Robust Control (Jul. - Dec., 2019)

Time and Venue

Tuesday 4:00 PM - 05:30 PM

Friday 3:30 PM - 05:00 PM.

Venue: LH 620 (lecture hall complex)

Announcement: .

Syllabus

  • Preliminaries:- Norms: vector, matrix, signals and systems; Linear systems: controllability and stabilizability, observability and detectability, poles and zeros of transfer function matrix, LMI and Riccati equation.

  • Feedback interconnection & stability:- Well-posedness; Internal stability; Coprime factorization and stabilizing controllers.

  • Uncertainty and robustness:- Uncertainty representations; Uncertain polynomials; Boundary crossing theorem; Kharitonov's result; Edge thorem; Stability of polytope of polynomials; Sensitivity and complementary sensitivity; Linear fractional transformation (LFT), Robust stability.

  • H_2 and H_{infty} control:- H_2 and H_{infty} control problems and solutions.

Lecture Notes

Evaluation

  • Midterm - 1: 15%

  • Midterm - 2: 15%

  • End-semester: 40%

  • Mini-project: 30%

Suggested References

  1. K. Zhou, J. C. Doyle and K. Glover, “Robust and Optimal Control”, Prentice-Hall, Englewood Cliffs, NJ, 1995.

  2. G. E. Dullerud and F. G. Paganini, “A course in Robust Control: a convex approach”, Springer, 2005.

  3. J. Ackermann, ‘‘Robust control: the parameter space approach". Springer, 2012.

  4. S. P. Bhattacharyya, H. Chapellat, and L.H. Keel. “Robust Control: The Parametric Approach”. Upper Saddle River: Prentice-Hall PTR, 1995.

  5. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. “Linear Matrix Inequalities in System and Control Theory”. SIAM studies in Applied Mathematics, Philadelphia, Pennsylvania, 1994.

Relevant materials