 2019 was set aside for 

validating model outcomes.  

The distribution of the interarrival times of patients was estimated using the dates of 

registration of patients in the RNOS state waitlist. However, because the dates of 

registration of many patients in the waitlist in a month were the same (i.e., they 

appeared to have registered on the same day), it was not possible to use the interarrival 

times directly (as this would yield many zero values for interarrival times, more than 



would be realistic) in determining a distribution for the interarrival times or the arrival 

rate of patients into the waitlist. Hence the number of patients arriving in a month was 

used to determine the distribution of patient arrival rate. A chi-squared goodness of fit 

test was performed to determine the fit of various distributions to the monthly arrival 

rates, and the Poisson distribution, with a p-value of 0.7 (with the following null 

hypothesis: monthly arrival rate follows the Poisson distribution, and the alternate 

hypothesis: the monthly arrival rate does not follow the Poisson distribution). Thus the 

interarrival times of patients are estimated from the monthly arrival rate estimated using 

the RNOS waitlist, and it follows an exponential distribution with a mean of 5.83 days. 

We anticipate using a more comprehensive data modelling approach to estimate the 

distribution of patient interarrival times as appropriately detailed data also becomes 

available from RNOS; for example, a time-series forecasting approach used to estimate 

the time-dependent means of a non-stationary arrival process (Poisson or otherwise), as 

described in (Angelo et al., 2017).  

The model was initialized by selecting 10 patients randomly from the RNOS state 

waitlist. Only 10 patients were used for initialization as selecting a larger number of 

patients from the waitlist would require longer warm-up periods for the simulation, as 

the simulation does not reach steady state until all patients chosen to initialize the 

waitlist are removed from the waitlists. Separate district waitlists are created based on 

the city of origin of patients as recorded in the state waitlist, and are created because 

NOTTO mandates that organs should first be allocated to patients in the same city/district 

before considering waitlisted patients in other districts/cities.  

Patients may be removed from the waitlist if they die before receiving a transplant, and 

are therefore assigned a removal time due to death when they arrive in the waitlist. The 

removal time due to death of a patient is estimated from a recently published 



retrospective study that investigated haemodialysis practice patterns and outcomes in 

Indian ESRD patients (Lakshminarayana et al., 2017). The study enrolled patients who 

had spent a minimum of three months on maintenance haemodialysis, similar to the 

NOTTO eligibility criteria for registering on the transplant waitlist, and found that the 

mean survival time of patients on haemodialysis was 40.31 months (standard deviation 

of 26.69 months). In the absence of further information (e.g., raw data that could be 

used for distribution fitting), we assumed that a beta distribution for the removal time, 

and calculated its alpha and beta parameters from the mean and standard deviation. We 

chose the beta distribution as it enables imposing a lower limit of zero on the removal 

time. We reiterate here that the actual removal time assigned to a patient is computed by 

the subtracting the time on dialysis at registration from the survival time estimated from 

the beta distribution discussed above. If the overall simulation time becomes equal to 

the removal time due to death of a patient, then he/she is removed from the waitlist. 

The time on dialysis at registration was estimated using the date of dialysis and 

date of registration fields in the RNOS waitlist (i.e., by subtracting the latter date from 

the former). Outliers were identified using a box and whisker plot and removed from the 

data, and Anderson-Darling goodness of fit tests were performed to identify the best-

fitting distribution to the time on dialysis at registration data. The exponential 

distribution was found to be the best-fitting distribution to the time on dialysis at 

registration, with a p-value of 0.581 (test hypotheses the same as that for patient arrival 

rates). Per the NOTTO allocation algorithm, the KAP score of a patient is updated as the 

amount of time the patient spends on dialysis in the simulation increases. 

In Rajasthan, transplant centres are present only in the state capital Jaipur (10 

centres) and Ganganagar (1 centre) districts, and hence the probabilities of patients 

registering with a transplant centre in a given district are calculated accordingly. Patient 



blood group and age, which are essential to determine organ allocation, are calculated 

using data obtained from on the state waitlist and other reports published on the RNOS 

website (RNOS, 2019a). The data for patient age is obtained from a histogram of patient 

ages published on the RNOS website (RNOS 2018b). The data from the frequency 

distribution depicted in the histogram was recreated by bootstrapping from the 

histogram bins, and the best fitting distribution for this data was determined by 

conducting the Anderson-Darling goodness of fit tests. The Gaussian distribution was 

found to the best fitting distribution with a p-value of 0.389 (null and alternate 

hypotheses the same as those specified for the patient arrival rates). The estimated 

Gaussian distribution was truncated by a lower limit of 1 year and an upper limit of 75 

years (limits were estimated based on NOTTO guidelines). Patient blood group is 

generated from a discrete distribution parameterized by data from the state waitlist (see 

Figure 2).  

