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Abstract—This paper presents an optimization framework for
the real-time generation of minimal contact routes for randomly
arriving agents within a connected network. The study focuses
on minimizing interactions between agents visiting specific nodes,
considering overlaps in their durations of occupancy of the nodes
as contacts. The effectiveness of the routing strategies is demon-
strated through stochastic simulation experiments, highlighting
the potential of this approach for enhancing efficiency and safety
in dynamic network environments. This makes use of Mixed
Integer Linear Programming and Robust Optimization tech-
niques. The proposed framework has applications in logistics for
automated warehousing and pandemic-driven customer routing
in supermarkets, to name a few.

Index Terms—Minimal Contact Routing, Traveling Salesman
Problem, Mixed Integer Linear Programming, Robust Optimiza-
tion, Automated Guided Vehicles, Collision Avoidance

I. INTRODUCTION AND LITERATURE REVIEW

This study considers a system in which agents arrive
stochastically at a fully connected network, where a path
exists between all pairs of nodes. There is no unique fixed
path between any two nodes; instead, as all nodes are
interconnected, an agent can choose the combination of edges
they prefer to reach the desired node. Each arriving agent
possesses a list of nodes they intend to visit, and our objective
is to assign paths to these agents in a way that minimizes
their interactions or contacts with other agents in the network.

A contact between two agents is defined as the overlap
in their duration of stays on a particular node. Therefore,
contacts between agents are only considered on nodes and not
in the edges or paths of the network. It is important to note
that due to the assumption of the presence of free-ranging
Automated Guided Vehicles (AGVs) – that is, AGVs not
dependent on preinstalled guide paths and able to decide on
their path by choosing a combination of edges – concerns
about collision avoidance along network edges are less likely
to arise. This observation is highlighted by Duinkerken et al.
(2006) and Xin et al. (2020).

The objective of this study is to formulate strategies
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for providing paths to newly arriving agents to the network
such that the contacts between these agents is minimized,
while also minimising the distance travelled by the agents.
Furthermore, the study also considers stochasticity in
system parameters such as agent traveling speeds and node
dwell times, which are likely to occur in real-world operations.

In recent years, there has been a growing interest in
addressing collision-free routing issues across diverse
domains. For instance, Herrero-Perez et al. (2010) propose
a decentralized navigation control approach for solving
navigation conflicts between AGVs. Each AGV calculates
its own paths, which eliminates the need for zone control
along the whole workspace and drastically simplifies the
modeling of behaviors, increasing the performance of the
MHS. However, there are situations that can induce blockages
and deadlocks, mainly because of limited sensing capabilities
and AGV traffic jams. Korsah et al. (2013) discuss the
Multi-robot task allocation (MRTA) problems , which are
the problems of determining which robots should execute
which tasks in order to achieve the overall system goals
in a multi-robot system. The features and complexity of
MRTA problems are dictated by the requirements of the
particular domain under consideration. These problems can
range from those involving instantaneous distribution of
simple, independent tasks among members of a homogenous
team, to those requiring the time-extended scheduling of
complex interrelated multi-step tasks for members of a
heterogeneous team related by several constraints. Lee et
al. (2014) and Bullo et al. (2011) also address a similar
problem in the task-allocation context. Guillaume et al. (2017)
present an approach to decentralized motion planning and
scheduling for Automated Guided Vehicles (AGVs) within a
flexible manufacturing system. The core strategy integrates a
motion planner with a scheduler, empowering each AGV to
dynamically update its destination resource during navigation,
acilitating in collision avoidance. The proposed methodology
unfolds in two key steps. Firstly, collision avoidance planning
is addressed by planning presumed trajectories, avoiding
conflicts identified by a central supervisor. This proactive
planning sets the stage for more effective decentralized
scheduling by AGVs. Subsequently, the second step leverages
the exchange of presumed trajectories with neighboring
AGVs, enabling the computation of collision-free trajectories
based on a priority policy. This approach ensures that
AGVs navigate safely, sidestepping potential collisions and
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optimizing overall system efficiency. In this study, stochastic
elements are incorporated into the agent’s traveling speed
and the time spent by the agent on a node, referred to as
the node dwell time. These stochastic factors are considered
in the path assignment formulations utilized by a central
supervisor. Spensieri et al. (2015) address the challenge
of coordinating collision-free movements and scheduling
welding tasks within an automotive assembly line. Similarly,
Xin et al. (2020) explore the collision-free path planning and
routing of multiple robotic effectors on an assembly line.

In addition to the above, a few more approaches used
by researchers to address similar problems have been further
described. Shi et al. (2018) propose a collision-free path
planning algorithm for unmanned aerial vehicle (UAV)
delivery. It uses the A* algorithm to optimize the route
through off-line planning and considers waiting time,
collision avoidance constraint, and battery constraint. The
algorithm also uses a data structure called CurrentSchedule
for checking and updating the availability of airspace. The
simulation results show desirable runtime performance and
could aid the decision-making of no-fly zone policy and
infrastructure of UAV delivery. The paper further mentions
that a fundamental challenge to online algorithms is the
modelling of uncertainties during flight. Kim et al. (2007)
proposed a probabilistic trajectory model in 3D space that
considers multiple trajectories with different degrees of
derivations to the baseline trajectory. The probability of
conflicts is calculated for each potential trajectory, and the
one with the lowest probability of conflicts is selected.
However, the proposed algorithm in this work is an off-line
algorithm that plans the path prior to departure and does
not explicitly consider stochasticity in any parameter. In
comparison to Shi et al. (2018) and Kim et al. (2007),
the robust formulations presented in this study differ in
terms of the context of producing minimal contact routes.
It considers contacts on the destinations only. For example,
while modeling a supermarket using our formulations, the
generated paths would minimize the queuing of the agents
on each of the destinations, to prevent possible reneging and
long-time agent-to-agent contact, which would be relevant
to prevent disease spread in a pandemic situation, such as
COVID-19. As another example, when the case of modeling
an AGV automated warehouse is considered using proposed
formulations, the paths generated would prevent congestion in
the system due to the queuing of AGVs at a node, which can
lead to collisions between the AGVs, leading to some damage
in the same. Furthermore, unlike Shi et al. (2018) and Kim
et al. (2007), our formulations are capable of accounting for
stochasticity in parameters such as agent traveling speed and
node dwell times and significantly decrease contacts under
uncertainty.

Xin et al. (2020) discusses about a collision-free routing
problem for multi-robot systems. The authors propose a time-
space network (TSN) model and a genetic algorithm to solve
the problem. The proposed genetic algorithm for the Mixed
Integer Programming problem based on the TSN formulation

uses a two-dimensional encoding scheme to represent the
robot paths and satisfy the constraints of a predefined
task sequence and collision avoidance. The algorithm
consists of the main procedures of selection, crossover, and
mutation, and uses a dedicated fitness function to evaluate the
quality of the solutions. As a metaheuristic algorithm, the GA
inherently involves some level of stochasticity in the selection,
crossover, and mutation procedures. The randomness in these
procedures allows the algorithm to explore the solution space
and avoid getting stuck in local optima, however, unlike
our formulation, the model does not specifically account for
stochasticity in the travelling speed of the robots or the time
spent by them on any destination in the network. Our robust
MILP-based approach captures this using box uncertainty sets
assigned to the stochastic parameters as mentioned previously.

Spensieri et al. (2015) propose a methodology to schedule
the operations of different types of machines in automated
container terminals in a way that ensures that the machines do
not collide with each other while performing their tasks. The
methodology takes into account the fact that AGVs can move
freely in the terminal, which makes their trajectory planning
more complex than that of machines that move along fixed
paths. The proposed methodology includes a hierarchical
control architecture that decomposes the scheduling problem
into two stages: determining the sequence of jobs for each
particular piece of equipment and the time window during
which each job is processed, and determining the actual time
window of each job incorporating collision-free trajectories of
AGVs. By using this methodology, the authors aim to improve
the efficiency and safety of automated container terminals.
The proposed algorithm is a sequential planning approach for
collision avoidance in automated container terminals. It first
determines the sequence of jobs for each particular piece of
equipment by solving a hybrid flow shop scheduling problem.
Then it obtains an overall graph sequence based on the job
sequences for the pieces of equipment and determine the
actual time window of each job incorporating collision-free
trajectories of AGVs by solving a collection of mixed integer
linear programming problems sequentially. Then it uses a
neighborhood variable search metaheuristic to provide a fast
initial solution to the proposed sequential planning algorithm
for real-time application. The approach of this paper is
different from ours in terms of classifying the machines into
different types in a deterministic manner and then accounting
for the difference in their behavior in their formulation. We,
however, consider stochasticity in the behavior of our agents,
by considering the time spent by them on each node, along
with their traveling speed in the network as independent and
identically distributed, sampled from known distributions.

Along with the approaches discussed above, Xin et al. (2015)
addresses the problem of optimizing sequences of operations,
such as welding, in collaborative manufacturing stations
employing multiple industrial robots. The primary objective
is to minimize the station cycle time, defined as the duration
until the last robot completes its cycle. The approach involves
task dispatching among robots and devising collision-free
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routes and schedules to ensure the completion of predefined
tasks. The proposed iterative and decoupled methodology
manages the problem’s high complexity. Initially, collisions
among robots are disregarded, leading to the formulation
of a min–max Multiple Generalized Traveling Salesman
Problem (MGTSP). Subsequently, after determining and
fixing the sets of robot loads, task sequencing and scheduling
are performed to prevent conflicts. The first problem is
addressed using an exact branch and bound (B&B) method,
incorporating different lower bounds derived from solutions
to a min–max set partitioning problem and a Generalized
Traveling Salesman Problem (GTSP). The second problem
assumes synchronous robot movement, introducing a novel
transformation of this synchronous problem into a GTSP.
Our approach distinguishes itself from these methods in two
aspects: firstly, in the context of collision, as we specifically
focus on collisions occurring only at nodes. This emphasis
aligns with our intended application, which, as an example,
could be optimizing logistics for AGV-based warehousing.
In contrast, Xin et al. (2015) consider collisions along
routes, where pre-installed paths in a manufacturing setup are
common, leading to collisions along these predefined paths.
Secondly, our approaches also differ in the manner in which
we account for stochasticity. In our approach, we account for
stochasticity in the system parameters in the robust MILP
formulation itself, through rectangular uncertainty sets.