Estimation of other clinical parameters such as PRA levels for a patient, 

probability of a patient with all failed arteriovenous (AV) fistula sites, and the 

probability of a patient with failed AV graft after all failed AV fistula sites were 

estimated using data from the clinical literature (Cecka et al., 2011; Chandrashekar et 

al., 2014).  Our search of the literature did not yield studies that reported PRA levels 

among Indian patients registered on kidney transplantation waitlists, and hence PRA 

levels were estimated from an American study that reported calculated PRA levels 

among patients registered on the American kidney transplant waitlist (Cecka et al., 

2011). The study reported proportions of patients with PRA levels within various ranges 

(see Table 2), and these proportions and ranges were used to generate PRA levels for a 

patient. For example, approximately 5.6% of patients reported PRA levels between 1-

20%, and with a probability of 0.056, a patient is assigned a PRA level sampled from a 



uniform distribution from the interval [1, 20]. The proportions of patients with all failed 

AV fistula sites and with a failed AV graft after all failed AV fistula sites was estimated 

from an Indian study reporting survival characteristics of patients on maintenance 

haemodialysis (Chandrasekhar et al., 2014). 

The probability of registering a patient with a previous immunological graft 

failure within the first three months of a previous transplant is also estimated from a 

clinical report describing the progress in renal transplantation in India  (Abraham et al., 

2009). The study reported the probability of immunological graft failure within a year 

of transplant and this was converted into the corresponding three-month probability.  

Table 2 below lists all patient-related parameters, their distributions/estimates 

and corresponding sources. The KAP score of a patient was calculated as a function of 

the above clinical parameters using the scoring algorithm published by NOTTO, as 

described in Section 2 (NOTTO, 2018). 

Table 2. Patient-related model parameters 

Parameter Distribution Estimate Source 

Patient arrival Poisson 5.828 patients/month RNOS (2019)  

Time on dialysis Exponential 260.3 days (IAT) RNOS (2019) 

Patient removal 

time 

Beta Mean = 40.31 (SD=26.69) Lakshminarayana 

et al. (2017) 

District in which 

patient is registered 

Discrete P(Jaipur)=0.92; 

P(Ganganagar)=0.08; 

P(others)=0.00 

RNOS (2019) 

Age (years) Normal Mean = 40.78 (SD=12.18) RNOS (2019) 

Blood Group Discrete O=0.448; A=0.144; B=0.339; 

AB=0.0689 

RNOS (2019) 

PRA level Discrete P(PRA level = 0) = 0.650; P(1- 

20) = 0.056; P(21-79) = 0.136; 

P(80-100) = 0.158 

Cecka et al. 

(2011) 

Probability of a 

previous  

immunological 

graft failure within 

3 months of 

transplantation 

Discrete P(yes) = 0.020; P(no) = 0.980 Abraham et al. 

(2009) 



With Failed all AV 

Fistula sites 

Discrete P(yes) = 0.052; P(no) = 0.948 Chandrashekar et al. 

(2014) 

With Failed AV 

Graft after all 

failed AVF sites 

Discrete P(yes) = 0.03125; P(no) = 

0.96875 

Chandrashekar et al. 

(2014) 

Organ interarrival 

time 

Exponential Mean=52.36 days RNOS (2018b) 

3.2.2 Organ-related parameters 

Precise data regarding the dates of arrival of organs (for instance, similar to that 

available for patient arrival) was not available on the RNOS website. Therefore, the 

distribution of interarrival times for kidneys from deceased donors was assumed to be 

exponential, and its parameters were estimated using aggregate organ donation data 

published by RNOS. According to the most recent data published on the RNOS website 

(RNOS, 2019b), the number of organs donated in the years 2015, 2016 and 2017 were 

12, 4, and 16 respectively. Assuming a mean of 14 kidneys being donated every year 

(we assumed that 2016 was an outlier), the interarrival times of donated kidneys in 

Rajasthan was assumed to be exponentially distributed with a mean of 7 donors/year 

(since two kidneys are retrieved from a deceased donor). 