Sen et al. (2021) explored a similar problem and presented
an optimization framework for identifying routes through
a connected network to minimize or eliminate contacts
between agents visiting specific nodes within minimal time.
However, their approach assumes constant node dwell times
and traveling speeds in the formulation used by them.
In our work, we consider stochasticity in agent traveling
speeds within the network and the time spent by each agent
on a node. To address uncertainties, we design a Robust
Optimization-based formulation incorporating box uncertainty
constraints, as described by Ben-Tal et al. (2002), to minimize
contacts in a stochastic framework. Furthermore, we propose
a Time Windows based MILP formulation for the problem
and compare the same to the Miller-Tucker-Zemlin (MTZ)
formulation for the problem proposed by Sen et al. (2021),
and show the efficacy of our model in terms of reducing
contacts. Detailed discussions of the TSP and related variants
can be found in work by Applegate et al. (2006); Cook
(2011); Reinelt (1991); Toth et al. (2014). Details regarding
the TSP-Time Windows based formulation (TWP-TW) and
TSP-MTZ based formulations can be found in Dumas et al.
(1995) and Miller et al. (1960), respectively.

In the context of the aforementioned investigations, our
contributions are delineated as follows:
(i) We address the real-time generation of minimal-contact
routes for randomly arriving agents, each possessing
independent sets of tasks, denoted as node sets for visitation.
(ii) We introduce a methodology for formulating minimal-
contact routes through an extension of the Time-Window
(TW) formulation within the Traveling Salesman Problem

(TSP) framework. This extended formulation demonstrates
superior performance compared to previously established
formulations utilizing the MTZ framework, as evidenced
by both computational runtimes and the aggregate count of
contacts, obtained using simulation experiments.
(iii) We explicitly incorporate considerations pertaining to
uncertainties associated with agent velocity and node dwell
time. We put forth a robust optimization formulation designed
to accommodate such uncertainties, thereby enhancing the
adaptability and resilience of the proposed routing strategy,
to account for randomness in the real world implementation.

II. NETWORK DESCRIPTION AND SIMULATION DETAILS

At the beginning of each simulation experiment, we
generate a sequence of interarrival times for agents until an
agent’s arrival time exceeds the simulation’s time horizon,
set at four hours in our case. Subsequent to generating
arrivals for this agent set, we assign node sets to each agent,
representing the nodes the agents plan to visit upon arrival
in the connected network. Routes are then created for each
agent, considering their node set, anticipated traversal speeds,
expected node dwell times, and traversal pattern based on the
MILP formulation used used for that simulation experiment.

Stochasticity is introduced into an agent’s traversal at
two levels:
(a) the speed of movement between nodes, and
(b) the duration spent at each node (node dwell time).

Once a route is assigned to an agent, the actual speeds of
movement between each pair of nodes on the route and the
dwell times at each node are sampled from their respective
distributions, as detailed below. Using this information, the
anticipated entry and exit times at each node are recorded for
each agent, based on the path assigned to the agent by the
formulation. Contacts are identified by checking whether there
is any overlap between the actual entry and exit times of agents
visiting each node, and this information is recorded separately.

It is crucial to note that the actual entry and exit times
are not inputted into the formulations. The formulations
receive only the expected node arrival times and dwell times
based on the mean values of simulation parameters, such as
agent traveling speed and node dwell time, derived from the
path assigned to the agent by the formulation.

Furthermore, the network which we consider in our simulation
experiments consists of one hundred nodes, including an
entry/exit node, within a 100-meter by 100-meter square area.
The coordinates of these nodes have been chosen through a
uniform distribution in both the length and the width of the
square area. This layout represents a fully connected network
where each node is interconnected with every other node.
The length of the path connecting two nodes is calculated
using the Euclidean norm of their coordinate differences.

We now give a description of all the parameters we
consider to the capture the behaviour of the agents in the
network:
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1. Arrival of Agents:
• We model agent arrival using a Poisson distribution.

Thus, the inter-arrival times are considered to follow
an exponential distribution, as is the case in a Poisson
process.

• For analysis, we assume the mean of the Poisson arrival
distribution has an arrival rate λ = 100 agents/hour,
unless mentioned otherwise.

Node Set Generation for an Agent:
• We randomly assign each agent a node set, considering

a uniform probability distribution across all the nodes.
• To enhance realism in the abstraction, we limit the

total number of nodes assigned to any agent to twelve,
excluding the entry and exit gates. This cap limit can
be adjusted based on the specific application scenario.

• Alternatively, the node assignment process can be
executed in a way where certain nodes are visited
with a higher probability than others. This variation
can be tailored to the specific application of these
formulations, adapting to different situations.

2. Traversal Patterns:
• The traversal pattern of an agent consists of the order

in which an agent visits the nodes in its node set.
• Traversal patterns to reduce contacts with other agents

are generated using the MILP formulations.
3. Node Dwell Time:

• By default, agent dwell times are considered to follow
an exponential distribution with a mean of 2 minutes.
The exponential distribution is chosen to accommodate
scenarios where node dwell time lacks predictive value.
Consequently, we view the exponential distribution
of node dwell time as a worst-case scenario in this
context. Additionally, we conduct a sensitivity analysis
where we vary the node dwell distributions to observe
how our results fluctuate with different node dwell time
distributions.

• In deterministic scenarios, a fixed node dwell time of
2 minutes is employed.

4. Agent Speed:
• Agent speed is modeled using the normal distribution,

and the absolute value of the sampled random variable
is considered.

• We use the mean speed as v = 15 meters per minute,
with a standard deviation of 9 meters per minute (60%
of the mean), unless otherwise specified.

• Deterministic scenarios employ a constant velocity of
15 meters per minute.

We conduct two sets of simulation experiments. In the first
set, we assume fixed values for node dwell times and agent
traveling speeds, set equal to their expected values. The
second set of simulation experiments introduces stochasticity
in these parameters, following the probability distributions
described earlier.

For a clearer understanding of the concept of a minimal
contact route, an example of such a route is illustrated in

Fig. 1, depicting two agents visiting a connected network.

Fig. 1: Example 1 - Contacts in the example path for agents
A and B

TABLE I: Node Occupancy for Agents in Example 1 (The
values in the example are arbitrarily chosen to describe the
simulation experiments better)

Node Node Occupancy (minutes : seconds)

Agent A Agent B

1 21:18 - 22:58 45:40 - 48:11
3 23:46 - 25:53 42:46 - 44:52
4 — 40:25 - 42:22

10 26:05 - 28:11 —
15 — 35:56 - 38:01
19 30:59 - 32:53 —
23 37:45 - 40:03 —
27 33:05 - 35:09 26:51 - 29:03
28 — 29:28 - 31:47

III. PATH ASSIGNMENT FORMULATIONS

In this study, we develop a mixed integer linear
programming (MILP) framework for generating optimal
minimal contact routes for agents that arrive randomly (i.e.,
interarrival times are stochastic) to a connected network. We
develop two extensions of the time windows (TW) mixed
integer programming formulation of the traveling salesman
problem (TSP) for generating optimal routes for an agent
tasked to traverse its node set (i.e., the set of nodes it is
assigned to visit within the network). Each of the TSP TW
formulations that we develop have two objectives:
(a) minimize the time spent traversing the agent’s node set;
and
(b) minimize (if not eliminate) all contacts at nodes with
other agents already in the network that may have intersecting
node sets.
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We develop two TW formulations:
(a) first, to find an optimal route that eliminates all contacts
with agents already in the network, referred to in short as the
TW-NC formulation (where NC stands for no contact, and
TW stands for time windows); and
(b) second, to find an optimal route that minimizes all
contacts with agents already in the network. The second
formulation is referred to as the TW-MC model, with MC
being an acronym for minimal contact. This formulation may
yield routes that may have a non-zero number of contacts;
however, we incorporate a penalty term for contacts in the
objective function along with minimizing the time spent in
the network. The weightage given to minimizing contacts
relative to minimizing time spent in the network may be
adjusted as desired.

The formulations extend the TSP TW formulation proposed
by Dumas et al. [10], by incorporating decision variables
and constraints that take into account the time at which
the agent under consideration reaches each node as well as
the time points at which agents already in the network are
anticipated to visit and exit nodes in the node set of the agent
in question. We also consider uncertainty in two key model
parameters: velocity of travel of the agent between nodes
and the time spent by an agent at a node, and hence we
also develop and include a robust optimization version of the
TW-MC formulation with asymmetric box uncertainty sets in
our optimal minimal contact routing framework.

In the pursuit of establishing a benchmark for evaluating the
path assignment strategies developed by us, we adopt two
foundational formulations denoted as Appendix Formulation
1 (MTZ-NC) and Appendix Formulation 2 (MTZ-MC),
introduced by Sen et al. [7]. These formulations are
extensions of the TSP MTZ formulation, proposed by Miller
et al. [9]. The fundamental premise of these benchmark
formulations involves considering constant values for both
node dwell time and agent traveling speeds in the formulation
design. In response to these benchmarks, we introduce the
novel formulations TW-NC and TW-MC. In the next section,
we offer a comparative analysis between the prposed and
benchmark formulations.

A. TSP-NC TW Formulation

This formulation is designed to provide no-contact paths
to the agents arriving in the network. Whenever such a
no-contact path is not possible, this formulation would lead
to an infeasible solution space, leading to the formulation
to not converge. This mixed-integer program presents the
no-contact path relying on the idea that to prevent contact
between two agents, an agent must refrain from reaching a
node already occupied by another agent. To achieve this, a
set of continuous time variables is introduced, representing
the moments when an agent reaches various nodes during
their tour. These time variables are constrained to prevent
overlap with time windows during which nodes are occupied

or blocked by other agents. The blocked time windows for
each node are specified as input data, derived from the routes
generated by the formulation for agents already within the
network, and using the expected value of the node dwell
time. The formulation is outlined below.

In the description of the formulations, we consider node 1 as
the Entry Gate and node n as the Exit Gate.

CONSTANTS FIXED BEFORE SIMULATION:

M : Large positive real number
b: Expected Node dwell time
v: Expected Agent travelling speed
Dij : Distance between node i and node j

PARAMETERS COLLECTED DURING SIMULATION:
Ki : {Ki1, . . . ,KiSi} Set of Si time points indicating arrival
time of agents at ith node.