We assume that kidneys are donated in each district of Rajasthan according to a 

district-specific probability. These probabilities have been assigned based on the 

proportion of Rajasthan’s population in each of its districts, with the population of 

Rajasthan and its districts obtained from the most recent Official Census of India 

(Census Commissioner of India 2011). Other parameters of the donor such as the blood 

group and age, which are required to determine allocation of the kidney, are also 

calculated according to the proportions of various blood groups and age ranges in the 

population of the entire state of Rajasthan. We have assumed that in a district, kidneys 

can be retrieved from a deceased donor in a private or a government hospital with equal 

probability. We have made the further assumption that if the district where the kidney is 



retrieved has a transplantation centre (for Rajasthan, only Jaipur and Ganganagar 

districts have transplantation centres) then the retrieval is performed in a transplantation 

centre, else the retrieval is performed in a hospital not capable of performing kidney 

transplantations (i.e., a retrieval centre). 

After the kidney is retrieved from either a retrieval or a transplant centre, it will 

be allocated to a patient (recipient) in the system (Rajasthan) according to the allocation 

algorithm. Table 3 below lists all organ-related parameters, their distributions/estimates 

and corresponding sources. Due to space limitations, we do not list all of the district-

specific probabilities of an organ originating from a district; we provide the 

probabilities associated with a few sample districts. 

Table 3. Organ related parameters 

Parameter Distribution Estimate Source 

Organ interarrival Time Exponential Mean=52.36 days RNOS (2018b) 

Donor age Empirical 3.298 exp(3.176x); x ∼U(0, 1) Census Commissioner of 
India (2011) 

Donor blood group Discrete P(A)=0.229; P(B)=0.323; 

P(AB)=0.077; P(O)=0.371 
Agrawal et al. (2014) 

Probability of kidney 

originating in a district 

Discrete Ajmer = 0.038; Jaipur = 0.026; 
Sirohi = 0.039 

Census Commissioner of 

India (2011) 

 

4. Simulation Experiments and Analyses 

The simulation was programmed on the Matlab computing platform. A warm-up period 

of 12 years was used before results were collected over a period of 12 years. 100 

replications were performed for collecting and reporting results. The output parameters 

collected from the simulation include year-wise probabilities of receiving a transplant 

while on the waitlist, average organ transport time, average time to transplant for a 

waitlisted patient, total number of patient deaths, number of unallocated organs and the 



total number of transplants in the simulation period. The probabilities of transplant are 

calculated as follows: patients arriving in each year (e.g., the first year after the warm-

up period) are tracked separately and the proportion of these patients receiving a 

transplant at the end of each subsequent year is updated. For example, the two-year 

probability of transplant for patients arriving in the 16th year is estimated by calculating 

the proportion of the same set of patients who have received a transplant within two 

years of their arrival. The same calculation process is followed for patients arriving in 

every year post the warm-up period.  

Average organ transport time is defined as the average time required to transport 

an organ from the retrieval location to its destination (a transplant centre). Average time 

to transplant is calculated only for patients who received a transplant during the steady 

state simulation period. Both the probabilities of receiving a transplant and the average 

time to transplant are calculated separately for different blood groups and the type of 

transplant hospital in which patients are registered in order to quantify disparities in 

transplantation outcomes on the basis of these characteristics. The number of deaths is 

calculated by counting those who are removed from the waitlist without receiving a 

transplant during the simulation period. A list of outputs (not limited to those described 

above) is provided in Table 4 and the changes in probabilities of receiving a transplant 

with respect to time are depicted in Figure 3. The simulation outcome estimates 

provided in Table 4 are averages and their 95% confidence intervals calculated using 

their standard errors. We have also provided the distributions of the outcome random 

variables (e.g., organ transport time) themselves in the Appendix (Table A1), because it 

may be of interest to estimate, for example, the probability that the organ transport time 

exceeds 8 hours. 



Table 4. Key simulation outcomes. 