DECISION VARIABLES:

ti: Time of arrival of current agent at node i

xij =

{
1 if i comes before j (in route of current agent)
0 otherwise

yik =

{
1 if agent k visits node i after current agent
0 otherwise

OBJECTIVE FUNCTION::

min tn − t1

CONSTRAINT SET - 1, SUB-TOUR ELIMINATION: For
all distinct nodes, we impose a constraint ensuring that either
one node precedes the other in the agent’s path or vice versa.
This precedence relation serves to prevent the occurrence of
sub-tours in the paths taken by the agents.

xij + xji = 1 ∀i ̸= j, i, j ∈ [1, n]

x1i = 1 ∀i ∈ [2, n]

xii = 0 ∀i ∈ [1, n]

xi,n = 1 ∀i ∈ [1, n− 1]

CONSTRAINT SET - 2: The following constraints are estab-
lished to put in place a connection between the continuous time
variables and the ordering binary variables. This connection
allows these variables to be utilized for analyzing the arrival
times of agents at various nodes. Subsequently, these variables
are further constrained to prevent overlapping in the time spent
on each node.

tj − ti ≥
([

Dij

v

]
+ b

)
xij −M (1− xij)

∀i ∈ [1, n]; j ∈ [1, n]; i ̸= j

tj − t1 ≥
[
Dj1

v

]
, ∀j ∈ [2, n]
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CONSTRAINT SET - 3, NO CONTACT CONSTRAINTS:
Now, utilizing the continuous time variables updated in the
preceding set of constraints, we impose additional constraints
to avoid any overlap in the time spent by the agent at the
nodes along their paths.

ti + b ≤ Kikyik +M (1− yik) ∀i ∈ [2, n− 1]; k ∈ [1, Si]

ti − b ≥ Kik (1− yik)−Myik ∀i ∈ [2, n− 1]; k ∈ [1, Si]

B. TSP-MC TW Formulation

DECISION VARIABLES:

ti : time of arrival of the current agent at node i

xij :

{
1 if node i is visited before j

0 otherwise

yik :

{
1 if agent k visits node i after the current agent
0 otherwise

δik =


1 if contact occurs between the previously

arrived agent k and the agent at node i

0 otherwise

OBJECTIVE FUNCTION:

min tn − t1 + Pe ×
n−1∑
i=2

Si∑
j=1

δij

MINIMAL CONTACT CONSTRAINTS: Instead of the No-
Contact constraints in the previous formulation, we describe a
formulation here that aims to minimize these contacts between
individual agents. This is achieved by introducing indicator
variables, which take the value of 1 in the presence of contact
between agents at a node and 0 otherwise.

ti ≥ [Kik − b]δi,k −M (1− δi,k) ,∀i ∈ [2, n− 1]; k ∈ [1, Si]

ti ≤ [Kik + b]δi,k +M (1− δi,k) ,∀i ∈ [2, n− 1]; k ∈ [1, Si]

ti ≥ [Kik + b](1− δi,k)−M (δi,k)

∀i ∈ [2, n− 1]; k ∈ [1, Si]

ti ≤ [Kik − b](1− δi,k) +M (δi,k)

+M(1− yik),∀i ∈ [2, n− 1]; k ∈ [1, Si]

C. Robust Optimization Formulation

In this specific formulation, we integrate the consideration
of uncertainty in both node dwell times and agent traveling
speeds through the utilization of an asymmetric box
uncertainty approach. This incorporation of uncertainty
allows for a more comprehensive and realistic depiction of
the stochastic nature inherent in these variables. To gauge
the degree of asymmetry within the box uncertainty set, we
introduce the parameter α. α serves as an indicator of the
asymmetry level present in the uncertainty set for a given
stochastic variable. A higher value of α signifies an increased
robustness in the model’s capacity to handle the randomness
associated with that specific stochastic variable. Through

the adoption of an asymmetric box uncertainty approach
and the introduction of the parameter α, we enhance the
model’s capability to accommodate and effectively manage
uncertainty in node dwell times and agent traveling speeds.

CONSTANTS FIXED BEFORE SIMULATION:

bi: Average dwell time on nodei
vi,j : Average velocity in going from node i to node j,

bi: Dwell time on node i,∀i ∈ {1, . . . , n},
where bi ∈ [bi − γb

i , bi + αγb
i ]

Pc: Penalty applied for contact between customers at a node,
Pt: Penalty applied for time spent inside the system
vi,j : Velocity in going from node i to node j,

where vi,j ∈ [vi,j − γv
i,j , vi,j + αγv

i,j ]

OBJECTIVE FUNCTION::

min Pt × (tn − t1) + (Pc + γc)×

n−1∑
i=2

Si∑
j=1

δij


BOOK KEEPING CONSTRAINTS: The subsequent con-

straints are introduced to establish a relationship between the
continuous time variables and the ordering binary variables,
taking into account values for agent traveling speed and
node dwell times derived from the box uncertainty set. We
incorporate the upper limit for agent speeds and extended node
dwell times from the box uncertainty to enhance our model’s
ability to prevent contacts more effectively. This approach is
justified by the understanding that higher speeds and prolonged
node dwell times would result in increased contacts, and by
incorporating these upper limits, the model is better equipped
to manage and minimize such occurrences.

tj − ti ≥

(
Dij

vi,j + αγv
i,j

+ bi + αγb
i

)
xij −M (1− xij)

∀i ∈ [1, n]; j ∈ [1, n]; i ̸= j

tj − t1 ≥ Dj1

vi,j + αγv
i,j

∀j ∈ [2, n]

MINIMAL CONTACT CONSTRAINTS:

ti ≥ [Kik − bi − αγb
i ]× δi,k −M (1− δi,k)

∀i ∈ [2, n− 1]; k ∈ [1, Si]

ti ≤ [Kik + bi + αγb
i ]× δi,k +M (1− δi,k)

∀i ∈ [2, n− 1]; k ∈ [1, Si]

ti ≥ [Kik + bi + αγb
i ]× (1− δi,k)−M (δi,k)−M(yik)

∀i ∈ [2, n− 1]; k ∈ [1, Si]

ti ≤ [Kik − bi − αγb
i ]× (1− δi,k) +M (δi,k) +M(1− yik)

∀i ∈ [2, n− 1]; k ∈ [1, Si]

IV. RESULTS AND DISCUSSION

The simulation experiments were conducted utilizing the
13th Generation Intel Core i9 processor, operating on a
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Windows 11 Home platform, with 16 GB of RAM and a 1
TB Solid State Drive (SSD), complemented by an NVIDIA®
GeForce RTX 4070 graphics card, all housed within the
Acer Predator Helios 16 Gaming Laptop. The Mixed Integer
Linear Programming (MILP) formulations were coded and
executed using the Gurobi optimizer [20], for the simulation
experiments which discuss.

A. Comparing MTZ MC, MTZ NC, TW MC, TW NC formu-
lations in the Deterministic Scenario

In this section, we evaluate the performance of the MTZ
MC, MTZ NC, TW MC, and TW NC formulations under
deterministic conditions, where each agent travels at a constant
speed and spends an identical amount of time at each node,
consistent with the average values of these quantities. We
observe instances of infeasibility in the MTZ NC formulation,
and these instances increase with the rise in the arrival rate.
Infeasibilities represent scenarios where the feasible region
becomes a null space, a situation encountered in the MTZ NC
formulation when an arriving agent within the network strug-
gles to identify a path that avoids contact with other agents.
This limitation arises from the central supervisor’s inability,
when utilizing the MTZ NC formulation for path assignment,
to accommodate an agent waiting at a node. This constraint
hinders the assignment of routes in a way that includes the
agent waiting on their node long enough to prevent contact
with other agents, leading to the observed infeasibilities. In
contrast, TW NC formulations allow for additional stay on
nodes, preventing infeasibilities. Results in Figure 2a show
MTZ NC formulation experiencing increased infeasibilities
with rising arrival rates, while TW NC formulation remains
free of infeasibilities. This difference difference between MTZ
NC and TW NC formulations can be seen in Constraint Set
3 of MTZ NC and Constraint Set 2 of TW NC formulations.
Next, we proceed to compare the average normalized runtimes
of these implemented formulations, which are normalized with
respect to the number of nodes visited by an agent. The
corresponding experimental outcomes are shown in Figure 2b.
It is observed that the Time Windows (TW) formulations
exhibit markedly lower runtimes.

(a) Comparing Infeasibilities for
MTZ NC and TW NC formula-
tions

(b) Comparing Runtimes for
MTZ NC, TW NC, MTZ MC,
and TW MC formulations

Fig. 2: Comparing the TW and MTZ formulations based on
runtimes and infeasibilities

When we compare the Minimal Contact Formulations,
i.e., formulations C and D, we try to understand which

among MTZ and TW formulations is better at minimizing
the contacts. As shown in Figure 3, we observe that the TW
formulation leads to a lesser number of contacts, except in
the case when there is no penalty for the contacts. Like the
prevention of infeasibilities, this too can be attributed to the
flexibility of TSP TW MC formulation, where TW formulation
is able to reduce the number of contacts by allowing the agent
to wait for a small duration of time before moving to the next
node. In Figure 4, we observe how both the TW MC and MTZ
MC formulations lead to similar normalized node dwell times,
which is the average time spent by the agent in the network
divided by the total number of nodes visited by the agent. We
find these values to be similar to each other numerically.

Fig. 3: Comparison of the total number of contacts under no
randomness (along with 95% confidence intervals) for TW and
MTZ formulations with varied arrival rates (m/s) [50, 100, 150,
200] and penalty per contact (PC) [0, 50, 100, 150, 200]

(a) TW MC Formulation (b) MTZ MC Formulation

Fig. 4: Comparing Average Normalized Node Dwell times for
the Minimal Contact Routing formulations

B. Considering Randomness

In the stochastic setting, we present the results obtained
from stochastic simulation experiments to discern which for-
mulations, among MTZ MC and TW MC, result in fewer
contacts. The standard deviation (SD) assigned to the normal
distribution governing agent traveling speeds is varied, specifi-
cally set at 20% and then 60% of the mean value. Notably, the
case with a higher standard deviation correlates with a lower
number of contacts. This outcome is attributed to increased
variability in traveling speeds, reducing the likelihood of
overlap at nodes among agents. To elaborate, when sampling



IEEE JOURNAL, DECEMBER 2023 8

agent speeds, the absolute value of a random variable drawn
from a normal distribution with parameters Normal(15, σ2)
is taken. A higher σ corresponds to a greater probability
of obtaining traveling speeds on the left side of the mean,
closer to zero. Consequently, smaller traveling speeds translate
to longer traveling times, preventing collisions at nodes by
allowing for delayed arrivals, particularly for slower-traveling
agents. The results for this experiment can be seen in Figure 5.