 

 

Simulation Outcome Estimate (95% CI) 

Average number of organs transplanted per year  13.36 (12.98, 13.75) 

Average transportation time (hours) 5.81 (5.73, 5.88) 

Average time to transplant on the waitlist (days)  1148.85 (1137.54, 1160.15) 

Average time to transplant by type of hospital (days) Public = 1112.73 (1082.95, 1142.52) 

Private = 1183.23 (1163.29, 1203.16) 

Average time to transplant by blood group (days) A = 859.16 (826.63, 891.68)  

AB = 844.54 (805, 884) 

B = 1216.14 (1193.19, 1239.10) 

O = 1342.62 (1322.90, 1362.34) 

Average number of unallocated organs per year 0.46 (0.38, 0.54) 

Average number of deaths per year 48.63 (48.25, 49.01) 

Probability of receiving a transplant within 5 years 0.138 (0.137, 0.139) 

Probability of receiving a transplant within 5 years by 

blood group 

P(A) = 0.273 (0.271, 0.275) 

P(AB) = 0.194 (0.192, 0.197) 

P(B) = 0.129 (0.128, 0.131) 

P(O) = 0.096 (0.095, 0.097) 

Probability of receiving a transplant within 5 years by type 

of hospital 

P(Public) = 0.153(0.152, 0.154) 

P(Private) = 0.128 (0.127, 0.129) 



 

Figure 3. Probabilities of receiving a transplant with respect to time for different blood 

groups 

 

It is clear from the above results that cold ischemia time, the maximum time 

permissible between organ retrieval from the deceased donor and transplantation into 

the recipient, is likely not to be of significant concern in Rajasthan as far as the kidney 

transplantation time is concerned. This is because the cold ischemia time for a kidney is 

between 24 - 36 hours (Ponticelli et al., 2015), well above the average organ transport 

time (5.8 hours) estimated by the model. That said, each additional hour of cold 

ischemia time for a kidney increases both risk of graft failure and mortality (Debout et 

al., 2014), and hence we consider the problem of locating additional transplant centres 

within Rajasthan to determine the extent to which they reduce average transport time. 

Also, locating additional transplant centres may prove to have a much more substantial 

effect on transplantation outcomes for other organs (such as the heart, liver, lungs, etc.) 

which have much shorter cold ischemia times when compared to the kidney, and hence 

is a question worth considering for organ transplantation in general. 

In comparison to average kidney transport time, the average time to transplant and 

the probabilities of receiving a transplant while on the waitlist are causes for significant 



concern. The mean survival time on haemodialysis is approximately 40 months, with a 

high standard deviation of approximately 27 months; therefore, given that the average 

time to transplant is approximately 38 months, there is a significant likelihood that a 

waitlisted patient might die before receiving a transplant. This is supported by the 

substantial number of deaths observed per year. There are some disparities in transplant 

outcomes by blood group and type of hospital: patients with the O blood group are 

significantly less likely to receive a transplant than those with other blood groups, and 

patients registered in a private hospital are approximately 16% less likely to receive a 

transplant than those registered in a government hospital. The results observed for 

patients with the O blood group are supported by a study conducted in Kerala, a 

southern Indian state (Tom and Kumar, 2016). The observed disparities are occurring 

likely because while the rate at which the O blood group patients enter the waitlist is 

approximately 3.1 times that of the A group and 6.5 times that of the AB group, the rate 

at which the O blood group organs arrive is only 1.6 times that of the A group and 4.8 

times that of the AB group. These disparities between the relative rates of arrival of the 

patients and organs between blood groups, combined with having to wait significantly 

longer than in a first-come first-served system because of the complex allocation 

algorithm, is reflected in the disparities between probabilities of transplant as well. For 

instance, the probabilities of transplant for the O group are less than half that of the A 

group (≈ 1.6/3.1) and less than 0.75 times (≈ 4.8/6.5) that of the AB group. 

Validation of the simulation model is a challenge given the limited data available 

regarding kidney transplantation outcomes in the Indian context. We performed a 

preliminary round of validation by comparing patient arrival numbers for approximately 

330 days from the simulation with patient arrival numbers in 2019 as published on the 

RNOS website. As mentioned earlier, the RNOS waitlist data for 2019 was set aside for 



validating the outcomes of the model. Since only the waitlist data was available to 

validate the outcomes of the model, we were only able to validate the rates at which 

patients register in the waitlist. The results of this validation exercise are provided in 

Table 5 below. 