Fig. 5: Comparison of the total number of contacts under
randomness (along with 95% confidence intervals) for TW
and MTZ formulations with varied arrival rates (m/s) [50, 100,
150, 200] and penalty per contact (PC) = 100

Now, we use the robust version of the TSP MC TW For-
mulation with an asymmetric box uncertainty set to mitigate
contacts in the stochastic setting. As discussed before, the
parameter α (Alpha) controls the asymmetry of the box uncer-
tainty set used in the robust formulation. From the simulation
results, averaged across ten random seeds and depicted in
Fig.6, we observe a decrease in the total number of contacts as
α increases, with the minimum contacts observed for α values
between 8 and 10. This trend is attributed to the higher values
of α, which account for increased randomness in traveling
time and node dwell time within the system. Consequently, the
formulation strategically assigns paths to agents to minimize
contacts in the presence of uncertainty, while it results in
longer lengths of stay in the network. Longer paths are
assigned to delay an agent’s arrival at nodes shared with
other agents. This rationale explains the observed behavior in
Fig.6, where a statistically significant decrease in contacts is
evident, albeit with an associated increase in the time agents
spend in the system as α increases. Moreover, to gain a
deeper understanding of the behavior of these formulations,
we explore a scenario where we possess precise information
about all the future node arrival times of the agents, and
integrate this information into the formulation. The results of
this scenario are presented in Fig. 7, revealing that having
such information offers marginal to no discernible benefit in
reducing the total number of contacts. This observation raises
a pertinent question regarding the practicality and commercial
viability of investing in sensors to monitor the exact node

(a) Variation of contacts with Al-
pha (along with 95% confidence
interval)

(b) Normalized time spent (along
with 95% confidence intervals)
on each node in the scenario
without randomness)

Fig. 6: Results for Robust Optimization based Formulation,
considering exponential node dwell time

arrival times of agents, such as Automated Guided Vehicles
(AGVs) in nodes (stations within warehouses). Our simulation
experiments suggest a negligible benefit, highlighting the
limited insights that exact node arrival times provide in terms
of understanding the duration of stay of an agent at a given
node.

(a) Variation of contacts with Al-
pha (along with 95% confidence
interval)

(b) Normalized time spent (along
with 95% confidence intervals)
on each node in the scenario
without randomness)

Fig. 7: Results for Robust Optimization based Formulation
when exact future node arrival times are known by the
formulations, considering exponential node dwell time

To check whether our results hold when we choose distribu-
tions other than the exponential distribution for the node dwell
time, we change the distribution of the node dwell times to
normal, triangular, gamma, and exponential distributions. We
take the absolute values of the samples generated from these
distributions as the node dwell time. The parameters of these
distributions, as also highlighted in Fig. 8, are chosen such that
ninety percent of the samples generated are between x = 1 and
x = 5. The differences in the total number of contacts between
these experiments can be attributed to the difference in the left
and right tails of these distributions. We see a high overlap
between the normal and the triangular distribution cases, and
hence observe similar total number of contacts and normalized
time spent trends. Here too, as seen in Fig. 9 and Fig. 10, we
observe that, with the increase in α, there is a decrease in
the total number of contacts, with least contacts observed for
α between 8 and 10. We also see that there is an increase
in the normalized time spent per node as the α increases, the
reasoning for which is the same as described earlier. As before,
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here too in in Fig. 11 and Fig. 12, we observe negligible to no
benefit of knowing the exact node arrival times of the agents.
This is because the exact node arrival times don’t capture much
information regarding the amount of time the agent spends on
that node, hence not being very useful in terms of reducing
contacts.

Fig. 8: Distribution of Node Dwell Times when Triangular,
Normal, Gamma, and Exponential Dwell times are considered

(a) Triangular Dwell (b) Normal Dwell

(c) Gamma Dwell (d) Exponential Dwell

Fig. 9: Variation of Average Total Number of Contacts with
Alpha for Robust Formulation

V. CONCLUSION

In conclusion, our study reveals that the Time-Windows
(TW) formulation outperforms the Miller-Tucker-Zemlin
(MTZ) formulation in terms of reducing contacts and
achieving shorter normalized runtimes. This superiority is
consistent across experiments involving fixed node dwell
times and agent arrival rates. The TW formulation, providing
agents the flexibility to choose between waiting on a node or

(a) Triangular Dwell (b) Normal Dwell

(c) Gamma Dwell (d) Exponential Dwell

Fig. 10: Variation of Normalized Time Spent per Node with
Alpha for Robust Formulation

(a) Triangular Dwell (b) Normal Dwell

(c) Gamma Dwell (d) Exponential Dwell

Fig. 11: Variation of Average Total Number of Contacts with
Alpha for Robust Formulation, when exact future node arrival
times are known

selecting alternative paths, results in fewer contacts within
the network. Furthermore, this flexibility leads to the TW NC
formulation to eliminate infeasibilities, whereas MTZ NC
formulation led to infeasibilities, which increased with the
agent arrival rate.

When introducing randomness in node dwell times and
agent traveling speeds, both formulations exhibit similar
contact counts. Although the TW formulation tends to yield
fewer contacts on average, this difference lacks statistical
significance at the 5% level. The application of the Robust
Optimization Formulation leads to a statistically significant
reduction in contacts compared to the TW MC and TW NC
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(a) Triangular Dwell (b) Normal Dwell

(c) Gamma Dwell (d) Exponential Dwell

Fig. 12: Variation of Normalized Time Spent per Node with
Alpha for Robust Formulation, when exact future node arrival
times are known

formulations.