Table 5. Validation outcomes 

Parameter Actual (RNOS 
2019) 

Simulation Estimate (95% CI) 

Number of patients registered in 2019   

(up till December 4, 2019) 

63 62.47 (54.18, 70.76) 

Waitlisted patients with blood group A 15 8.77 (5.83, 11.7) 

Waitlisted patients with blood group AB 8 4.44 (2.66, 6.23) 

Waitlisted patients with blood group B 17 21.42 (17.16, 25.67) 

Waitlisted patients with blood group O 23 27.84 (22.41, 33.27) 

 

It is clear from the above table that the model outcomes are reasonable when 

compared to the data recorded by RNOS. The numbers of patients with the AB and A 

blood groups registered in the waitlist in 2019 lies outside the 95% confidence intervals 

for the corresponding model estimates; however, this is likely because we are 

comparing only a single validation data point to the simulation outcomes. The overall 

number of patients registering on the waitlist in 2019, however, is within 1% of the 

simulation estimate, and hence lends credence to the validity of the simulated patient 

arrival process.  

We also attempted another simple approach towards validating a key outcome of 

the model – the five-year probability of transplant – that illustrates how simple 

theoretical queueing frameworks may provide limited insight in analysing the complex 

queueing discipline represented by the organ allocation process operating in the kidney 

transplantation system. This involved attempting to compare the five-year probability of 

transplant to the ratio of the overall organ arrival rate to the overall patient arrival rate. 

This latter quantity can be considered as an approximate equivalent of the concept of 



utilization from queueing theory – that is, the long-run probability of the system being 

“busy” would correspond to the long-run probability of receiving a transplant. The 

estimate of the ratio of these quantities from the model is 0.212 (95% CI: [0.194, 

0.240]), and the estimate from RNOS data is 0.222, indicating the patient arrival and 

organ arrival processes are being simulated accurately. However, the five-year 

probability of receiving a transplant while on the waitlist is approximately 0.138 (95% 

CI: [0.137, 0.139]). This significant difference is likely because the patients arriving 

into the transplantation system are not served on a first-come first-served basis, and are 

instead allocated organs based on the complex allocation algorithm. Thus, patients wait 

longer than they would if they were allocated organs on a first-come first-served basis. 

While this indicates that a simple queueing framework may provide limited insight for 

such systems, a heavy-traffic queueing framework with probabilistic reneging times and 

job priorities approximating the priority systems represented by the allocation processes 

based on blood group matching may be capable of offering more insight. For example, 

the distributions of KAP scores of incoming patients can be estimated (from a 

simulation of arriving patients alone) for each blood group and used to determine 

priorities. We reserve this analysis for future research.  

More comprehensive validation of model would ideally be performed; however, 

the lack of availability of public data has hampered our efforts in this direction. Other 

potential avenues of validating the model include working with transplantation 

authorities (such as NOTTO) to validate the model structure, and obtain additional data 

from these bodies to refine model parameter estimates. 

4.1 Simulation Experiments 

In addition to generating the above model outcomes, we also performed the 

following simulation experiments: a) increasing the organ arrival rate from current rate 



of 14 per year to approximately 120 organs per year (in increments of 7 organs/year), 

and b) increasing the number of districts with transplantation centres from an initial 

level of 2 districts to 22 districts, by adding one transplantation centre in each district 

considered (with a different district considered in each iteration). We first present the 

outcomes from increasing the organ arrival rate (Figures 4a, 4b and 4c, below). 

 

Figure 4a. Effect of increasing the organ arrival rates on two-year probabilities of 

transplant by blood group. 

 

Figure 4b. Effect of increasing the organ arrival rates on the average number of deaths 

and the average number of unallocated organs 

 



 

Figure 4c. Effect of increasing the organ arrival rates on average time to a transplant for 

all the patients and by blood groups 

 

In Figure 4a, we present the effect of increasing the organ arrival rates on two-

year probabilities of transplant (and not, for instance, the five-year probabilities of 

transplant) as this measure might be of more immediate interest to patients and 

healthcare providers alike. Once again, we see that the rate of increase for the O blood 

group is the smallest among all the blood groups. Further, it is clear from Figure 6a that 

the probability of receiving a transplant increases with the organ arrival (donation) rate 

up to a certain point (around 85%, corresponding to an organ arrival rate of around 80 

organs per year) and then the rate of increase becomes much slower and the two-year 

probability of transplant stabilizes around 91 %.  Such behaviour likely occurs because 

as the organ arrival rate increases to a point where a significant majority of patients 

(approximately 91%) receive an organ, when an organ of a particular blood group 

arrives (e.g., A), a corresponding patient may not be present in the waitlist, and the 

organ thus goes unallocated within the state. Further, for some patients (particularly 

those with randomly assigned small removal times due to death), an organ with the 

appropriate blood group may not arrive before their removal time due to death. Note 

that we see that the probabilities of transplant do not increase exponentially with organ 



donation rates. Under relatively simple queueing theory frameworks – for example, with 

first-come first-served queueing disciplines – it would be expected that the probabilities 

of transplant (which can, as discussed earlier, be considered an approximation of the 