Furthermore, we explore scenarios where precise future
node arrival times of agents are known and integrated into
the formulation. Surprisingly, we find that possessing this
information offers marginal to no benefit in terms of reducing
total contacts. This observation prompts questions about the
practicality and cost-effectiveness of investing in sensors
to monitor exact node arrival times of agents, especially in
systems resembling our simulation experiments.

APPENDIX A
THE BENCHMARK MTZ FORMULATIONS

To set a reference point, we examine two formulations
labeled as Appendix Formulation 1 and Appendix Formulation
2, put forth by Sen et al. (2021). These formulations pri-
marily tackle the deterministic scenario, presuming a scenario
where traveling speeds and node dwell times are fixed. They
draw inspiration from the MTZ formulation for the traveling
salesman problem, introducing integer decision variables to
independently address the elimination of sub-tours.

Appendix Formulation 1: TSP-NC MTZ Formulation

PARAMETERS FOR SIMULATION:

M : Large positive real number
b: Expected node dwell time
v: Expected Agent travelling speed
Dij : Distance between node i and node j

PARAMETERS COLLECTED DURING SIMULATION:
Ki : {Ki1, . . . ,KiSi} Set of Si time points indicating arrival
time of agents at ith node.

DECISION VARIABLES:

ti: Arrival time of agent at node i

ui: Order in which node i is visited

xij =

{
1 if node i is visited immediately before node j

0 otherwise

yik =

{
1 if agent k visits node i after the current agent
0 otherwise

OBJECTIVE FUNCTION (To minimize)::
n+1∑
i=1

n+1∑
j=1

Dij × xij

CONSTRAINT SET - 1:
n∑

i=1

xij = 1 ∀j ∈ [2, n]

n∑
j=1

xij = 1 ∀i ∈ [1, n− 1]

CONSTRAINT SET - 2, SUB-TOUR ELIMINATION CON-
STRAINTS FOR TSP:

u1 = 1

un = n

ui ≥ 2 ∀i ∈ [2, n− 1]

ui ≤ n− 1 ∀i ∈ [2, n− 1]

ui − uj + n× xij ≤ n− 1 ∀i ∈ [1, n− 1],∀j ∈ [2, n]

CONSTRAINT SET - 3, CONSTRAINTS FOR KEEPING
TRACK OF TIME:

t0 = 0

tj − ti ≤ M(1− xij) + b+

[
Dij

v

]
∀i ∈ [1, n− 1]; j ∈ [2, n]

tj − ti ≤ −M(1− xij) + b+

[
Dij

v

]
∀i ∈ [1, n− 1]; j ∈ [2, n]

CONSTRAINT SET - 4, NO CONTACT CONSTRAINTS:

ti + b ≤ Kikyik +M(1− yik)∀i ∈ [2, n]; k ∈ [1, Si]

ti − b ≥ Kik(1− yik)−Myik∀i ∈ [2, n]; k ∈ [1, Si]

Appendix Formulation 2: TSP-MC MTZ Formulation

DECISION VARIABLES:

ti: Arrival time of agent at node i

ui: Order in which node i is visited

xij =

{
1 if node i is visited immediately before node j

0 otherwise

yik =

{
1 if agent k visits node i after the current agent
0 otherwise

δik =


1 if contact occurs between the previously

arrived agent k and the agent at node i

0 otherwise
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OBJECTIVE FUNCTION (To minimize)::

n∑
i=1

n∑
j=1

dij × xij + Pe ×
n−1∑
i=2

Si∑
j=1

δij

CONSTRAINT SET - 1:

n∑
i=1

xij = 1 ∀j ∈ [2, n]

n∑
j=1

xij = 1 ∀i ∈ [1, n− 1]

CONSTRAINT SET - 2, SUB-TOUR ELIMINATION CON-
STRAINTS FOR TSP:

u1 = 1

un = n

ui ≥ 2 ∀i ∈ [2, n− 1]

ui ≤ n− 1 ∀i ∈ [2, n− 1]

ui − uj + (n)xij ≤ n− 1 ∀i ∈ [1, n− 1], ∀j ∈ [2, n]

CONSTRAINT SET - 3, CONSTRAINTS FOR KEEPING
TRACK OF TIME:

t1 = 0

tj − ti ≤ M(1− xij) + b+

[
Dij

v

]
∀i ∈ [1, n− 1]; j ∈ [2, n]

tj − ti ≥ −M(1− xij) + b+

[
Dij

v

]
∀i ∈ [1, n− 1]; j ∈ [2, n]

CONSTRAINT SET - 4, MINIMAL CONTACT CON-
STRAINTS:

ti ≥ [Kik − b]δi,k −M(1− δi,k),∀i ∈ [2, n]; k ∈ [1, Si]

ti ≤ [Kik + b]δi,k +M(1− δi,k),∀i ∈ [2, n]; k ∈ [1, Si]

ti ≥ [Kik + b](1− δi,k)−M(δi,k)−M(yik)

∀i ∈ [2, n]; k ∈ [1, Si]

ti ≤ [Kik − b](1− δi,k) +M(δi,k) +M(1− yik)

∀i ∈ [2, n]; k ∈ [1, Si]
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