“utilization” of the system) would increase at approximately exponential rate with 

increase in organ arrival rates until a certain threshold organ arrival rate. However, 

because the queueing discipline in this case is the organ allocation process, which is 

based on various patient characteristics and not purely on a first-come first-served basis, 

we see a slower rate of increase of the probability of transplant. In fact, second degree 

polynomials appear to best describe how probability of transplant changes with organ 

arrival rates (assuming that after a certain threshold organ arrival rate, the probabilities 

of transplant will approach 1 at much slower rates).   

Figure 4b depicts how the average number of deaths and the average number of 

unallocated organs change when the organ arrival rate increases. Figure 4c depicts the 

change (decrease) in average time to a transplant for all patients and by blood group. 

We see that approximately the same behaviour as in Figure 4a is observed for the 

average time to transplant as well. Significant improvements in average waiting time for 

a transplant are also evident - the average waiting time for a transplant (for all patients) 

reduces significantly from an initial wait time of nearly 1150 days at an organ arrival 

rate of 14 per year to less than a day days at arrival rates exceeding 105 organs per year. 

However, these results must be interpreted cautiously as it is likely that as the awareness 

regarding organ donation increases, the awareness regarding organ transplantation in 

general may also increase, and the number of patients on the waitlist may also increase.  

Also of interest, as mentioned previously, is that the average number of kidneys 

that go unallocated within Rajasthan also increases with organ arrival rate. This implies 

that if a state has a high donation rate of a particular organ relative to the number of 



patients on the waitlist, then it is likely that these organs will be available to 

neighbouring states. This underscores the need for establishing more organ procurement 

and transplantation centres across the country, as this will decrease interstate organ 

transport times, thus increasing organ viability for transplantation.  However, as 

mentioned earlier, it is likely that increasing awareness regarding organ donation and 

transplantation will lead to donation rates lagging behind the rate at which patients will 

register on the waitlist (as observed in developed countries), and therefore it is unlikely 

that a significant proportion of organs will remain unallocated within the state in such a 

situation.  

To observe the effect of having more transplantation centres across the state of 

Rajasthan we increased the number of transplant centres in increments of one per 

district until there are 22 (two-thirds of the total number of districts in Rajasthan) 

districts with transplantation centres. The number of transplantation centres was 

increased from twelve initially in two districts to a total of 32 transplantation centres in 

22 districts. These districts were selected randomly and the type of the transplantation 

centres added in each district was randomly (with equal probability) assigned to be a 

government or private hospital. Figure 5a shows the behaviour of logistical 

transplantation outcomes - average transportation time, and the number of instances 

where transportation time is greater than 8 hours when the number of transplantation 

centres are increased. From Figure 5a, we see that as expected, with more 

transplantation centres the average transportation time decreases from 5.8 hours to 4.9 

hours with 18 districts and further decreases to 4.5 hours with 22 districts. We do not 

include maximum transportation time in the figure. This is because, as expected, the 

maximum transportation time remains largely unchanged as more transplantation 

centres are added, since patients and organ donors are generated randomly from across 



the state, and the maximum transportation time is unlikely to change as extreme cases 

are still likely to be generated unless both the number of patients registering as well as 

organ donation rates increase substantially. However, the number of instances where 

organ transport time was more than eight hours reduced from almost 14.8 initially to 

13.3 at 32 transplantation centres in 22 districts. This reduction may seem smaller than 

expected, but this is likely due to the large geographical area of the state, and the fact 

that organ donation rates are low. Therefore, given that districts with the highest 

populations have the highest probability of generating organs as well, patients registered 

in transplantation centres in districts with lower populations are likely to receive organs 

from districts with higher populations, which may be located at a relatively large 

distance. However, if organ donation rates increase, then more organs are likely to be 

generated from low-population districts, thereby decreasing the average transportation 

times. We test this notion by adding transplantation centres in three districts (chosen 

randomly), yielding a total of 15 transplantation centres in 5 districts, and increase the 

organ arrival rate to 49 organs per year. We see that at the current organ arrival rate of 

14 organs per year, the average transportation time reduces to 5.6 hours from 5.8 hours, 

whereas at the organ arrival rate of 49 organs per year, the average transportation time 

reduces to 5.4 hours, and if three optimally located districts are chosen (as will be seen 

in the simulation optimization section), the average transportation time reduces further 

to 5.25 hours.  

Nonetheless, even this seemingly small reduction can be significant for other 

organ transplantation systems such as liver, heart, etc. wherein the cold ischemia time is 

substantially lower than that for the kidney. Even in the case of the kidney 

transplantation system, as discussed before, reducing cold ischemia time by every hour 

improves both graft and patient survival. 



As expected, most clinical transplantation outcomes (average number of deaths, 

average number of transplants, etc.) are not affected by adding transplantation centres, 

as these are dictated largely by organ donation rates. However, the average time to 

receiving a transplant is observed to decrease with an increase in the number of 

transplantation centres, and this is likely due to the fact that an organ is first considered 

for allocation within its district of origin. Therefore, given that a patient originating in a 

district is likely to register in that district, he/she will be more likely to be allocated a 

kidney if it also originates from that district. This is depicted in Figure 5b below. 

 

Figure 5a. Effect of increasing the number of transplantation centres on logistical 

outcomes related to transplantation 

 

Figure 5b. Effect of increasing the number of transplantation centres on time to 

allocation 

 



 We now demonstrate the use of a ranking and selection simulation optimization 

method to optimally select the location of transplantation centres in terms of minimizing 

the average transportation time for an organ. We consider the problem of selecting the 

optimal locations for 3 transplantation centres from among 10 alternative location sets. 

We consider only 10 alternatives for each problem in our analysis as a proof-of-concept 

of this approach; however, ranking and selection methods such as the NSGS (Nelson et 

al. 2001) and KN procedures (Kim and Nelson 2001) can be used for relatively larger 

numbers of decision alternatives – for example, the NSGS procedure has been 

demonstrated to work with reasonable computational expense for more than 1000 

systems (Hong et al. 2010).  

 We apply the NSGS procedure to select the best alternative in terms of 

minimization of average transportation time. Each alternative for the 3-centre problem 

is a set of three districts, which we refer to hereafter as a thruple. We now provide a 

brief description of the NSGS procedure. The NSGS procedure requires that the 

replications associated with each feasible solution - in this case, a transplantation centre 

location thruple - are iid and are normally distributed, and that the replications 

associated with each alternative are independent of those from other alternatives, 

implying that common random numbers cannot be used in generating these replications. 

The NSGS algorithm is based upon the indifference zone approach; that is, it provides 

the statistical guarantee that, given 𝑚 alternatives, the best alternative will be selected 

with a probability 1 − 𝛼, provided that the best alternative is at least 𝛿 better than the 

next best alternative. In other words, the analyst is “indifferent” to alternatives within 𝛿 

units of the best alternative. The NSGS method involves first generating a prespecified 

number of replications (𝑛0) for each alternative, and then using 𝛼 and 𝛿 (set by the 

analyst), identifies a subset 𝐼 of the original 𝑚 alternatives guaranteed to contain the 



best alternative with 1 − 𝛼 probability. This is the screening stage. Note that the NSGS 

procedure utilizes Rinott's constant (Wilcox 1984) and the estimated variances for each 

system during the screening stage.  

After the first-stage subset 𝐼 is formed, the ranking and selection stage commences, 

wherein for each alternative in 𝐼, the number of additional replications to be generated 

is calculated. The mean for each alternative is updated after these additional replications 

are generated using the simulation, and the alternative with the lowest average 

transportation time is selected as the best alternative. 

For the 3-centre problem, we used an 𝛼 of 0.05 and a 𝛿 of 0.20 hours of 

transportation time. The number of initial replications 𝑛0 generated from each 

alternative was set to 30. We constructed the set of 10 feasible solutions as follows: one 

consisted of a thruple of centrally located districts (with respect to the geography of the 

state), three thruples covered the northern, southern, eastern and western corners of the 

state, and one thruple was located close to the district (the state capital) that contained 

11 out of 12 existing transplantation centres. The remainder (5 thruples) were randomly 

chosen. Intuitively, central locations or locations equally distributed across the 

geographical extent of the state would be expected to yield lower average transportation 

times. The results of the simulation optimization exercise reflect this intuition, as the 

optimal solution is one of the randomly chosen thruples that, along with the two districts 

already contain transplantation centres, are located such that they are approximately 

equally distributed across the geographical extent of Rajasthan. This optimal thruple 

yields a reduction of approximately 0.60 hours in mean transportation time, whereas the 

next best solution, well within the indifference zone (𝛿 = 0.2), yields a reduction of 

approximately 0.58 hours in mean transportation time. This next best thruple 

corresponds to locations that are approximately central. Therefore, this provides 



statistical validation to the insight that if sufficient resources to establish a limited 

number of new transplantation centres are available, choosing locations that are spread 

equally across the region of interest or are centrally located is most beneficial from the 

standpoint of minimizing organ transportation time. 

5. Conclusions and Discussion 

The work presented in this article is a first step towards modelling, analyzing and 

optimizing the organ transplantation system in India. Therefore, there are several 

avenues of research that we plan to pursue in the immediate future, including the 

following: (a) extend and adapt the model of the kidney transplantation system of 

Rajasthan to other states and for the entire country; (b) utilize the simulation in 

conjunction with machine learning methods to quantify the influence of each patient 

characteristic on the probability of receiving a transplant, based on the methodology in 

Baldwa et al. (2020); (c) determine the effect of organ donation awareness campaigns 

on transplantation outcomes. A model such as this can be adapted for other organ 

transplantation systems (e.g., liver, heart) in India. 

The lack of reliable data required to build and validate such models in the Indian 

context remains a challenge. The southern Indian states of Tamil Nadu and Kerala have 

a more well-established transplant system (Tom and Kumar, 2016), and hence have 

better organized data as well. However, we chose the state of Rajasthan for this study 

because, while the above states have more established transplant systems and better 

organized data, the RNOS website provides more granular information regarding the 

patients on the waitlist (e.g., patient age and blood group data, time on dialysis before 

registration). Therefore, a natural choice for next modelling steps would be to adapt the 

model to these states. We hope that the model presented in this paper will provide a 

roadmap for modelling and parameterizing simulation models of organ transplantation 



systems in developing nations where the availability of public transplantation data is 

also a challenge. 

The utility of a simulation model of an organ transplantation system is evident 

from previous work done in this field, and also from the simulation experiments 

conducted using our model and presented in this paper. However, the majority of 

previous simulation models developed to model kidney and liver transplantation 

systems address allocation policies, and hence our work provides a proof of concept for 

the utilization of such models to address logistical issues related to transplantation as 

well. For example, while Davis et al. (2013) utilize simulation to suggest organ 

redirection policies to alleviate geographical inequities in kidney transplantation 

outcomes, they do not evaluate the logistics itself associated with such policies or with 

the kidney transplantation system they model as a whole. Further, to the best of our 

knowledge, our study is the first to demonstrate the use of simulation optimization 

methods to determine optimal locations of transplant facilities. Our simulation model 

can similarly also be used, in conjunction with simulation optimization methods, to 

optimize organ allocation policies as well. A model such as this can generate insights 

that are not necessarily intuitive, such as the fact that patients with AB group not having 

the highest probability of receiving a transplant despite being universal recipients, the 

increase in the number of unallocated organs with an increase in organ arrival rate, and 

the reduction in average time spent on the waitlist before receiving a transplant when 

the number of districts with transplantation centres are increased. As the transplantation 

infrastructure in India develops further, the need for such a model to analyse and 

optimize allocation as well as logistical aspects of the transplantation system will be felt 

more acutely. However, it is also evident from the outcomes generated by the model 

that it is imperative to consolidate and expand public awareness programs to increase 



the organ donation rate in the country so that the average time to transplant is reduced 

and the number of deaths while on the waitlist are reduced. 
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Appendix 

Table A1. Distribution of key model outcomes 

S. No. Simulation outcome Distribution p-value 

1 Time to allocation Logistic (1151.9, 135.6) 0.250 

2 Organ transport time Normal (5.78, 1.41) 0.326 

3 Time to allocation: blood group A Normal (873.9, 434.6) with Box-Cox 

transformation (λ = 0.674) 

0.096 

4 Time to allocation: blood group AB Gaussian kernel density (160.299) Not 

applicable 

5 Time to allocation: blood group B Logistic (1208, 244) 0.179 

6 Time to allocation: blood group O Logistic (1352.1, 288.7) 0.250 

7 Time to allocation: public hospital Logistic (1112.6, 207.96) 0.230 

8 Time to allocation: private hospital Logistic (1181.1, 200.3) 0.250 
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